

www.ijsetr.com

ISSN 2319-8885

Vol.07,Issue.04,

April-2018,

Pages:0715-0718

 Copyright @ 2018 IJSETR. All rights reserved.

Publicly Verifiable Boolean Query over Outsourced Encrypted Data
B. SHILPA

1
, A. MALLIKARJUNA

2
, S. RAMAKRISHNA

3

1
PG Scholar, Dept of Computer Science, S.V.University, Tirupati, AP, India.

2
Teaching Assistant, Dept of Computer Science, S.V.University, Tirupati, AP, India.

3
 Professor, Dept of Computer Science, S.V.University, Tirupati, AP, India.

Abstract: Outsourcing storage and computation to the cloud has become a common practice for businesses and individuals. As

the cloud is semi-trusted or susceptible to attacks, many researches suggest that the outsourced data should be encrypted and

then retrieved by using searchable symmetric encryption (SSE) schemes. Since the cloud is not fully trusted, we doubt whether it

would always process queries correctly or not. Therefore, there is a need for users to verify their query results. Motivated by this,

in this paper, we propose a publicly verifiable dynamic searchable symmetric encryption scheme based on the accumulation tree.

We first construct an accumulation tree based on encrypted data and then outsource both of them to the cloud. Next, during the

search operation, the cloud generates the corresponding proof according to the query result by mapping Boolean query

operations to set operations, while keeping privacy-preservation and achieving the verification requirements: freshness,

authenticity, and completeness. Finally, we extend our scheme by dividing the accumulation tree into different small

accumulation trees to make our scheme scalable. The security analysis and performance evaluation show that the proposed

scheme is secure and practical.

Keywords: Cloud Computing, Outsourced Encrypted Data, Query Integrity Verification.

I. INTRODUCTION

 The great flexibility and economic savings of cloud

computing motivate companies and individuals to outsource

their data to cloud servers. By outsourcing a dataset to the

cloud, the data owner or other valid data users can then issue

the cloud informational queries that are answered according

to the dataset. This model captures a variety of real-world

applications such as outsourced SQL queries, streaming

dataset, and outsourced file systems. However, the privacy

and confidentiality concerns of data often make them

reluctant to do that. Therefore, it is natural for a data owner

to encrypt data before outsourcing them to the cloud. As a

result, the cloud server cannot reveal the content of the

outsourced data. However, since data has been encrypted

before outsourced the cloud, it obstructs the traditional data

utilization service based on plaintext keyword search. Thus,

how to efficiently obtain encrypted data from the cloud

server is very important for outsourcing storage applications.

Motivated by this challenge, many searchable symmetric

encryption (SSE) schemes are proposed to satisfy different

search functions on encrypted data. By using these schemes,

a data owner can outsource encrypted data to protect the

confidentiality of data, and data users can query from the

cloud. Specifically, a pharmaceutical company would like to

outsource a set of sanitized records of its clinical trials to the

cloud server after encryption. Then, its employees or

external third parties such as the European Medicines

Agency use these information for research or other

operations by keywords search.

 However, due to the nature of the delegation/outsourcing,

the cloud server can fully control the outsourced data and

decide the SSE query result for the company or other third

parties, which causes issues of trust. There are several

reasons for which the data owner/users cannot trust the cloud

server: Firstly, the cloud server may run buggy software or

its systems may be vulnerable to security breaches, leading

to incorrect result. Secondly, in some applications, the

company or third parties want to rule out accidental errors

during the computation. Finally, when there is a legal dispute

between the pharmaceutical company and a patient, the

pharmaceutical company may collude with the cloud to

provide an incomplete search result to the data user (such as

a judge). Therefore, it is necessary for the cloud server to

have the ability to provide proofs with which the data

owner/users are able to verify the integrity of the search

result returned by the cloud server. As mentioned above, the

query integrity is significantly important to the data

owner/users. To achieve this purpose, we allow the data

owner to perform some polynomial-time preprocessing on

encrypted data before outsourcing them to the cloud and to

save a small verification state that allows data users to verify

the returned proof provided by the cloud server. When

issuing an update operation, the data owner will update its

verification state at the same time. If the verification state

can be made by any third-party (not necessarily the user

originating the search query), we say that the proof is

publicly verifiable. Public verifiability is particularly

important in multi-user settings.

B. SHILPA, A. MALLIKARJUNA, S. RAMAKRISHNA

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.04, April-2018, Pages: 0715-0718

 The query integrity verification has been studied for

structured attributed-value type database and streaming

setting. Many verification schemes are proposed to meet

verification requirements (details are introduced in related

work). However, these schemes may not be suitable for SSE

condition:

 These schemes assumed that the data stored at the

third party publisher is in plaintext, while for SSE,

the data is encrypted so that the publisher cannot

“see” the actual content;

 All of them are ordered by some sequences or the

data update according to time slices which makes

verification easier.

 Obviously, the query integrity verification in SSE should

contain three aspects:

 Freshness: The record values in the answer must

be up-to-date;

 Authenticity: Every record returned in the search

result must originate from the data owner;

 Completeness: Every record that satisfies the query

condition must be in the search result.

 Moreover, the verification process should be secure and

privacy-preserving. Even though there are many studies

about the SSE, the query integrity verification work is

limited except. Moving a step forward, in this paper, we

present a publicly verifiable scheme which can publicly

verify whether the cloud server has faithfully executed

Boolean search operations in dynamic SSE (DSSE). To

realize query integrity verification in DSSE, a possible

solution is that we can map query operations to set

operations, so that the query integrity verification can be

achieved by using the accumulation tree. However, there are

several challenges that must be overcome before we use this

method: Firstly, how to map query operations to set

operations in DSSE. Secondly, how to construct the

accumulation tree with limited information of DSSE so that

the construction process would not affect the architecture of

DSSE. Thirdly, how to achieve the secure and privacy-

preserving query integrity verification by using the

accumulation tree in DSSE while ensuring the verification

requirements. Finally, how to ensure the efficiency and

scalability of the query integrity verification process in

DSSE. All these challenges make the query integrity

verification of DSSE different from the existing work. Thus,

the contributions of our work are listed as follows:

 We propose a publicly Boolean query integrity

verification scheme over the outsourced dynamic

encrypted data to check the freshness, authenticity, and

completeness of the query result.

 We construct an accumulation tree, a special Merkle

hash tree, in DSSE to map Boolean operations of

keywords to set operations, which is different from the

traditional signature or aggregate signature.

 We extend our scheme by dividing encrypted data into

small groups, then constructing the corresponding

accumulation trees for each group to make our scheme

efficient and scalable solutions.

 The security and performance analysis are carried out to

show that the proposed scheme is privacy-preserving

and practical.

Fig.1. The System Model.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model and Motivation

 A database DB=(indi, Wi) is a list of identifier and

keyword-set pairs, where indi is a document identifier and

Wi is a list of keywords in that document. The system model

is illustrated as Fig. 1 which contains three entities: a data

owner DO, who outsources a large-scale collection of e d

documents to the remote cloud server S; the cloud server S,

which provides storage services; and data users DUs, who

can enjoy the documents from the cloud. Considering the

privacy problem and the efficient information retrieval, the

cloud-based data storage and sharing process are described

as follows:

 The data owner DO first extracts the keywords of each

document and builds a keyword index. Then DO

encrypts the documents as well as the keyword index.

Notice that the documents are dynamic. That is, at any

time the data owner can add, modify or delete one or

more documents from the cloud.

 After the data owner outsources the encrypted

documents as well as the encrypted keyword index to

the cloud server, the data users DUs can use the Boolean

query expression to query and retrieve documents of

interest from the cloud. To this end, the data users

should first pass the authentication of the data owner,

and then get an encrypted search token according to the

Boolean query expression and the public verification

key (V K).

 After receiving the query token, the cloud server S

executes the query and returns the encrypted documents

according to the token. Moreover, to verify whether the

cloud has correctly executed the search operation or not,

an additional proof is also appended to the result.

 When receiving the result and the corresponding proof,

the data users DUs or others can verify the correctness

of the search result by V K. Finally, DUs can decrypt

encrypted documents after the verification is correct.

Publicly Verifiable Boolean Query over Outsourced Encrypted Data

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.04, April-2018, Pages: 0715-0718

B. Attack Model

 The data owners are naturally trusted. Both authorized and

unauthorized data users are semi-trusted, meaning that they

may try to infer some sensitive information from the query

result and the corresponding proof. The cloud server is not

trusted as it executes the search operations, which already

implies that the cloud may manipulate the outsourced

encrypted data. Moreover, we also consider potential

malicious data users which could collude with the cloud

server or other malicious users, or help the cloud to cheat

with other users. Note that the assumption about malicious

data users enables the public verifiability property of our

solution. Obviously, our attack model is more general.

C. Design Objective

 The objective of our work is to design a publicly

Boolean query integrity verification scheme in DSSE. First,

we present a leakage function L, which covers all the

information leakage in our scheme. For instance, the privacy

leakage introduced by a Boolean query Q on DB is denoted

as L(DB,Q). Informally, the privacy leakage function for the

query integrity verification in DSSE includes the following

aspects:

 Size Pattern: The cloud server can learn the total

number of data records in the database and the total

number of search queries submitted by each data user;

 Access Pattern: The cloud server reveals the identifier

of each encrypted data record that is returned for each

query ;

 Search Pattern: The cloud server can learn if the same

encrypted data record is retrieved by two different

queries;

 Path Pattern: The cloud server learns the set of nodes

of the accumulation tree in each query integrity

verification.

 Notice that the size pattern, access pattern, and search

pattern are general information leakage in searchable

encryption. Path pattern is introduced for generating the

proof for query integrity verification. We argue that

revealing path pattern is only a minor leakage in the privacy-

preserving Boolean query since the information we use to

generate the proof is in the cloud server, which has little

influence on the data privacy. To sum up, the design

objective is to achieve secure and privacy-preserving

Boolean query integrity verification in DSSE under the

leakage function L.

III. PUBLICLY VERIFIABLE BOOLEAN QUERY

OVER ENCRYPTED DATA

 We define and construct our publicly verifiable scheme in

DSSE. In order to introduce our scheme, we first describe

the construction process of the query integrity verification

with the SSE scheme, i.e., OSPIR-OXT.

A. Definition

 Based on OSPIR-OXT, a publicly verifiable DSSE contains

an algorithm EDBSetup (DB, RDK), an algorithm Update

(EDB, AT), a protocol GenToken(K,w), a protocol

Search(token), and an algorithm Verify(a(q), Π). The syntax

is described as follows:

 (K, s, EDB, AT) ← EDBSetup(DB, RDK): This

algorithm can be divided into two phases: First, it takes

a security parameter λ as input and outputs a secret key

K and a secret key s for the accumulation tree

construction, Second, it takes a database DB as input,

and outputs an encrypted database EDB and a

constructed accumulation tree AT. Then both EDB and

AT are stored at the cloud server.

 (EDB′, AT′) ← Update(EDB, AT): This algorithm

runs between the data owner and the cloud server. The

data owner inputs an update operation, the update index

indi of the ith document, and the list of unique keywords

in the document. The protocol adds or deletes the

document from the EDB and updates the corresponding

AT.

 (token, V Kw) ← GenToken(K,w): This protocol is

executed between the data owner and the data user. For

an authorized user with the Boolean query w = w1, · ·

·,wn, the data owner uses K to generate the

corresponding token to enable the search at the cloud

server for the data user and the corresponding public

verification key V Kw.

 (Π, a(q)) ← Search(token): This protocol is run by the

cloud server to conduct the search operation over

encrypted index according to the token of the data user.

The server returns the search result a(q) and the proof Π.

Notice that the proof can be an optional item.

 (0, 1) ← Verify(a(q),Π, V Kw): This algorithm is run

by the verifier to verify whether the server has faithfully

executed the search operations or not according to the

search token by the proof and V Kw.

B. Overview

 The basic idea underlying the construction is that: to

achieve the public Boolean query integrity verification for

outsourced encryption documents, an accumulation tree is

associated with encrypted documents. Then the data owner

outsources both of them to the cloud server. During the

search process, after executing the privacy-preserving

Boolean query over encrypted data, the cloud should

compute its corresponding proof according to the query

result by using the accumulation tree. To compute the proof,

the cloud maps relations of Boolean queries to the similar set

operations of the accumulation tree. Finally, with the search

result, the proof and the public verification key, the data user

or others can verify the freshness, authenticity, and

completeness of the search result even without decrypting

them.

IV. RELATED WORK

 We introduce related work in three aspects: searchable

encryption, query integrity verification, and query integrity

verification on encrypted data. Searchable encryption: Song

explicitly considered the problem of searchable encryption

and presented a scheme with search time that was linear with

the size of the data collection for the first time. Their

construction supports insertions/deletions of documents in a

straightforward way. Curtmola gave the first index-based

SSE constructions to achieve sublinear search time for SSE.

A similar construction was proposed by Chase and Kamara,

B. SHILPA, A. MALLIKARJUNA, S. RAMAKRISHNA

International Journal of Scientific Engineering and Technology Research

Volume.07, IssueNo.04, April-2018, Pages: 0715-0718

but with higher space complexity. Subsequently, Kamara

introduced a dynamic scheme which was the first one with

sublinear search time. However, it did not achieve forward

privacy or revealed hashes of the unique keywords contained

in the document during the update. Recently, Cash presented

a SSE scheme supporting conjunction queries over static

data. Based on Cash work, Jarecki proposed a scheme that

allowed data owners to authorize third parties and to execute

private information retrieval on the outsourced database.

Faber extended the search capabilities of the system from by

supporting range queries, substring queries, wildcard

queries, and so on. Moreover, they also extended their

techniques to the more involved multi-client SSE scenarios

studied. However, they did not consider the update process

and the integrity query verification comparing with our

scheme. To support efficient update and preserve the privacy

during the update process. It is obvious that, all the proposed

schemes for SSE do not consider the verification problem of

the search result.

Query Integrity Verification: Li introduced an efficient

implementation of Merkle hash tree authenticated B+-tree to

audit the completeness of the query result, and demonstrated

its superiority over signature chaining. By using signature

aggregation, Pang proposed a scheme to verify the freshness,

authenticity, and completeness of query answers from

frequently updated databases that were hosted on untrusted

servers. Azraoui used the well-established techniques of

Cuckoo hashing, polynomial-based accumulators, and

Merkle trees to publicly verify conjunctive keyword search

in outsourced databases. However, unlike our solution, none

of these solutions achieve public verification for encrypted

data.

V. CONCLUSION

 We study the problem of verifying the freshness,

authenticity, and completeness of the Boolean query result

over the outsourced encrypted data. Based on OSPIROXT,

we propose a publicly verifiable scheme by constructing the

accumulation tree to achieve the query integrity verification

while keeping privacy-preserving and efficiently practical.

The security analysis shows that without protecting the

access pattern, our scheme can keep the privacy-preserving

of private information retrieval. The performance

demonstrates our scheme is scalable.

VI. REFERENCES

[1] S. Jiang, X. Zhu, L. Guo, and J. Liu, “Publicly verifiable

boolean query over outsourced encrypted data,” in

Proceedings of the 2015 IEEE Global Communications

Conference (GLOBECOM 2015). IEEE, 2015.

[2] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M.

Steiner, “Outsourced symmetric private information

retrieval,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security. ACM,

2013, pp. 875–888.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic

searchable symmetric encryption,” in Proceedings of the

2012 ACM conference on Computer and communications

security. ACM, 2012, pp. 965–976.

[4] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and

M. Steiner, “Highly-scalable searchable symmetric

encryption with support for boolean queries,” in Advances in

Cryptology- CRYPTO 2013. Springer, 2013, pp. 353–373.

[5] M. Naveed, M. Prabhakaran, and C. A. Gunter,

“Dynamic searchable encryption via blind storage.” in

Proceedings of the IEEE Symposium on Security and

Privacy, San Jose, CA, May, 2014.

[6] E. Stefanov, C. Papamanthou, and E. Shi, “Practical

dynamic searchable encryption with small leakage.” IACR

Cryptology ePrint Archive, vol. 2013, p. 832, 2013.

[7] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk,

M. C. Rosu, and M. Steiner, “Dynamic searchable

encryption in verylarge databases: Data structures and

implementation,” in 21
st
 Annual Network and Distributed

System Security Symposium, NDSS 2014, San Diego,

California, USA, February 23-26, 2014.

[8] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu,

and M. Steiner, “Rich queries on encrypted data: Beyond

exact matches,” in European Symposium on Research in

Computer Security (ESORICS 2015). Springer, 2015, pp.

123–145.

[9] M. Azraoui, K. Elkhiyaoui, M. Onen, and R. Molva,

“Publicly verifiable conjunctive keyword search in

outsourced databases,” in Proceedings of the 2015 IEEE

conference on Communications and Network Security

(CNS). IEEE, 2015, pp. 619–627.

[10] http://www.wired.com/2009/01/magnolia-suffer/.

[11] http://mashable.com/2011/02/27/gmail-glitch/.

[12] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to

delegate and verify in public: Verifiable computation from

attribute-based encryption,” in Proceedings of the 9th

Theory of Cryptography Conference, TCC 12, 2012, pp.

422–439.

[13] H. Pang, j. Zhang, and k. Mouratidis, “Scalable

verification for outsourced dynamic databases,” Proceedings

of the VLDB Endowment, vol. 2, no. 1, pp. 802–813, 2009.

Author’s Profile:

B. Shilpa, MCA Student, Dept of Computer

Science, Sri Venkateswara University,

Tirupati, Andhrapradesh, India.

Email: bsilpa506@gmail.com

A.Mallikarjuna, Teaching Assistant

Department of Computer Science, Sri

Venkateswara University College of

Commerce Management and Computer

Science, S.V University, Tirupati, AP,

INDIA. Email: mallisvu9@gmail.com

Dr.S.Ramakrishna M.Sc, M.Phil, M.Tech,

Ph.D., Working as a professor in

Department of Computer Science, Sri

Venkateswara University College of

Commerce, Management and Computer

Science, Tirupati (AP), INDIA.

Email: drsrsmskrishna@yahoo.com.

http://www.wired.com/2009/01/magnolia-suffer/

