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Land Surface Temperature (LST) with high spatio-temporal resolution is in demand for hydrology, climate
change, ecology, urban climate and environmental studies, etc. Moderate Resolution Imaging
Spectroradiometer (MODIS) is one of the most commonly used sensors owing to its high spatial and tem-
poral availability over the globe, but is incapable of providing LST data under cloudy conditions, resulting
in gaps in the data. In contrast, microwave measurements have a capability to penetrate under clouds.
The current study proposes a methodology by exploring this property to predict high spatio-temporal
resolution LST under cloudy conditions during daytime and nighttime without employing in-situ LST
measurements. To achieve this, Artificial Neural Networks (ANNs) based models are employed for differ-
ent land cover classes, utilizing Microwave Polarization Difference Index (MPDI) at finer resolution with
ancillary data. MPDI was derived using resampled (from 0.25� to 1 km) brightness temperatures (Tb) at
36.5 GHz channel of dual polarization from Advance Microwave Scanning Radiometer (AMSR)-Earth
Observing System and AMSR2 sensors. The proposed methodology is tested over Cauvery basin in
India and the performance of the model is quantitatively evaluated through performance measures such
as correlation coefficient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE). Results
revealed that during daytime, AMSR-E(AMSR2) derived LST under clear sky conditions corresponds well
with MODIS LST resulting in values of r ranging from 0.76(0.78) to 0.90(0.96), RMSE from 1.76(1.86) K to
4.34(4.00) K and NSE from 0.58(0.61) to 0.81(0.90) for different land cover classes. During nighttime, r
values ranged from 0.76(0.56) to 0.87(0.90), RMSE from 1.71(1.70) K to 2.43(2.12) K and NSE from 0.43
(0.28) to 0.80(0.81) for different land cover classes. RMSE values found between predicted LST and
MODIS LST during daytime under clear sky conditions were within acceptable limits. Under cloudy con-
ditions, results of microwave derived LST were evaluated with air temperature (Ta) and indicate that the
approach performed well with RMSE values lesser than the results obtained under clear sky conditions
for land cover classes for both day and nighttimes.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Land Surface Temperature (LST) is the radiative skin temperature
of the uppermost part of the earth’s surface. It is a primary element
in the fields of climate change, hydrology, energy balance models,
vegetation monitoring urban climate and environmental studies
because it represents integrated features of land atmosphere phys-
ical and dynamic processes (Choi et al., 2009; Jin, 2000; Wang and
Dickinson, 2012; Li et al., 2013). Due to its rapid variations in both
temporal and spatial scales, ground based observations of LST over
large areas have become inept. With an advancement of remote
sensing techniques, LST observations from the satellite data have
emerged as the only viable way to provide data of high spatial and
temporal resolutions over the entire globe. Mostly LST measure-
ments are retrieved from the thermal infrared bands of sensors such
as Moderate Resolution Imaging Spectroradiometer (MODIS),
Advanced Very High Resolution Radiometer (AVHRR), Enhanced
Thematic Mapper plus (ETM+) etc. In the past few decades,
researchers have developed generalized split window algorithm,
day and night algorithmor three channel LST algorithms to estimate
LST (Li et al., 2013; Pandya et al., 2014). However, these sensors are
strongly influenced by cloud, atmospheric water content and
aerosols and hence fail to provide data under these scenarios.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2016.03.011&domain=pdf
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This results in paucity of LST data for many applications. Usually,
50% of the earth surface is covered by clouds at any time which
significantly modifies the surface energy budget (Jin, 2000; Kustas
and Norman, 1996). Normally, LST forms an integral part in the
methods to estimate sensible, latent heat fluxes and soil moisture;
hence it is essential to estimate LST even under overcast conditions.
Researchers have attempted to derive high spatio-temporal resolu-
tion of LST under cloudy conditions using infrared sensors. Jin and
Dickinson (2000) proposed the methodology to estimate LST under
Fig. 1. (a) Location of the study area along with elevation changes. Automatic weather st
station ID 4–5 belong to WS, station ID 6–14 belong to C, station ID 15–18 belong to U
classes in the study area.
cloudy pixels using neighboring clear pixels with the surface energy
balance equation based physical algorithm. This approach may not
work in the case of difficulty in finding any neighbor clear pixel
spatially and temporally. Lu et al. (2011) developed a methodology
to retrieve LST under clouds from Meteosat Second Generation/
Scanning-Enhanced Visible and Infrared Imager (MSG/SEVIRI) using
temporal neighboring-pixel approach. This approach can be
applicable only to daytime measurements. Hengl et al. (2012) pre-
dicted spatio-temporal daily temperatures usingMODIS LST images
ations and its land cover types indicated by numbers (Station ID 1–3 belong to EBF,
& BP and station ID 19–35 belong to C & NV land cover classes) and (b) land cover



Table 1
Details about the data set used in this study.

Source Parameter Product name Spatial resolution Purpose

MODIS/Aqua LST MYD11A1 1 km Prediction of LST
AMSR-E/Aqua Tb at 36.5 GHz, v and h polarizations L3 0.25� Derivation of MPDI (Prediction of LST)
AMSR2/GCOM-W Tb at 36.5 GHz, v and h polarizations L3 0.25� Derivation of MPDI (Prediction of LST)
MODIS/Aqua LULC MCD12Q1 500 m Prediction of LST
SRTM Elevation – 90 m Prediction of LST
AWS Ta – Point scale Validation

Where, v = vertical polarization, v = horizontal polarization, LULC = land use land cover

Fig. 2. Flowchart depicting methodology.
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combined with ground measurements of temperatures along with
topographic predictors using geostatistical methods. In their study,
additional ground basedmeasurementswere required but these are
very difficult to be obtained especially in the developing countries
like India and not easy to measure even in the developed countries.
In this regard, LST measurements from the microwave radiometers
can complement the available LST measurements from infrared
sensors.
Microwave radiations can penetrate through non precipitating
clouds and are less effected by atmospheric absorption and by
water vapor and therefore these can provide LST data under nearly
all sky conditions (Basist et al., 1997). Researchers have success-
fully derived LST from the microwave measurements from regional
to global scale. Owe and Van de Griend (2001) established a rela-
tionship between thermodynamic surface temperature and bright-
ness temperature (Tb) at 37 GHz of vertical polarization channel to



Fig. 3. Scatter plots between Tb,v at 36.5 GHz channel and MODIS LST at 0.25� resolution.
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estimate LST under semi-arid conditions. Aires et al. (2001) used
neural network approach including first guess for the retrieval of
LST and other geophysical parameters from special sensor micro-
wave imager (SSM/I) observations over the globe. Fily et al.
(2003) found strong linear relationship between microwave sur-
face emissivities of 19 GHz and 37 GHz channels at vertical and
horizontal polarizations and these relationships were used in the
radiative transfer equation to derive LST over sub-arctic areas.
Aires et al. (2004) developed temporal interpolation algorithm to
reconstruct LST diurnal cycle over the globe from few LST measure-
ments based on principle component analysis (PCA) /iterative
approach under clear and cloudy conditions. Gao et al. (2008)
developed a methodology to estimate LST over Amazonian forest
by establishing a relationship between polarization ratios and sur-
face emissivity. Holmes et al. (2009) examined the possibility of
utilizing 37 GHz to derive LST globally. Chen et al. (2011) proposed
a simplified LST regression model for five land cover types based on
Microwave Polarization Difference Index (MPDI), combining LST
observations from meteorological stations with Advanced Micro-
wave Scanning Radiometer-EOS (AMSR-E) Tb at different frequency
channels. However, the predicted LST from microwave observa-
tions under cloudy conditions are of coarse resolution, which con-
strains their application in regional studies. Several studies have
focused on disaggregation of coarse resolution LST of thermal
bands to fine resolution. Most of these have used high spatial
auxiliary data with low temporal resolutions such as NDVI, soil
moisture content, vegetation water content, emissivity, reflectance
from visible and infrared bands to obtain LST at high spatio-
temporal resolutions by establishing linear or nonlinear
relationships between them (Deng and Changshan, 2013;
Rodriguez-Galiano et al., 2012; Huang et al., 2013; Zaksek and
Ostir, 2012; Keramitsoglou et al., 2013; Yang et al., 2010; Zhan
et al., 2013). Recently, some researchers have predicted high
spatio-temporal LST by fusing LST from different sensors (Gao
et al., 2006; Weng et al., 2014; Wu et al., 2015). However, all these
studies have successfully fused LST of the thermal sensors under
clear sky conditions to obtain high spatio-temporal LST. To the best
of our knowledge, prediction of LST from the microwave measure-
ments at finer resolution under cloudy conditions has not been
attempted in the past. So there is a dire necessity of a methodology
to estimate subpixel LST under cloudy conditions.

Although several researchers have used Tb from 37 GHz channel
and multifrequency channels or by in-situ measurements to derive
LST using statistical methods over different parts of the world,
application of microwave measurements to derive LST are seldom
available for India. Therefore, the present study attempts to
develop a methodology to predict high spatio-temporal LST under
both clear and cloudy conditions without utilizing in-situ LST mea-
surements. To accomplish this objective, a simple procedure is
developed. This includes, derivation of MPDI from the resampled
Tbs of dual polarizations from 0.25� to 1 km using cubic convolu-
tion method. Secondly, establishment of nonlinear relationship

between MODIS LST at 1 km (LST1km
MODIS) and MPDI with auxiliary

dataset under clear sky conditions for different land cover classes
using ANN based models. Finally, to predict LST at high spatial res-
olution under cloudy conditions by employing relationship
obtained under clear sky conditions with an assumption that the
relationship obtained under clear sky conditions is also valid under
cloudy sky conditions. Predicted LST obtained under clear condi-

tions are further validated with LST1km
MODIS and air temperature (Ta),



Fig. 4. Scatter plots between LST0:25�
MODIS (day/night) and PLST0:25�

AMSR2 (day/night), T0:25�
b;vðAMSR2Þ for 20

th November of the year 2014.
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whereas under cloudy conditions these are evaluated by compar-

ing only with Ta due to unavailability of LST1km
MODIS. The proposed

methodology is applied to both day and night images and also
the potentiality of this methodology is examined by employing
AMSR-E and AMSR2 data.

2. Study area and data used

2.1. Study area

For the current study, Cauvery river basin in India (Fig. 1) has
been selected as the study area, which extends from 10�050 N to
13�300 N latitude and 75�300 E to 79�450 E longitude. It covers an
area of 81,155 km2 and lies in the States of Karnataka, Kerala, Tamil
Nadu and Pondicherry of India. Cauvery basin experiences a tropical
climate. The recorded maximum and minimum air temperatures
are 44 �C and 18 �C respectively. Physiographically, the basin can
be divided into three parts: the Western Ghats area, the Plateau

of Mysore and the Delta area (http://india-wris.nrsc.gov.in/

wrpinfo/title=Cauvery). The delta area is the most fertile tract in
the basin. Western Ghats are mountainous region, which run paral-
lel to the western coast of the Indian peninsula. These are indicated
in green color in Fig. 1(b). Major parts of the basin are covered by
croplands. Themain crops grown in this basin are paddy, sugarcane,
ragi and jowar, in addition coffee, pepper, banana, betel vine, gingili,
onion, cotton, black gram are also grown. Forest covers 19.53% of

the total basin (www.indiawaterportal.org). Uppermost part of
the river basin (Karnataka, Kerala) receives rainfall during south-
west monsoon (June–September), whereas, lower part of the basin
(Tamil Nadu, Pondicherry) receives rainfall during north-east mon-
soon (October–January).
2.2. Data sets

MODIS and AMSR-E are sensors carried on National Aeronautics
and Space Administration (NASA)’s polar orbiting Aqua satellite
since 2002, which passes from south to north at about 1:30 AM/
PM local solar time in each day in sun synchronous orbit. MODIS
sensor, with 36 bands, provides near-daily global coverage with
high spatial resolution. AMSR-E is a dual polarized passive micro-
wave radiometer, operating at 6.9, 10.7, 18.7, 23.8, 36.6 and
89.0 GHz. It was turned off on 4th of October 2011 and its successor
AMSR2 on Global Change Observation Mission-Water (GCOM-W)
started functioning from July 2012. It has similar characteristics
of AMSR-E, with higher spatial resolution. In the present study,
daily global 0.25� grids (L3) of Tb at 36.5 GHz channel of AMSR-E
and AMSR2 are considered for the years 2010 and 2014 respec-
tively. MODIS LULC (MCD12Q1) is used for segregating the LST pix-
els according to the International Geosphere Biosphere Programme
(IGBP) classification. Digital elevation data is obtained from Shuttle
Radar Topography Mission (SRTM). Since the passing time of the
satellite over the study region is in the afternoon, maximum LST
can be seen during this time and minimum LST occurs in the early
morning. The difference between minimum LST and observed LST

http://india-wris.nrsc.gov.in/wrpinfo/title=Cauvery
http://india-wris.nrsc.gov.in/wrpinfo/title=Cauvery
http://www.indiawaterportal.org


Fig. 5. Spatial variations of (a)MPDI1kmAMSR�E , (b) LST
1km
MODIS (K), (c) PLST

1km
AMSR�E (K) for daytime of 105th, 196th, 324th and 356th days of the year 2010, representing different seasons.
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at around 2 am is less; hence in this study nighttime LST refers to
minimum LST and daytime LST to maximum LST with the corre-
sponding Ta measurements. Automatic Weather Station (AWS)
provide hourly Ta measurements and these were set up by Indian
Space Research Organization (ISRO). Details about the dataset used
are provided in Table 1.

3. Methodology

3.1. Data processing

Tb of dual polarized at 36.5 GHz channel of level3 daily global
0.25� gridded datasets of AMSR-E and AMSR2 are chosen for the
study. Since all datasets have to be consistent with each other,
MODIS products sinusoidal projection are changed to AMSR-E
and AMSR2 geographical projection by nearest neighbor method
using MODIS reprojection tool developed by NASA. For the predic-
tion of LST under cloudy conditions, Tbs are resampled from 0.25�
resolutions to the MODIS spatial resolution of 1 km by cubic con-
volution method. Later, MODIS LULC and SRTM elevation are also
upscaled from 500 m and 90 m to 1 km respectively, these prod-
ucts are utilized as an auxiliary data in an ANN model (Detail of
this technique is given in the subsequent sections).

3.2. Prediction of LST under cloudy conditions at fine spatial resolution

Vegetation influences the derivation of LST from the satellite
measurements. Biophysical properties of vegetation effect its
own thermal response (Quattrochi and Ridd, 1998). MPDI is a
good indicator of biophysical properties and represents the density
of the land surface vegetation cover. It is also sensitive to
vegetation water content (Becker and Choudhury, 1988; Chen
et al., 2011; Paloscia and Pampaloni, 1988, 1992). It can be
expressed as

MPDIs ¼ Tb;v � Tb;h

0:5 � ðTb;v þ Tb;hÞ ð1Þ

where Tb,v and Tb,h denotes brightness temperature at vertical (v)
and horizontal (h) polarizations respectively and the subscript ‘s’
indicates AMSR-E or AMSR2 sensors derived product. Over vege-
tated surface, the difference between Tb,v � Tb,h diminishes until it
reaches Tb,v � Tb,h for a dense forest. For bare soil, large polarization
difference exists (Han et al., 2015). In this study, MPDIs represents
the daily physical variability which is strongly influenced by soil
moisture and vegetation, surface roughness over bare soil and veg-
etation surface respectively. In this study, Tb,v and Tb,h are resampled
from 0.25� to 1 km using cubic convolution method and these were

used to derive MPDI at 1 km resolution (MPDI1kmS ). Along with this
four other constant physical parameters such as elevation, latitude,
longitude and Julian day are employed as inputs to the feed-forward
ANN model, to predict LST under cloudy conditions at finer resolu-
tion, since these geographical and topographical parameters also
influence the LST (Hais and Kucera, 2009). The purpose of this
model is to assess the nonlinear relationship between input and
output variables for both day and night, expressed in the form of



Fig. 6. Spatial variations of (a) MPDI1kmAMSR�E , (b) LST
1km
MODIS (K), (c) PLST1km

AMSR�E (K) for nighttime of 105th, 196th, 324th and 356th days of the year 2010, representing different
seasons.
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LST1km
ijMODIS

ðday=nightÞ ¼ f ðMPDI1kmijS
ðday=nightÞ; elevationi;

latitudei; longitudei; Julian dayÞ ð2Þ

where LST1km
MODIS is the MODIS LST at 1 km resolution of the pixel i on

the day j. MPDI1kms is the MPDI at 1 km resolution of the pixel i on
the day j for AMSR-E and AMSR2 sensors. The five inputs are incor-
porated into the model to get relationship with the corresponding

LST1km
MODIS in the training process. Before beginning the process, input

variables are selected based on LST1km
MODIS availability (selected for

clear sky conditions). The procedure for the prediction of LST at

finer resolution (PLST1km
s ) under cloudy conditions is as follows:

(1) Resample (coarse (0.25�) to fine spatial resolution (1 km)) the
T0:25�
b;36:5vðsÞ and T0:25�

b;36:5hðsÞ obtained from the microwave measurements.

(2) Derive MPDI at 1 km spatial resolution (MPDI1kms ) from
resampled Tb,(s)s using an Eq. (1). (3) Segregate the derived

MPDI1kms , elevation, latitude, longitude (inputs) and LST1km
MODIS

(output) of clear and cloudy sky conditions pixels using MODIS
LULC data. (4) Under clear sky conditions, using stratified random
sampling divide the inputs and output data (into 10 bins). (5) Select

30% of inputs and output data from each bin and relate the MPDI1kms

and other auxiliary data to LST1km
MODIS under clear sky condition using

ANN approach (for training and testing) and remaining 70% inputs
and output data used for validation. (6) Derive high spatial

resolution LST (PLST1km
s ) under cloudy conditions from MPDI1kms
with auxiliary data (available at cloudy pixels) using the trained
relationships obtained for the clear pixels. Perform the steps (4–6)

for all the land cover classes separately, to derive PLST1km
s under

cloudy sky conditions.
Stratified random sampling technique is employed to select

data for training an ANN model. For this, LST data are arranged
in ascending order and corresponding to this, other inputs are
selected. The datasets are divided into 10 bins and from each bin
30% of data are randomly chosen for training and testing the net-
work and remaining 70% data are used for validation. For training
the data, feed-forward neural networks are employed with five
algorithms namely sequence of Levenberg Marquardt, resilient
back propagation, scaled conjugate gradient algorithm, Broyden,
Fletcher, Goldfarb and Shanno (BFGS) quasi Newton algorithm,
and a conjugate gradient algorithm with Fletcher Reeve restarts
(Canelon and Chavez, 2011; Hagan and Menhaj, 1994; Mas and
Flores, 2008; Roberts et al., 2010). In this process each node of
ANN output variable is simulated by iterative adjustment and opti-
mizing of the connection weights and threshold values, so that the
simulated values become equal or close to the targets (ASCE, 2000).
Trial and error process is applied to select the optimal architecture.
The best network is selected based on Pearson correlation coeffi-
cient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square
Error (RMSE) performance measures. Further, to predict LST under
cloudy conditions, all five inputs (present in the cloudy conditions)
are applied in the selected best network with an assumption that



Fig. 7. Spatial variations of (a)MPDI1kmAMSR�2, (b) LST
1km
MODIS (K), (c) PLST

1km
AMSR�2 (K) for daytime of 105th, 196th, 324th and 356th days of the year 2014, representing different seasons.
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the relationship between LST and the five inputs under clear pixels
holds good even for the cloudy pixels as well. This procedure is fol-

lowed to predict both day and night LST (PLST1km
s ) under clear and

cloudy conditions for both the sensors. The overall methodology
used in this study is shown in Fig. 2. r, NSE and RMSE are used

to quantify the error between LST1km
MODIS (day/night) and PLST1km

s

(day/night) under clear sky conditions, whereas under cloudy con-

ditions PLST1km
s (day/night) are evaluated with the corresponding

Ta (day/night). In literature, researchers had established a strong
relationship between Ta and LST under clear and cloudy conditions
and also suggested a procedure to evaluate microwave derived LST
with Ta under cloudy conditions (Catherinot et al., 2011; Gallo
et al., 2011; Gao et al., 2008; Jin et al., 1997; Mildrexler et al.,
2011; Prigent et al., 2003; Schwarz et al., 2012). These enabled
us to validate microwave derived LST (day/night) products with
the corresponding Ta (day/night) available from Automatic
Weather Stations (AWS) under cloudy conditions in this study. Ta
data quality control checks are also conducted as suggested by
Allen (2008).
4. Results and discussion

Initially, the linear relationships between Tb,v at 36.5 GHz of
AMSR-E (T0:25�

b;36:5vðAMSR�EÞ), AMSR2 (T0:25�
b;36:5vðAMSR2Þ) sensors and

LST0:25�
MODIS for daytime and nighttime are established for the study
region (Fig. 3). Tb,v at 36.5 GHz channel of both sensors are selected
because of their frequent usage for the LST retrieval in literature
(Fily et al., 2003; Holmes et al., 2009). r values of 0.754 and
0.750 for daytime, whereas for nighttime 0.653 and 0.647 are
obtained for AMSR-E and AMSR2 sensors respectively. Since MPDI
is sensitive to vegetation water content and can represents vegeta-
tion density, surface roughness and these parameters strongly
effect LST variation, hence it has been utilized to predict LST under
cloudy conditions.

Spatial variations of MPDI1kmS for the days of the year (105th,
196th, 324th, and 356th) representing four seasons (summer, rainy,
post monsoon and winter) are shown in Figs. 5(a)–8(a). During

daytime lower MPDI1kmS was found in the forest regions for all
the seasons, whereas for croplands slightly higher values were
obtained. In the summer season (105th, day of the year) higher

MPDI1kmS values were found in the croplands than other seasons

for both the sensors. During rainy season lower MPDI1kmS value cor-
responds to the upper part of the basin, this is because upper part
of the basin receives rainfall during this time. Lower MPDI values
shifted to lower part of the region, since lower part of the basin
gets rainfall during October to January (324th and 356th days of
the year) as shown in Figs. 5(a) and 7(a). Similar variations could

be seen during nighttime for both sensors derived MPDI1kmS .
Furthermore to check the potentiality of an ANN model, 20th

November 2014 (day of the year = 324th) data has been removed
from the dataset. Remaining MPDI0:25

�
AMSR2 with ancillary datasets



Fig. 8. Spatial variations of (a) MPDI1kmAMSR�2, (b) LST
1km
MODIS (K), (c) PLST1km

AMSR�2 (K) for nighttime of 105th, 196th, 324th and 356th days of the year 2014, representing different
seasons.
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are incorporated into the ANN model to derive the nonlinear rela-
tionship with the corresponding pixels of LST0:25�

MODIS under clear sky
conditions. Subsequently, the best trained network is selected
based on the r, RMSE and NSE evaluation measures and this net-
work is further used to derive PLST0:25�

AMSR2 under clear and cloudy

conditions. PLST0:25�
AMSR2 (day/night) under clear sky conditions vali-

dated against LST0:25�
MODIS (day/night) using statistical error indices

(Fig. 4). As indicated by the statistical error indices, the results
show the prediction accuracy yielded r values 0.676 and 0.790
and RMSE values 3.03 K and 1.85 K for daytime and nighttime
respectively. The linear relationships between T0:25�

b;36:5vðAMSR2Þ and

LST0:25�
MODIS were examined for day and nighttimes, results in very

low r values of 0.06 for nighttime and 0.557 for daytime. This
indicates that the proposed model has shown better performance
by implementing MPDI instead of Tb,v.

4.1. Evaluation of predicted LST at finer resolution

ANN models are applied separately for different land cover

classes to estimate PLST1km
s (day/night) under cloudy conditions.

To achieve this, T0:25�
b;36:5vðsÞ and T0:25�

b;36:5hðsÞ (day/night) obtained from
the microwave measurements are resampled from 0.25� to 1 km

using cubic interpolation method. Derived MPDI1kmS (day/night)
from resampled Tbs of dual polarizations with other auxiliary
products are employed in an ANN model to obtain nonlinear
relationship with LST1km
MODIS (day/night) under clear sky conditions

for different land cover classes. These relationships are used under

cloudy conditions to predict PLST1km
s (day/night) using available

inputs data. The accuracy of the proposed methodology is evalu-

ated using LST1km
MODIS (day/night) and Ta (day/night). PLST1km

s (day/
night) obtained under clear sky conditions are compared with

the LST1km
MODIS (day/night) and Ta (day/night). Whereas, PLST1km

s

(day/night) obtained under cloudy conditions are compared only
with the Ta (day/night), since LST under cloudy conditions were
not available from the thermal infrared sensors.
4.1.1. Evaluation of predicted LST with MODIS LST under clear sky
conditions

Spatial variations of LST1km
MODIS and PLST1km

s for days of the year
(105th, 196th, 324th, 356th) representing the four seasons namely
summer, rainy, post monsoon and winter respectively are shown
in Figs. 5(b) and (c)–8(b) and (c) for daytime and nighttime. Spatial

variations of LST1km
MODIS and PLST1km

s obtained from the AMSR-E
(2010) and AMSR-2 (2014) sensors data are shown in Figs. 5 and
6 and Figs 7 and 8 respectively. As the figures indicate, spatio-

temporal patterns of PLST1km
s (day/night) for the four seasons have

similar variations like LST1km
MODIS (day/night) at clear pixels for differ-

ent land cover classes by initial visual interpretation. Cloudy pixels

present in the LST1km
MODIS (day/night) were masked according to the

information provided in the quality assessment (QA) layer and
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represented in white color in the study region (Figs. 5(b)–8(b)).

During daytime, LST1km
MODIS; PLST1km

s in the Western Ghats have less
values compared to other regions of the study area, because these
regions are covered with dense forests. Croplands and Cropland/
Natural vegetation dominates the other classes in the basin and

showed higher PLST1km
s values. For summer season PLST1km

s and

LST1km
MODIS values are found to have higher values in the basin than

the other seasons. During nighttime, PLST1km
s corresponds to
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LST1km
MODIS at all land cover classes, but with lower LST values. Forest

region has lesser LST values compared to other classes of the basin.
Lower LST values can be discerned in the upper part of the basin for
all the seasons and this is due to higher elevation. During nighttime
LST drops due to radiative cooling, which depends on the elevation,
presence of clouds and relative humidity. Seasonal variations of

PLST1km
s are perfectly captured well with LST1km

MODIS for both day
and nighttimes indicating better performance of the ANN approach
and during winter season both have lower values than other sea-
sons for upper and lower parts of the basin.

Furthermore, to quantify the prediction efficiency of the ANN
model, as mentioned in Section 3.2, 70 percent data of the clear
sky pixels from each bin for different land cover classes are consid-
ered to compute r, RMSE and NSE. Fig. 9 presents the results

obtained between LST1km
MODIS and PLST1km

s by these standard statisti-
cal performance measures for different land cover classes. Out of
the five algorithms used in feed forward neural network, Leven-
berg Marquardt algorithm performed well. Overall, correlation
coefficients for different land covers for AMSR-E (AMSR2) have
ranged from 0.76(0.78) to 0.90(0.96) for daytime and 0.70(0.56)
to 0.89(0.90) for nighttime images at clear pixels. RMSE values

computed between PLST1km
s and LST1km

MODIS are within the limits as
found in the literature, for both sensors (Fily et al., 2003; Holmes
et al., 2009) for all the land cover classes for both day and night.
NSE values ranged between 0.58(0.61) to 0.81(0.90) for daytime
and 0.43(0.28) to 0.80(0.81) for the nighttime observations. The
proposed methodology showed better performance for the grass-
lands and closed shrubland during daytime and nighttime respec-
tively at the clear pixels. This indicates that MPDIs for the lower
vegetation performed well as inferred in the study of Chen et al.
(2011). Surprisingly, evergreen needle leaf forest class during
nighttime has yielded less r and NSE values than the other forest
regions. As expected for water and barren land, the model has
underperformed showing less r and NSE values than the other land
cover classes as presented in Fig. 9 for both day and nighttimes.
According to IGBP classification, the barren land or sparsely vege-
tated surface represents the land covered with exposed soil, sand,
rocks or snow with never more than 10% vegetation cover during
any time of the year. The estimated accuracy is low for this class,
because MPDIs at 36.5 GHz is sensitive to vegetation parameters.
Influence of soil parameters become stronger than vegetation
parameters in barren land or sparsely vegetated surface. Although
MPDIs has higher values for bare soil, easily distinguishable from
other land cover classes, r values are greater than 0.7 in all the
cases for both the sensors except for evergreen broadleaf forest
(EBF) for nighttime.
4.1.2. Evaluation of predicted LST with surface air temperatures

PLST1km
s (day/night) under clear and cloudy conditions are com-

pared with the corresponding Ta (day/night) available from AWS
stations for different land cover classes (Figs. 10–13). Ta (day/night)
represents the thermodynamic temperature of the air measured
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between 1.5 and 3.5 m above the surface. Ta (day/night) differs
from the LST (day/night) in physical representations and also differ
the most at smaller spatial and temporal scales (Prigent et al.,
2003). In this study, the procedure introduced by Prigent et al.
(2003) and Catherinot et al. (2011) is followed to compare

PLST1km
s (day/night) under cloudy condition with Ta (day/night).

AWS stations are available for evergreen broadleaf forest (EBF),
woody savannas (WS), croplands (C), built up (U/BP) and crop-
land/natural vegetation (C/NV) land cover classes. The number of
observations present in the EBF and WS classes was less; hence
these observations are combined as forest (F) class. Separate anal-
ysis has been done for AMSR-E and AMSR2 derived LST. Table 2 and
Figs. 10(a)–13(a) present r and RMSE values obtained and scatter

plots between LST1km
MODIS (day/night) under clear sky, PLST1km

s (day/
night) under clear and cloudy sky conditions and corresponding
Ta (day/night) respectively. For daytime, under clear sky conditions
for AMSR-E sensor, r varied from 0.456 (U/BP) to 0.877 (F) between

PLST1km
AMSR�E and Ta and 0.436 (U/BP) to 0.756 (F) between LST1km

MODIS

and Ta. This indicates that the predicted LST correlated better with

the corresponding Ta values than the LST1km
MODIS. For the cloudy pixels

r ranged from 0.514 (C) and 0.855 (F) and r value found less for ‘C’
class than the clear sky conditions. For AMSR2 sensor, due to pau-
city of observations for ‘F’ land cover class, analysis was performed
only for U/BP, C and C/NV classes. For daytime r values obtained for
these classes were similar to AMSR-E sensor as presented in Table 2
and Fig. 11(a). Usually, during daytime LST is greater than Ta
causing positive difference, which is due to the warming up of sur-
face more quickly during the daytime. Few Ta observations
obtained from the AWS stations were slightly higher than the

PLST1km
AMSR�E under cloudy conditions during daytime and after

removal of these observations r values increased for all land cover
classes as shown in Fig. 14. This may be due to the presence of
standing water. Most of the observations were seen in the rainy
and post monsoon seasons. Hence in these scenarios it is advisable
to evaluate LST with the in-situ LST measurements. For the AMSR2
sensor very less number of observations, where Ta is greater than

PLST1km
AMSR�E were found, this results in less improvement in the r val-

ues after removing the observations (Fig. 14). During nighttime,
similar results were observed (Figs. 12(a) and 13(a)) and r values
for all land cover classes were within the limit except for U/BP
class. LST cools quickly than Ta at night and has lesser value than

Ta. Correlations between PLST1km
AMSR�E and Ta were found lesser than

the correlations between LST1km
MODIS and Ta for the U/BP cover class

under cloudy conditions for both sensors. For AMSR2 sensor, r
value was greater for cloudy conditions than clear sky conditions
for ’C’ class during nighttime. The r values found to be significant
(p < 0.05) for both day and night under clear and cloudy conditions
for both sensors.

In addition, RMSE values were computed for both clear and
cloudy conditions (Table 2). For daytime, RMSE values ranged from

3.481 (�C) (F) to 10.198 (�C) (U/BP) between LST1km
MODIS and Ta under

clear conditions whereas, for cloudy pixels minimum of 2.903 (�C)
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(F) and maximum of 6.202 (�C) (C/NV) were obtained between

PLST1km
AMSR�E and Ta for AMSR-E sensor. For the year 2014, RMSE values

found varied from 6.194 (�C) (U/BP) to 8.514 (�C) (C) between

LST1km
MODIS and Ta under clear conditionswhereas, at cloudypixelsmin-

imum of 5.063 (�C) (C) and maximum of 7.363 (�C) (C/NV) were
obtained. RMSE values for cloudy conditions were found lesser than
clear sky conditions for most of the considered land cover classes,
indicating that the ANN approach has predicted LST well under
cloudy conditions using both satellite sensor data. As presented in

Table 2, for nighttime RMSE values observed between PLST1km
s and

Ta under cloudy conditions were less compared to clear sky condi-
tion for few land cover classes. RMSE values were found less for
nighttime than for the daytime for the considered land cover classes.

Toward further evaluation of the microwave derived LST at
1 km resolution under cloudy conditions, the mean and standard

deviation of the differences between LST1km
MODIS (day/night), PLST1km

s

(day/night) and Ta (day/night) are examined for the available land
cover classes. The differences between LST and Ta are scale depen-
dent. For smaller spatial and temporal scales they differ the most
than the larger scales (Jin et al., 1997). Even though the difference
varies largely on regional scales, these are related with land type,
soil moisture, vegetation cover and cloud cover. In this study, sep-
arate analysis has been done for different land cover classes. The
differences exhibited between LST and Ta are assumed to be due
to cloud cover. Generally, during daytime under clear sky condition
large positive LST-Ta difference can be noticed than under the
cloudy conditions. Whereas, during nighttime, for clear sky condi-
tion, negative LST-Ta differences are prominent due to rapid cool-
ing of LST at night and for cloudy conditions, because the
reduction of outgoing infrared radiation warms the surface, induc-
ing lesser negative LST-Ta difference. In this study, under clear sky

conditions, the differences between LST1km
MODIS (day/night) and Ta

(day/night) and whereas, for cloudy conditions differences

between PLST1km
s (day/night) and Ta (day/night) were considered.

Histograms of differences between LST1km
MODIS (day/night), PLST1km

s

(day/night) and Ta (day/night) under clear and cloudy sky condi-
tions for both day and nighttimes for the considered land cover
classes are depicted in Figs. 10(b) and (c)–13(b) and (c). During
daytime, the mean and standard deviation of the differences were
found less for the cloudy sky conditions compared to clear sky con-
ditions for all the land cover classes except for U/BP class of AMSR2
derived LST (Fig. 11(b) and (c)). In contrast to this, during night-
time the mean difference was found more under cloudy conditions
than under clear sky conditions for most of the land cover classes.
Similar results (combining all land cover classes) were inferred in
Prigent et al. (2003). Thus these results show that the proposed
methodology performed well under cloudy conditions for all land
cover classes during daytime for both sensors data, but for night-
time and especially under sparsely vegetated surfaces, the model
has to be tested under different climatic conditions. Moreover,
the predicted LST under cloudy conditions has to be validated with
in-situ LST measurements.
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Table 2
r and RMSE values obtained by evaluating PLST1km

AMSR-E (day/night) and PLST1km
AMSR-2 (day/night) with Ta (day/night) under clear and cloudy conditions for the considered land use land

cover classes.

LULC Under clear sky conditions Under cloudy sky
conditions

LST1km
MODIS/Ta PLST1km

s /Ta PLST1km
s /Ta

R RMSE r RMSE r RMSE

During daytime for AMSR-E sensor
Forest (F) 0.756 3.481 0.877 2.704 0.855 2.903
Urban/Builtup (U/BP) 0.436 10.198 0.456 10.230 0.625 5.176
Croplands (C) 0.620 7.235 0.602 8.436 0.514 5.168
Croplands Natural Vegetation (C/NV) 0.540 8.691 0.564 9.337 0.626 6.202

During nighttime for AMSR-E sensor
Forest (F) 0.887 2.466 0.861 2.633 0.772 2.536
Urban/Builtup (U/BP) 0.713 3.470 0.791 3.096 0.625 2.063
Croplands (C) 0.682 2.319 0.508 8.673 0.699 3.329
Croplands Natural Vegetation (C/NV) 0.450 5.408 0.381 5.086 0.631 3.194

During daytime for AMSR2 sensor
Urban/Builtup (U/BP) 0.713 6.194 0.634 6.239 0.424 6.762
Croplands (C) 0.673 8.514 0.710 7.953 0.404 5.063
Croplands Natural Vegetation (C/NV) 0.702 7.416 0.677 10.157 0.705 7.363

During nighttime for AMSR2 sensor
Urban/Builtup (U/BP) 0.588 3.975 0.653 3.730 0.257 3.316
Croplands (C) 0.534 2.404 0.769 1.824 0.731 2.896
Croplands Natural Vegetation (C/NV) 0.739 3.914 0.733 3.512 0.735 3.487
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5. Conclusions

The aim of the work was to predict high spatio-temporal reso-
lution of LST under cloudy conditions. To obtain this, initially,
brightness temperatures at 36.5 GHz channel of dual polarizations
were resampled from coarser to finer spatial resolution. These
resampled products were used to derive MPDI at finer spatial res-
olution. Microwave derived MPDIs with auxiliary data employed in
an ANN model to predict LST at finer spatial resolution under
cloudy sky conditions for daytime and nighttime measurements,
since thermal infrared sensors are unable to provide LST data
under cloudy conditions. To achieve this, MPDIs (day/night) with

auxiliary data and corresponding LST1km
MODIS (day/night) at clear pix-

els were employed in ANN model for different land cover classes.
Assuming that the best trained network obtained for each land
cover class would be equally valid under cloudy conditions, sub-
pixel temperatures were estimated using available MPDIs and
other auxiliary data at cloudy pixels for each land cover class sep-
arately. This procedure was applied for both datasets of AMSR-E
and AMSR2 sensors to obtain daily maximum and minimum LST
at high spatio-temporal resolution under cloudy conditions.

This study has demonstrated the possibility of combining
infrared and passive microwave data to predict LST at high
spatio-temporal resolution under cloudy sky conditions. Results

revealed good agreement between PLST1km
s (day/night) and
LST1km
MODIS (day/night) for day and night images. Estimated PLST1km

s

at clear and cloudy pixels were evaluated with LST1km
MODIS and Ta.

Results from the analysis at clear pixels for all land cover classes

showed good correlation between PLST1km
s and LST1km

MODIS, Ta for both
day and night times. In the absence of in-situ LST measurements
under cloudy conditions, predicted LST was evaluated by compar-
ing with Ta (day/night). A reasonable agreement was observed

between PLST1km
s (day/night) and Ta (day/night) with lower RMSE

values than under the clear sky condition for the considered land
cover classes.

The proposed methodology is the most feasible way to predict
LST at high spatio-temporal resolution under cloudy conditions
in the absence of in-situ LST measurements at all land cover classes
during daytime and nighttime. This study has estimated LST for the
cloudy pixels using microwave observations at high spatio-
temporal resolution and even also for non-vegetated and low veg-
etation regions under cloudy conditions. The developed model per-
formed well for all land cover classes when compared with

LST1km
MODIS. However, the applicability of this methodology for the

land cover classes such as grasslands and shrublands, where in-
situ Ta were unavailable for the study region, needs investigation.
Moreover, the methodology necessarily to be validated with in-
situ LST measurements under cloudy conditions for all land cover
classes, if and when available. Future plan includes facilitating
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the usage of the predicted LST at high spatio-temporal resolution
under cloudy conditions in the estimation of evapotranspiration
and soil moisture over the study region.
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