IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 8, 2018, accepted February 14, 2018, date of publication February 28, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2810297

Enabling Search Over Encrypted Cloud Data With
Concealed Search Pattern

JING YAO'2, YIFENG ZHENG?3, (Student Member, IEEE),
CONG WANG 23, (Senior Member, IEEE), AND XIAOLIN GUI'

!'School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Computer Science, City University of Hong Kong, Hong Kong
3City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

Corresponding authors: Cong Wang (congwang @cityu.edu.hk) and Xiaolin Gui (xlgui @mail.xjtu.edu.cn)
This work was supported in part by the Research Grants Council of Hong Kong under Project CityU 11276816, Project CityU 11212717,
and Project CityU C1008-16G, in part by the Innovation and Technology Commission of Hong Kong under Project ITS/168/17, in part by

the National Natural Science Foundation of China under Project 61572412 and Project 61472316, and in part by the Key Research and
Development Projects of Shaanxi Province under Project 2017ZDXM-GY-011.

ABSTRACT Searchable symmetric encryption (SSE) is a widely popular cryptographic technique that
supports the search functionality over encrypted data on the cloud. Despite the usefulness, however, most of
existing SSE schemes leak the search pattern, from which an adversary is able to tell whether two queries are
for the same keyword. In recent years, it has been shown that the search pattern leakage can be exploited to
launch attacks to compromise the confidentiality of the client’s queried keywords. In this paper, we present
a new SSE scheme which enables the client to search encrypted cloud data without disclosing the search
pattern. Our scheme uniquely bridges together the advanced cryptographic techniques of chameleon hashing
and indistinguishability obfuscation. In our scheme, the secure search tokens for plaintext keywords are
generated in a randomized manner, so it is infeasible to tell whether the underlying plaintext keywords
are the same given two secure search tokens. In this way, our scheme well avoids using deterministic
secure search tokens, which is the root cause of the search pattern leakage. We provide rigorous security
proofs to justify the security strengths of our scheme. In addition, we also conduct extensive experiments to
demonstrate the performance. Although our scheme for the time being is not immediately applicable due to
the current inefficiency of indistinguishability obfuscation, we are aware that research endeavors on making
indistinguishability obfuscation practical is actively ongoing and the practical efficiency improvement of
indistinguishability obfuscation will directly lead to the applicability of our scheme. Our paper is a new
attempt that pushes forward the research on SSE with concealed search pattern.

INDEX TERMS Searchable symmetric encryption, cloud computing, search pattern leakage, chameleon
hashing, indistinguishability obfuscation.

I. INTRODUCTION
Nowadays it is widely popular to outsource data storage to
cloud services such as Google Drive, Dropbox, and more.
Despite the well-understood benefits, however, data out-
sourcing to the cloud also naturally raises critical privacy
concerns [1]. Indeed data breaches occur frequently in cloud
services [2]. For data protection, a plausible approach is to
encrypt the data before outsourcing. However, simply apply-
ing data encryption will invalidate the fundamentally impor-
tant search functionality, hindering the effective utilization of
the outsourced data and degrading the service experience.
To address the dilemma of data privacy and data utilization,
the cryptographic technique of secure searchable encryption

has been proposed and has been widely studied in the lit-
erature [3], which enables the client to perform search over
the outsourced encrypted data. Secure searchable encryption
schemes can be either symmetric-key-based or public-key-
based. Compared with public-key-based searchable encryp-
tion, searchable symmetric encryption (SSE) which builds
encrypted index presents much more practical cost effi-
ciency [4], and has attracted wide attention in recent years
(e.g., [5S]-[71, to just list a few).

However, most of existing SSE schemes are typically
built with security trade-offs of access pattern leakage and
search pattern leakage. Roughly speaking, the access pat-
tern refers to the search result which indicates which files

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

11112

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-0547-315X

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

IEEE Access

contain the queried keyword, while the search pattern reveals
whether two queries are for the same keyword. Unfortunately,
in recent years, it has been shown that the leakages of access
pattern and search pattern can be exploited to compromise
the confidentiality of the outsourced dataset and queried key-
words (e.g., [8]-[12], to just list a few). Therefore, it is of
critical importance to address the access pattern leakage and
search pattern leakage when SSE is used for encrypted search.

While the access pattern leakage can be well mitigated via
introducing dummy data points to the dataset and encrypted
index, hiding the search pattern is more challenging and little
work has been done before. Prior works act as valuable data
points in the design space of hiding the search pattern in
SSE, yet they require heuristic parameter tuning for secu-
rity [12], or suffer from security issues [13], or work under
a multi-cloud architecture [14]. Detailed discussion will be
given in Section VI. To the best of our knowledge, hiding the
search pattern in SSE is still challenging and remains to be
fully explored.

In this paper, we present a new SSE scheme which enables
the client to search the encrypted cloud data without dis-
closing the search pattern. As indicated by existing works,
the search pattern leakage essentially originates from that the
secure search tokens for the queried keywords are generated
in a deterministic manner. Hence, our first main idea is to
generate the secure search tokens in a randomized way. This
means that the secure search tokens are randomized ones
even for the same keyword at different queries. Consequently,
given two secure search tokens, the cloud is not able to tell
whether their underlying plaintext keywords are the same.
With this main idea, the challenge is then how to ensure that
we can still get the correct search result when secure random-
ized search tokens are used for encrypted search. To tackle
this challenge, our idea is to devise a secure mapping mech-
anism which should be able to securely map the randomized
secure search tokens to the corresponding deterministic ver-
sions that can be used to correctly search the encrypted index.

Specifically, our scheme uniquely bridges together the
advanced cryptographic primitives of chameleon hash-
ing [15] and indistinguishabilty obfuscation (iO0) [16], [17].
At a high level, we mainly rely on the chameleon hashing
technique for the generation of secure randomized search
tokens. Then, on the cloud side, we rely on the iO technique
to securely map the randomized tokens to deterministic ones
for correct encrypted search. In our scheme it is assured that
the cloud server is oblivious to both the mapping procedure
and the search procedure. This means that the cloud server is
not able to obtain the deterministic tokens mapped from the
randomized tokens, and also does not observe which entries
of the encrypted index are accessed during search. Note that
the search pattern may also be leaked if the cloud can observe
which entries of the index have been accessed over time [12].
Therefore, our scheme achieves strong protection for the
search pattern. In the end, the cloud obtains the search result
and returns it to the client. We provide formal security proofs
to rigorously justify the security guarantees of our scheme.

VOLUME 6, 2018

In addition, we conduct extensive experiments to demonstrate
the performance. It is shown that the generation of secure ran-
domized search tokens in our proposed scheme is very effi-
cient, just tens of milliseconds. In our experiments, we also
demonstrate the performance of iQ. Although currently the
iO technique is inefficient, related research endeavors on
practical iO are actively ongoing. The performance of our
scheme relies on the underlying cryptographic technique iO.
So, the practical performance improvement of iO will directly
lead to the applicability of our scheme.

The remainder of this paper is organized as follows.
Section II presents some preliminaries. Section III gives our
problem statement. Section IV elaborates on the details of our
scheme. Section V presents the experiment results. Section VI
discusses the related work. Section VII concludes the whole

paper.

Il. PRELIMINARIES
A. NOTATIONS
Given a matrix A, {A;} denotes the i’ row in A, and {A;}
denotes the j* element in the i row of A. Let |A| denote the
number of elements in the matrix A. Similarly, given a vector
V, V; denotes i element in V, and |V| denotes number of
elements in the vector V. The concatenation of a string a and
a string b is denoted as a || b. Let A be a security parameter.
We say that a function v : N — Nis negligible in A, if for any
positive polynomial p () with sufficiently large A, v (A) <
ﬁ. We take negl (A) as a negligible function in A. Given
asubset S € x and a permutation ¢ : x — x, ¢ (5) =
{@ (i) |i € S} means each element i € S is replaced by ¢ (i).
In addition, we introduce some notations related with
searchable symmetric encryption. We informally treat a file
as a set of keywords. Therefore, we write w € f to denote
that a file f contains the keyword w. Given a file collection F,
we order the files to uniquely identify a file by specifying f;
for i € [1, n] and order the total keywords W by specifying
w; for i € [1,m] after removing the duplicate keywords.
For the i-th query, we denote T; as the encryption of the
queried keyword w;;. Here w;; means that the queried keyword
at the i-th query is the j-th one in W. Therefore, the set
of tokens generated over a period of time is denoted as
T = {T1, e, Tq}. The search result for a keyword w is
denoted as C (w), which refers to a set of ciphertexts C of
files that contain the query keyword w.

B. CHAMELEON HASHING
A chameleon hashing function is a collision-resistant hashing
function with a key pair (sk, hk) [15]. The key hk is used
to compute the hash value for a message, while the key
sk can be used to find a collision for that message. For-
mally, a chameleon hashing function consists of the following
algorithms:

ParamGen(1%): This algorithm takes as input a security
parameter A and outputs the system parameters SP.

KGen (SP): This algorithm takes as input the system
parameters SP and outputs a key pair (sk, hk).

11113

IEEE Access

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

CHy (hk,m, r): This algorithm takes as input the key Ak,
a message m, and a random integer r, and outputs the hash
value h = CHy (hk, m, r).

CHr (sk, mi, ri, mz): This algorithm takes as input the
secret key sk, a message mp, a random integer r{, and another
message m,, and outputs another integer r, that makes the
following equation hold:

CHpy (hk,my, r1) = CHy (hk, mp,)

A chameleon hashing function satisfies the following two
properties:
« Collision resistance: Without the key sk, there exist no
efficient algorithms for finding collision.
o Semantic security: For all pairs of message m; and
my, the random hash values CHy (hk, my, r1) and CHpy
(hk, my, ry) are computationally indistinguishable.

C. INDISTINGUISHABILITY OBFUSCATION

An indistinguishability obfuscator for a circuit class {Cir,}
is a PPT uniform algorithm satisfying the following
conditions [16], [17]:

o 1O (X, Cir) preserves the functionality of Cir. That is,
for any Cir € Cir,, if we compute Cir = iO (A, Cir) ,
then Cir' (x) = Cir (x) for all inputs x.

o For any A and any two circuits Cirg, Ciry € Ciry,
with the same functionality, the circuits iO (X, Cir) and
i0 (A, Cir/> are indistinguishable.

lIl. PROBLEM STATEMENT

A. SEARCHABLE SYMMETRIC ENCRYPTION DEFINITION
A SSE scheme is a collection of six polynomial-time
algorithms:

KeyGen (1*): This key generation algorithm takes as input
a security parameter A and outputs the secret key material K.

IndexGen (K, F): This index building algorithm takes as
input the secret key material K and the file collection F', and
outputs an inverted index matrix y .

Token (K, w): This token generation algorithm takes as
input the secret key material K and the query keyword w, and
outputs a search token 7.

Search (T, Y, EDB): This search algorithm takes as input
a search token 7', the encrypted index y, and the encrypted
database EDB, and outputs all the encrypted files containing
the query keyword, i.e., C (w).

Enc (K, F): This encryption algorithm takes as input the
secret key material K, the file collection F = {f1,--- ,fn},
and outputs an encrypted database EDB = {i, c¢;}, where
i € [1, n], and ¢; is the ciphertext of file f;.

Dec (K, c;): This decryption algorithm takes as input the
secret key material K, a ciphertext ¢; and outputs a file f;.

A SSE scheme is correct, if and only if for all key material
K output by KeyGen, encrypted index y output by IndexGen,
encrypted database EDB output by Enc, and any w € W,
the following equation should hold:

Search (Token (K, w) , v, EDB) = C (w)

11114

>
>

1.Encrypted files + Encrypted index

Sm

N 2. Encrypted search token
Clien

(i)ﬁd Server

3. Search
program

£

4. Search result

\

FIGURE 1. Basic paradigm of applying SSE to encrypted search.

and w ¢ Dec (K, C)\Dec (K, C (w)) i.e., w should not be
contained in the files which are not contained in the search
result C (w).

We now introduce the leakage definitions in SSE. Before
giving the leakage definition, we introduce some auxiliary
notions which are used to define the leakages. We first define
a history which records the interaction between the client and
the cloud server. Since the entity in each interaction phase
mainly includes a file collection and a sequence of keywords
submitted to Token and both of them need to be concealed,
we use both of them to form the history.

Definition 1 (History): Let F be a file collection.
A g-query history over F is a tuple H = (F,w) which
indicates the file collection with a q-query word vector
W= (Wil’ ,W,'q)

Definition 2 (Access Pattern): Let F be a file col-
lection. The access pattern is a tuple AP(H) =
(F (wil) L, F (w,-q)) based on the history H = (F, W).

Definition 3 (Search Pattern): Let F be a file collection.
The search pattern, based on a qg-query history H = (F, w),
is a symmetric binary matrix SP(H). For 1 < i,j < gq,
the element in the i row and j™ column is 1, if w; = wj,
and 0, otherwise.

Let F be a file collection. We define the leakage function £
that describes the leakages in building the index and searching
over index based on the history H = (F, w).

Definition 4 (Leakages): £1 (y,F): With as input the
index y and the file collection F, the leakage function out-
puts the |W|, |F| and |fi|. £2 (y, C,T): With as input the
encrypted index y, the ciphertext collection C and a sequence
of tokens T, the leakage function outputs the search pattern
SP (H) and the access pattern AP (H).

B. SYSTEM MODEL

The basic paradigm of applying SSE to enable search over
encrypted data is shown in Fig. 1. Typically there are two
types of entities, client and cloud server. The client has a
set of files to be outsourced to the cloud server. However,
the client does not want the cloud server to know the content
of the files. Therefore, in a setup phase, the client encrypts
the files and produces an encrypted index supporting search
by some secret key material K. Then, the client outsources the
ciphertext collection C and an encrypted index y to the cloud
server. To search the encrypted outsourced files, the client

VOLUME 6, 2018

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

IEEE Access

generates search queries by calling a token generation func-
tion which takes as input the secret key material K and a
keyword w, and outputs a search token 7'. Upon receiving the
search token 7', the cloud server conducts search based on the
token and the encrypted index y, and returns the search result
to the client, without knowing any information about either
the content of files or the queried keyword. So, after search,
the client receives a collection of encrypted files which con-
tain the queried keyword w, and performs decryption to obtain
the matched files.

C. THREAT MODEL

Consistent with most of existing works on encrypted search
(e.g., [5], [18], [19] to just list a few), we consider the cloud
server as a semi-honest adversary. This means that the cloud
server honestly follows the designated operations in SSE, yet
tries to infer the private file content and queried keywords
of the client, based on what it observes along the workflow.
In particular, the cloud server may exploit the access pattern
leakage and search pattern leakage which are inherent in
most of existing SSE constructions. Considering that attacks
based on the access pattern leakage can be well mitigated by
directly introducing dummy data points [9], we will focus
on the threat posed by exploiting the search pattern leakage.
In particular, the adversary observes a set of g tokens T =
{ T, -, Tq} submitted by the client, and attempts to recover
the queried keywords. It has been shown in prior works [12]
that if the adversary observes search tokens generated through
some deterministic algorithm, the adversary is able to recover
the plaintext keywords based on auxiliary information like
public query logs. Therefore, we aim to deliver a new SSE
construction in which tokens are not generated in a determin-
istic way, so that the search pattern can hardly be exploitable
for potential attacks.

IV. THE PROPOSED SCHEME

In this section, we propose a new SSE scheme, which enables
search over encrypted cloud data without disclosing the
search pattern. In our proposed scheme, the generation of
secure query tokens is performed in a random way, so that
even the same keywords will map to different secure tokens.
So, tokens are not generated deterministically and the adver-
sary is not able to observe the search pattern, i.e. whether
a keyword has been searched before. Then, at the cloud
side, we devise a mechanism which can securely map the
randomized tokens to deterministic ones for search. Finally,
the search result is returned to the client.

Our scheme uniquely bridges together the techniques of
chameleon hashing and indistinguishability obfuscation (iO).
At a high level, we mainly rely on the chameleon hash-
ing technique for generating randomized tokens and the iO
technique for securely mapping the randomized tokens to
deterministic ones at the cloud side for encrypted search.
In particular, our construction mainly includes two phases.
The first phase is about how to build an encrypted searchable
index, and the second phase is about how to generate the

VOLUME 6, 2018

Algorithm 1 Building the Encrypted Searchable Index
Input: Secret keys: (k1, k2, hk); File Collection: F.
Output: Encrypted searchable index: y.

1: fori=0tom—1do

22 forj=0ton—1do
3 if f; contains w; then
R

5 else

6: {51',]‘} =0

7 end if

8 end for

9: end for

10: fori =0tom — 1 do

11: w; = CHy (hk, G (k1, w;) , 1)

12: end for

13: fori=0tom — 1 do

14 8 = Enc (CHy (hk, G (ka, w)) , 17),)
15: end for /

16: Vi = (), 8(,0(1’)}

tokens at the client side and perform search at the cloud
side. Note that like most of existing searchable encryption
designs (e.g., [5], [18], [19]), the encryption of files can be
done by any standard encryption technique, e.g., AES, which
is independent to the building of the encrypted index and
the search procedure. So, we do not explicitly handle file
encryption in our construction. In what follows, we give the
details of our construction.

A. THE PROPOSED SCHEME

Phase 1: Algorithm 1 presents the details of building the
encrypted index. For practical consideration, we follow the
framework in [8] to build an encrypted index that supports
keyword search with sub-linear search time. Specifically,
we take each keyword as the primary key and associate each
keyword with files by a binary vector. Each element in binary
vector represents the relationship between a keyword and
a file. We use ““1” to represent that the file contains the
keyword, and “0” otherwise. For each keyword w;, the client
encrypts it as m; = CHpy (hk, G (k1, w;), r;), where kj is
the private key for a pseudorandom funcion G (-) and r; is
a random number. Then, for each binary vector §; associ-
ated with the keyword w;, the client encrypts it as 8; =
Enc (CHy (hk, G (ko, w;) , 17), 6;), where kp is also a secret
key and and Enc(-) is a symmetric-key encryption algorithm.
At last, for strong protection, the client applies a permutation
function to the rows in the encrypted index. In addition,
the client also builds a i© program for later use in the search
phase.

Phase 2: In this phase, given a query keyword w;, the client
generates the search token and sends it to the cloud for
encrypted search. In order to generate randomized tokens
even for the same keyword in each query, we take concate-
nation of the query keyword and a counter ct representing

11115

IEEE Access

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

Algorithm 2 Generating Secure Search Token

Algorithm 3 Searching Encrypted Data at the Cloud Side

Input: Secret keys: (ki, k2, sk);
Counter: ct;.

Output: Secure search token: T'.

t1 = G (ky,wi || cty)

rl = CHF (sk, G (ki, w;) , i, G (ki, w; | ct;))

tr = G (ka, wi || cty)

r} = CHp (sk, G (ka, wi) , 11, G (ka, wi | ct;))

T = (tl, ril, 1, rlz)

Query keyword: wj;

A

the search frequency of the keyword as the input in token
generation algorithm. Algorithm 2 presents the details in
token generation. Given the keyword w; to be queried,
the client first looks up the local memory to find the ran-
dom number r;, and uses it to generate two new random
numbers r} = CHF (sk, G (ki, w;) , ri, G (ki, w; || ct;)) and
r? = CHF (sk, G (ka, w;) , i, G (ka, w; || ct;)) by using the
chameleon collision-finding function, where sk is a secret key
for chameleon hash function and w; || ct; is the concatenation
of keyword w; with a counter denoting its searching fre-
quency. Then, the client forms the search token for the query
keyword w; as (1, rl.l 1, rl.z), where t; = G (k, w; || ct;) and
1y = G (ka, w; || cty).

Upon receiving the search token, the cloud server then
performs search based on the encrypted searchable index and
a iO program. The iO program is used for obfuscating the
search procedure. In particular, it is used to (i) securely map
the random search token to the form that can be matched
against the encrypted index, and (ii) hide which entry of
the encrypted index is accessed during search. Throughout
the search procedure, the cloud server is oblivious to the
recovered token and also the entry of index that has been
accessed. Note that the search pattern may also be leaked if
the cloud server can observe which entries of the index have
been accessed over time [12]. Therefore, our design achieves
strong protection for the search pattern.

Algorithm 3 presents the details in searching encrypted
data at the cloud side. The cloud server calls the i©O program,
and obtains the search result. Inside the iO program, the key
hk is embedded as a constant in advance by the client. This
iO program first uses the chameleon hash function to revert
the hash value HV; = CHpgy (hk, 11, rl.l) and hash value
HV, = CHy (hk,ty,r?). Here, HV\ = CHy (hk,t,r})
is the recovered token which is able to be matched against
the encrypted index. Recall that the encrypted version of
the keyword in the index is w; is CHy (hk, G (k1, w;) , 1i),
and CHy (hk, G (ky,w;),r;) = CHpy (hk,t1,r!) based
on the property of the chameleon hash function. There-
fore, the recovered token HV; = CHpgy (hk, 1, rl.l) can
locate the right entry in the index. Subsequently, HV, =
CHy (hk, 1, rlz) is used to decrypt the corresponding 8;.
Finally, the i©O program outputs the recovered file identifiers
and the cloud server returns the corresponding file ciphertexts
to the client.

11116

Input: Token: T = (1,7}, to, r?
Output: Search result: C (w;).
1: Execute a iO program with inputs 7 and y

iO program (with constant hk):

); Index: y.

2: HV) = CHpy (hk, 11, r})
3: HV, = CHy (hk, tp, r})
4: if 7, = HV| then

5: Output Dec (HV2, 5;)
6: else

7 Output L.

8: end if

Note that the security of iO ensures that the cloud server is
oblivious to the search procedure and the embedded key hk
is also kept confidential. So, the cloud server only obtains
the search result through the search procedure. Recall that
leakage from the search result is access pattern leakage and
can be well mitigated by directly introducing dummy data
points [9]. And our focus is on defending against search
pattern leakage.

B. SECURITY ANALYSIS

We now provide formal proofs to show the security of our
scheme. In particular, we follow the security framework in
prior works [5], [12] for analysis. The security framework
proposed therein is based on a leakage function £. While
revealing the leakage function to an adversary, the security
framework ensures that the adversary should not learn any
further information beyond the leakage function itself when
the adversary observes a sequence of tokens submitted adap-
tively. Since our proposed construction doest not disclose the
search pattern, we modify the security framework to fit our
design. The leakage function £ = {£1, £} in our proposed
scehem is given as follows:

L= (WL IFL i)
£y = AP (H)

Definition 5: Let T1 = (KGen, Build, Search) be our
secure index-based search scheme which uses chameleon
hashing to generate secure search tokens and relies on iO
for cloud-side secure search. Given the leakage function £,
we define the following experiments with an adversary A and
a simulator S.

Reals()): The client runs KGen to generate the private
keys. The adversary A selects a set of files, and asks the client
to generate the index, the iO program, and the ciphertexts via
the algorithm Build. Then A performs a polynomial number
of adaptive q queries, and asks the client for the secure search
tokens and the resulting file ciphertexts via the algorithm
Search. Finally, A produces a bit as the output.

Sima s(X): The adversary A selects a set of files, and S
simulates an index, an iO program, and the ciphertexts for
A based on £1. Then, A performs a polynomial number of

VOLUME 6, 2018

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

IEEE Access

adaptive q queries. From £;, S returns simulated tokens and
file ciphertexts. Finally, A produces a bit as the output.

We say that 1 is £-secure against adaptive chosen keyword
attacks if for all polynomial-time adversaries A, there exists a
simulator S such that | Pr[Real A(A) = 1] — Pr[Sim 4 s(A) =
1]] < negl(A), where negl() is a negligible function in A.

We now prove that our proposed scheme is secure against
adaptive chosen keywords attacks with respect to the charac-
terized leakages.

Theorem 1: The proposed encrypted search scheme Il is
L-secure against against adaptive chosen-keyword attacks,
if ¢ is a secure pseudorandom permutation, CH is a secure
hash function, iOSearch is a secure indistinguishability
obfuscator, and Enc is a PRF-based encryption.

Proof: Given the leakage £1, the simulator S generates
the simulated index y’, which is indistinguishable from the
real index y. In particular, the real index y and the simulated
index y have the same size. The bit length of a real index
entry and simulated one is the same. However, S generates
random bit strings for each entry. For the file ciphertexts,
S also generates random bit strings with the same size as
the file ciphertexts. In addition, S generates the i program
iOSearch’, which is indistinguishable from iOSearch.

Now, we need to show how to simulate ¢ adaptive queries
{Qi}?=1 made by the adversary. For each query Q;, the simu-
lator responds with the simulated search token 7*, where T*
is a 4-tuple of random bit strings, i.e., T* = (¢, rlx t;", rz*).
Then, S operates the chameleon hashing function CH (inside
the iOSearch’ program) as a random oracle to first ran-
domly point at an entry of the simulated index, so HV| =
CHy (hk*, tf, rl*). Meanwhile, the simulator sets HV, to
CHy (hk*, 1, rz*). Then, S operates a random oracle so that
Dec(HV,, 8") = &, where § is given by the leakage £5. This
indicates the search result is identical to that from searching
the real index. We note that this can be achieved if the encryp-
tion algorithm Enc is instantiated as (r, H(HV2||r) @ §),
where r is a random bit string and # is a random oracle.
This is actually a widely adopted technique for achieving the
adaptive security for SSE [19].

The above analysis shows that the real index and the
simulated one, the real tokens and the simulated ones, and
the encrypted files and the simulated ciphertexts are com-
putationally indistinguishable. Meanwhile, the search results
from the real index and the simulated one are identical,
so they are indistinguishable as well. Therefore, it can be
concluded that the adversary is unable to distinguish the
outputs of the real experiment and the ideal experiment. [

V. EXPERIMENTS

A. EXPERIMENTS SETUP

All experiments were conducted on a cluster and a desk-
top with 16 cores and 64 GB of memory running Unbantu
version 16.04. The cluster contains 1 server as master and
3 servers as slaves. Each slave has 40 cores and 400GB of
memory running Linux version CentOS 7.3. We use python

VOLUME 6, 2018

version 2.7.6, jdk version 1.8, spark version 2.1.0, HBase
version 1.2.5, and Hadoop version 2.7.3. The dataset we
use in our experiments is the Enron email dataset,! which
is collected and prepared by the CALO Project. It contains
150 different users’ email files including sent emails, con-
tacts, delete items, etc. We choose three sub-datasets from all
the email files of all the users as the experiments datasets.
The first dataset contains 10,000 documents. The second
dataset contains 100,000 documents. The third set contains
all the documents in Enron dataset. Hereafter, for ease of
presentation, we will refer to these three datasets as dataset I,
dataset II, and dataset III, respectively. In the experiments,
we develop a distributed storage system to implement our
proposed scheme. Note that we implement the index setup
phase on the cluster side, as the number of the email files
is huge and it is a bit hard to use desktop to handle the full
dataset which has 517, 401 files and 348,935 keywords after
removing the stop word.

B. SYSTEM IMPLEMENTATION

1) STORAGE SYSTEM

Storage system is written in Java and is implemented by
HBase. We choose HBase for the following reasons. Firstly,
it is too large to store the encrypted index and the Enron
dataset centrally. HBase however partitions the data into
regions controlled by a cluster of RegionServer’s. Secondly,
when searching over the index, if we store index centrally,
it will take O (m) to do text matching operation. When using
HBase, however, it takes far less time than that to do text
matching. This is mainly due to the addressing mode with
3 levels in HBase (i.e., the root table, the meta table, and
region) and the sorting method based on lexicographic order
between records. Thirdly, when user submits multi-keyword
to cloud, HBase can deal with each token Simultaneously.

2) FILE ENCRYPTION/DECRYPTION

Since the security of file encryption does not affect the secu-
rity of the token, its security issue is not within our scope.
To highlight our important issue, we only use ECB encryption
with PKCS7 padding mode in the jar of javax.crypto.Cipher
to encrypt the files.

3) INDEX SETUP

Index setup is written in Java with javax.crypto library and
JPBC library and runs on Spark to build an inverted index
to speed up the document retrieval. We choose Spark for
the following reasons. For one hand, we need to pre-process
each email file to parse each keyword and remove the stop
word. Fortunately, Spark can do these operation with each
file in parallel. Therefore, it can dramatically accelerate the
index setup phase. For another, since we need to build the
index iteratively (i.e., the result of inserting the keywords of
the first email file into the index will be used as a reference
for the insertion of the keywords of the second email file.)

Enron Email Dataset: http://www.cs.cmu.edu/~./enron/

11117

IEEE Access

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

Algorithm 4 An Instance of Chameleon Hashing Function

Input: Message: m; Random number: r; Key: hk =
{g. h=¢"}

Output: Chameleon hash result: H.

1. H=g¢g"h".

Algorithm 5 An Instance of Chameleon Collision-Finding
Function
Input: Message: mp, my; Random number:r; Key: sk = x.
Output: Chameleon collision: r;.

1: 1y = logp g™ M /xg’"z.

and Spark can store the intermediate results in the memory,
the setup phase can be accelerated by using Spark. We set
the cluster with 1 server as master and 3 servers as workers.
For index setup job, we set it with 9 executers and each
executer has 5 cores and 20G of memory. We use a pair of
RowKey/Data to store the inverted index. ‘““RowKey” stores
the encrypted keyword and “value” in “Data” stores an
encrypted ‘“‘binary vector” (i.e., the relationship between
keyword with file collection). It first parses each word
with space in file collection and used Stanford’s database
to remove the stop word to establish the inverted index in
bitmap style. Then, in order to generate secure index, we use
AES encryption with chameleon hash function to encrypt
“RowKey” and to generate the private key for symmetric
encryption used to encrypt the “Data”. The construction
of chameleon hash we used is the one in [15], as shown
in Algorithm 4 and 5. Since the client generates the token
by CHF function which needs to take G (w) and its corre-
sponding r as input to compute the collision, we need to
store the relationship between G (w;) and r; at the client
side when building an index, where i = 1,--- ,m. It is
worth noting that to reduce the storage size at the client
side we use the same r; in both CHy (G (k1, w;), r;) and
CHpy (G (ka, wi) , rj). Therefore, we only need to store the
relationship between each keyword and r;. In order to accel-
erate searching for r; in token generation phase, we use hash
table to store their relationship. Last, it encrypts the “value”
with a symmetric encryption AES which takes the “binary
vector” as the input message and CHy (G (ka2, w;) , r;) as the
secret key. To prevent the adversary from looking up the
hash value dictionary to get the private key ki, kp, we use
“salt” in secret key generation for the above mentioned
encryptions.

4) TOKEN GENERATION

Token generation is written in java with javax.crypto.Cipher
to generate AES encrytion function and jpbc library to gen-
erate cyclic group and runs on desktop to generate token.
It firstly combines the submitted keyword w; with the retrieval
times ct. Then, it uses AES to encrypt string concatena-
tion G (w; || ct) with different key ki and k> and searches
the local hash table with pairs of (w,r) to find the r;

11118

corresponding to w;. And then, it uses CHp to forge the
random rl.l with the private key x, the concatenation cipher
G (ky,w; || ct) and a set of data (G (k1, w;) , r;). Similarly,
it also forges the random ’"12 with the same private key x,
the concatenation cipher G (kz, w; || ct) and a set of data
(G (ka, w;), r;). Finally, it combines the output of step 2 with
G (ky,w; || ct) and G (ka, w; || ct) to generate the token
T = (Gki,will ct), r}, G ko, wi || ct), 7?).

5) RETRIEVAL

Retrieval is written in Java and Python and performed
over HBase. It retrieves the files containing the keyword
in token. We set the cluster for 1 HMaster and 3 HRe-
gionServer. Each HRegionServer has 40 cores and 400G of
memory. It first computes the hash value HV] by inputting
(G (ky, wi || ct), rl.l) to chameleon hash function. It then
looks up the Zookeeper to find the region containing the
“RowKey” corresponding to HV]. Last, it computes the
hash value HV, to decrypt the corresponding ‘““value” and
returns the file ID which column is “1”’. The above retrieval
procedure should be protected by iO in our design.

Since iO currently is still in theoretical stage, we will do the
first experiment without iOSearch function for demonstration
purpose. Then we realize the iO function [20] only with AND
circuit to demonstrate the efficiency of the iO function and
provide some discussion.

The obfuscator implementation consists of the following
modules: (1) create a universal circuit for the target func-
tionality, (2) transform the boolean circuit to a branching
program according to Barrington’s theorem, (3) convert the
branching program into a block-diagonal matrix P;; which
pads the branching program to / length, where [< m + ¢
and extent each matrix with 4/ uniformly random matrices
and one uniformly random vector (4) apply multiplicative
bundling with / 4 1 uniformly random non-singular matrices
and 2/ 4 2uniformly random non-zero scalars, (5) create
randomized branching programs by the first step of Kil-
ian’s protocol, (6) instantiate multilinear map, (7) encode for
multilinear map, (8) circuit encoder into input for universal
circuit, (9) transform the input with an input-selection func-
tion, (10) zero testing, and (11) post zero testing. Since the
most important step proposed is to fix the matrix branching
program to P; [21], we do not specify the implementation
details here except for the third module.

To implement the third module, the obfuscator O is instan-
tiated with two parameters, t = t(n,A) and s = s(n, A)
according to Assumption 1 in [20]. Then taking a dual-input
matrix branching program BP of length m, width w, and
input length n as consideration, O pads BP with identity
matrices, if the length of BP is smaller than /| < ¢ + m.
Therefore, it needs to select ¢ elements from the input to make
a branching program transformed into one with this input
selection. Last, O extends the matrices to P;; which selects
4] uniformly random matrices Z; ;, € ZIS,XS and one uniformly
random vector Z;+1 € Z;Xl. Since we cannot determine the

VOLUME 6, 2018

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

IEEE Access

value of ¢t and s, we set ¢ as that in [22] and s as w to ensure
the correctness. Since our i©O implementation only fixes the
third module based on that of [21], we only test the branching
program generation in this experiment.

C. EXPERIMENTS RESULTS

We now present experiments results regarding performance
evaluation of our design. For the simplified experiments,i.e.,
without i{O protection, we first compare index generation
time with above mentioned three datasets to illustrate how
the size of dataset influences the index generation time.
Considering that the index should be stored on the cloud
server and the client needs to pay for the storage space,
we also test the size of the encrypted index. And then since
the token generation time should be one of the most important
part, which influences the experience of the client, we com-
pare token generation time with different datasets to compare
the token generation times (It is because we need to search
r; in the hash table with pairs of (w;, r;) when generating the
token). In addition, we compare the search time (without iQ)
for different datasets for demonstration purpose. For the iO
implementation, we compute the generation time, file size,
memory usage and length of branching program for gener-
ating a branching program with only AND gate, so as to
demonstrate the efficiency of i©. The reason why we choose
generation time and memory usage is that we need to estimate
the cost for generating branching program. Since it needs to
be generated at the client side, if it takes a long time or takes
too much computation resources, the client would have to
endure for a longer period of time to generate branching pro-
gram. And since the branching program should be outsourced
to the cloud server, the file size should also be taken into
consideration. In addition to that, the running iOsearch time
is correlated to the length of branching program. Therefore,
we test it for estimation. It is worth mentioning that the exper-
iment result of the index setup in our paper is the average
result of 10 times executions, and in the token generation
phase, for each dataset, we randomly select 10% keywords
in total keywords collection to generate token and send all
the tokens to do the search. We take the average of token
generation and search time in each dataset as the experiment
results.

1) INDEX SETUP COST

We first present the cost in building an encrypted index.
It includes the index setup time and index size. In order to
illustrate the relationship between the number of files and the
cost in building the index, we compare each time cost and
storage cost under the above mentioned three datasets in the
Table 1. Table 1 shows the results of index setup time and
index size based on three datasets. In principle, the index
setup time is mainly dependent on the number of files and
the encryption costs. In our experiment, since we use AES
with chameleon hash CHpy to encrypt each “RowKey” and
“Data”, the setup time increases as the number of the files
increases. And index size completely depends on the number

VOLUME 6, 2018

e}
=]

Time (ms)
~ ~
(e [

(o))
W

60 *
I II 11

Dataset

FIGURE 2. Token generation cost.

TABLE 1. Cost of the encrypted index.

Dataset | Setup time (s) | Index size (MB)
I 121.818 8.4
I 1123.656 120
III 1638.115 584

of files and the number of keywords in dataset, the theoretical
spatial complexity is O (mn). The experiment results fit the
theoretical spatial complexity. The index size increases when
the number of files and number of keyword increase. It is
worth noting that the index setup phase is a one-time cost.

2) TOKEN GENERATION COST

We present token generation time with different datasets
in Fig. 2. Each plot shows the relationship between each
dataset with token generation time. Since we use AES to
encrypt the keyword and the length of each keyword submit-
ted to Token algorithm is less than 128 bits, the generation
time of G (k1,w; || c¢t) and G (kp, w; || ct) will be almost
the same with different keyword submitted to token algo-
rithm each time. And since the calculation of the chameleon
collision function also takes almost the same time in each
time to generate ri1 and rl.2 (The reason is similar to the
reason for assuming almost the same generation time of
G (ky, w; || ct).), the most important factor affecting token
generation time is searching r; corresponding to the searched
keyword from the table with the pairs of (w;, r;). Since we
use hash table structure to store the table, the generation time
with keywords is almost the same. In order to accelerate the
token generation time, we store the table with the pairs of
(wi, r;) in the memory. Therefore, the token generation time
is about 87ms.

3) SEARCH COST WITHOUT i©O

As mentioned before, since iO currently is still in theoreti-
cal stage, we will first evaluate the search cost without the
iOSearch function for demonstration purpose. We present the
search cost in Fig. 3. From the experiments results, we can
see that the search cost is close among three datasets, which
is less than 270 ms for all datasets.

11119

IEEE Access

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

270
2601
22501
g
0 240}
£
= 2307
220

210

I 11 111
Dataset

FIGURE 3. Search cost without i O.

4000

3000

1000

Memory usage (Mb)
S
S
[e]

N 8

0
2,1 2,2 3,2 2,3 33 43
No of inputs & No. of gates

FIGURE 4. Memory usage in branching program generation.

x10°

Time (ms)

05¢f

O & I
2,1 2,2 3,2 2,3 3,3 4,3
No. of inputs & No. of gates

FIGURE 5. Generation time for building a branching program.

4) i© BRANCHING PROGRAM GENERATION COST

To demonstrate the resource usage in branching program
generation of /O, we evaluate the relationship between the
resource usage and the parameters in generating a branch-
ing program, including the number of inputs and the num-
ber of gates of obfuscated circuit. We show the resource
usage including memory usage in Fig. 4 and generation time
in Fig. 5. A point at location (x1, x2, y) in Fig. 4 indicates
that it needs y memory to transfer x; inputs and x, gates
into a branching program. A point at location (xi,x3,y)
in Fig. 5 indicates that the time of transforming x; inputs and
X gates into a branching program is y. In addition to that,
we count the length of branching program and the size of the
branching program file with each input. The length of branch-
ing program is shown in Fig. 6 and the file size is shown

11120

10

Length (103 instructions)
N

"N

0 M 1
2,1 2,2 3,2 2,3 3,3 4,3
No. of inputs & No. of gates

FIGURE 6. Length of generated branching programs.

1500

1000

File size (Mb)

500

o N

0
2,1 2,2 3,2 2,3 33 4,3
No. of inputs & No. of gates

FIGURE 7. File size of a branching program.

in Fig. 7. A point at location (x1, x2, y) in Fig. 6 indicates that
transforming x| inputs and x; gates will generate a branching
program with the length y. A point at location (xi, x2,y)
in figure 7 indicates that transforming x;-length of input and
X2 gates program into a branching program will generate a file
with size y. We estimate the length of generating a branching
program by applying recursive formula in [21]. Increasing the
number of inputs causes a linear increase in each measured
output of the experiment. Increasing the number of gates how-
ever causes an exponential increase in each measurement.
It is because Barrington’s theorem tells that every language
on {0, 1} can be recognized by a family of exponential width
and linear length. In addition to that, we could not measure
the memory usage reliably due to technical limitations of
our memory profiler. We estimate that the memory usage is
around a fixed increment of the file size according to [21],
since we use the compression algorithm to store BPs.

5) DISCUSSION

Similar to prior works which use iO as underlying
cryptographic techniques in different application domains
(e.g., [23], [24], to just list a few), our design for the time
being is not immediately applicable in practice due to the
current inefficiency of iO. Although program generation and
evaluation of i is not fast now, research endeavors on mak-
ing iO is actively ongoing. Hence, it can be envisioned that

VOLUME 6, 2018

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

IEEE Access

iO with practical performance would probably be achieved
in the not-too-distant future. Clearly, the practical efficiency
improvement of iO will directly lead to the applicability of
our design.

VI. RELATED WORK
A. SECURE SEARCHABLE ENCRYPTION
Our work is closely related to a research area known as SSE,
which studies how to conduct secure search over encrypted
data efficiently. We are also aware that public key search-
able encryption (PKSE) techniques also support search over
encrypted data, yet they are usually very computationally
expensive [4]. In terms of efficiency, SSE techniques fits
much better into practical realm. So far, a lot of elegant SSE
constructions have been proposed (e.g., [5], [7], [25], [26],
to just list a few). For performance efficiency, SSE con-
structions are generally built under the well-known security
definitions [5], [6] which allow access pattern leakage and
search pattern leakage. In recent years, however, it has been
shown that the leakages of access patter and search pattern
can be exploited to attack SSE schemes (e.g., [8]-[12]).
While attacks based on the access pattern leakage can be
well mitigated by introducing dummy points to the data set
and encrypted index [8], [9], hiding the search pattern is more
challenging and little work has been done. In [12], Liu et al.
propose an approach based on the idea of adding some fake
query tokens to the real query token. This approach, however,
requires heuristic parameter tuning for the number of fake
query tokens for strong security, which might not be easy
to operate in practice. Secondly, it undesirably brings extra
workload to both the user and the cloud server in each query.
In [13], Gajek propose to use constrained functional encryp-
tion to hide the search pattern. Since the proposed scheme
relies on operations in bilinear group to encrypt the query
keyword, it might suffer from zeroizing attacks [27]-[33].
Very recently, Li er al. [14] study privacy-preserving storage
and retrieval in a multi-cloud setting. Their scheme protects
the search pattern by relying on secret sharing technique
and the limited collusion of multiple cloud service providers.
In contrast to these works, our design works under the com-
mon setting of a single cloud server, is free of the use of
bilinear map, and does not need multiple fake tokens for
hiding a real token.

B. INDISTINGUISHABILITY OBFUSCATION

The iO technique requires that given any two equivalent
circuits Cop and C; of similar size, the obfuscations of
Cp and Cp should be computationally indistinguishable.
Barak et al. [34] first propose indistinguishability obfuscation
(10) which requires that the two indistinguishable programs
have the same size and the same functionality. Recently,
Garg et al. [16] propose the first candidate construction of
an efficient /O for general circuits. In [35], Apon et al.
give an implementation of i by using the approach
in [36] to compile boolean formulas into branching program.

VOLUME 6, 2018

So far, many applications based on i have been proposed,
e.g., multi-party key exchange [37] and deniable encryp-
tion [17]. The above mentioned candidate constructions
are based on multilinear maps [16], which unfortunately
suffer from ‘‘zeroizing” attacks, as shown by prior
works [27]-[33], [38], [39]. Very recently, Garg et al. [20]
propose an iO candidate construction for general programs,
which can resist all known polynomial-time attacks. This iO
construction is used in our proposed scheme to achieve strong
security.

VII. CONCLUSION

In this paper, we propose a new SSE scheme which can hide
the search pattern of the client in searching encrypted cloud
data. We leverage the chameleon hashing technique to gener-
ate secure search tokens in a randomized way, so for the same
keyword the search tokens at different queries are different.
On the cloud side, we rely on the iO technique to securely
map the randomly generated search token to the determinis-
tic one for effective encrypted search. We justify the secu-
rity guarantees of our scheme via rigorous security proofs.
In order to demonstrate the performance, we also conduct
extensive experiments for evaluation. The performance of our
scheme relies on the underlying cryptographic technique iO.
Although currently the iO technique is inefficient, related
research endeavors on practical iO are actively ongoing [40].
The practical performance improvement of iO will directly
lead to the improvement and applicability of our scheme.
We emphasize that our scheme presents a new attempt that
pushes forward the research on SSE with concealed search
pattern.

REFERENCES

[1] K. Liang, C. Su, J. Chen, and J. K. Liu, “Efficient multi-function data
sharing and searching mechanism for cloud-based encrypted data,” in
Proc. ACM ASIACCS, 2016, pp. 83-94.

[2] J. Hughes. (2014). Data Breaches in the cloud: Who’s responsible?
[Online]. Available: http://www.govtech.com/security/Data-Breaches-in-
the-Cloud-Whos-Responsible.html

[3] C. Bosch, P. H. Hartel, W. Jonker, and A. Peter, “A survey of prov-
ably secure searchable encryption,” ACM Comput. Surv., vol. 47, no. 2,
pp. 18:1-18:51, 2014.

[4] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘““Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222-233, Jan. 2014.

[5] R.Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ““Searchable symmet-
ric encryption: Improved definitions and efficient constructions,” in Proc.
ACM CCS, 2006, pp. 1-10.

[6] S. Kamara, C. Papamanthou, and T. Roeder, ‘“Dynamic searchable sym-
metric encryption,” in Proc. ACM CCS, 2012, pp. 956-976.

[7] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Highly-scalable searchable symmetric encryption with sup-
port for boolean queries,” in Proc. CRYPTO, 2013, pp. 353-373.

[8] M. S. Islam, M. Kuzu, and M. Kantarcioglu, ““Access pattern disclosure

on searchable encryption: Ramification, attack and mitigation,” in Proc.
NDSS, 2012, pp. 1-12.
D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “‘Leakage-abuse attacks
against searchable encryption,” in Proc. ACM CCS, 2015, pp. 668-679.
[10] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. ACM CCS, 2015, pp. 644-655.

[11] D. Pouliot and C. V. Wright, “The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption,” in Proc. ACM
CCS, 2016, pp. 1341-1352.

9

—

11121

IEEE Access

J. Yao et al.: Enabling Search Over Encrypted Cloud Data With Concealed Search Pattern

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

C. Liu, L. Zhu, M. Wang, and Y.-A. Tan, “Search pattern leakage in
searchable encryption: Attacks and new construction,” Inf. Sci., vol. 265,
pp. 176-188, May 2014.

S. Gajek, “Dynamic symmetric searchable encryption from constrained
functional encryption,” in Proc. Cryptograph. Track RSA Conf., 2016,
pp. 75-89.

J. Li, D. Lin, A. C. Squicciarini, J. Li, and C. Jia, “Towards privacy-
preserving storage and retrieval in multiple clouds,” IEEE Trans. Cloud
Comput., vol. 5, no. 3, pp. 499-509, Jul. 2017.

H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proc. NDSS, 2000,
pp. 1-12.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption for
all circuits,” in Proc. FOCS, Oct. 2013, pp. 40-49.

A. Sahai and B. Waters, “How to use indistinguishability obfuscation:
Deniable encryption, and more,” in Proc. ACM TC, 2014, pp. 475-484.
C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467-1479, Aug. 2012.

X. Yuan, H. Cui, X. Wang, and C. Wang, “Enabling privacy-assured
similarity retrieval over millions of encrypted records,” in Proc. ESORICS,
2015, pp. 40-60.

S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and M. Zhandry,
“Secure obfuscation in a weak multilinear map model,” in Proc. Theory
Cryptograph. Conf., 2016, pp. 241-268.

S. Banescu, M. Ochoa, N. Kunze, and A. Pretschner, “Idea: Benchmarking
indistinguishability obfuscation—A candidate implementation,” in Proc.
Int. Symp. Eng. Sec. Softw. Syst., 2015, pp. 149-156.

S. Badrinarayanan, E. Miles, A. Sahai, and M. Zhandry, ‘‘Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits,” in
Proc. EUROCRYPT, 2016, pp. 764-791.

C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu, “Symmetric-key
based proofs of retrievability supporting public verification,” in Proc.
ESORICS, 2015, pp. 203-223.

Y. Zhang, C. Xu, X. Liang, H. Li, Y. Mu, and X. Zhang, “Efficient public
verification of data integrity for cloud storage systems from indistinguisha-
bility obfuscation,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 3,
pp. 676-688, Mar. 2017.

E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. NDSS, 2014, pp. 72-75.

P. Golle, J. Staddon, and B. Waters, ““Secure conjunctive keyword search
over encrypted data,” in Proc. ACNS, 2004, pp. 31-45.

J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, “Cryptanalysis of the
multilinear map over the integers,”” in Proc. EUROCRYPT, 2015, pp. 3-12.
J.-S. Coron et al., “Zeroizing without low-level zeroes: New MMAP
attacks and their limitations,” in Proc. Annu. Cryptol. Conf., 2015,
pp. 247-266.

Y. Hu and H. Jia, “Cryptanalysis of GGH map,” in Proc. EUROCRYPT,
2016, pp. 537-565.

Z. Brakerski, C. Gentry, S. Halevi, T. Lepoint, A. Sahai, and M. Tibouchi,
“Cryptanalysis of the quadratic zero-testing of GGH,” IACR Cryptol.
ePrint Arch., Tech. Rep. 845/2015, 2015.

S. Halevi, “Graded encoding, variations on a scheme,” IACR Cryptol.
ePrint Arch., Tech. Rep. 866/2015, 2015.

J. H. Cheon, P--A. Fouque, C. Lee, B. Minaud, and H. Ryu, “Cryptanalysis
of the new CLT multilinear map over the integers,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn., 2016, pp. 509-536.

B. Minaud and P-A. Fouque, “Cryptanalysis of the new multilinear map
over the integers,” IACR Cryptol. ePrint Arch., Tech. Rep. 941/2015, 2015.
B. Barak et al., “On the (im) possibility of obfuscating programs,” J. ACM,
vol. 59, no. 2, p. 6, 2012.

D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff, “Implement-
ing cryptographic program obfuscation,” IACR Cryptol. ePrint Arch.,
Tech. Rep. 779/2014, 2014. [Online]. Available: https://eprint.iacr.org/
M. Sauerhoff, I. Wegener, and R. Werchner, “Relating branching program
size and formula size over the full binary basis,” in Proc. STACS, 1999,
pp. 57-67.

D. Boneh and M. Zhandry, ‘“Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation,” in Proc. CRYPTO,
2014, pp. 480-499.

D. Boneh, D. J. Wu, and J. Zimmerman, “Immunizing multilin-
ear maps against zeroizing attacks,” IACR Cryptol. ePrint Arch.,
Tech. Rep. 930/2014, 2014.

11122

[39] E. Miles, A. Sahai, and M. Zhandry, “Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13,” in
Proc. Crypto, 2016, pp. 629-658.

[40] P. Ananth, D. Gupta, Y. Ishai, and A. Sahai, “Optimizing obfuscation:
Avoiding barrington’s theorem,” in Proc. ACM CCS, 2014, pp. 646-658.

JING YAO received the B.E. degree from the Xi’an
University of Technology, Xi’an, China, in 2009,
and the M.E. degree from Shaanxi Normal Uni-
versity, Xi’an, China, in 2012. She is currently
pursuing the Ph.D. degree with the School of Elec-
tronic and Information Engineering, Xi’an Jiao-
tong University, and also with the Department of
Computer Science, City University of Hong Kong,
Hong Kong. Her research interests include cloud
computing security, outsourcing storage security,
and data privacy.

YIFENG ZHENG (S’16) received the B.E. degree
in information engineering from the South China
University of Technology, Guangzhou, China,
in 2013. He is currently pursuing the Ph.D. degree
with the Department of Computer Science, City
University of Hong Kong, Hong Kong. From
September 2013 to December 2013, he studied
at Zhejiang University, Hangzhou, China. His
research interests include cloud computing secu-
rity and multimedia security.

CONG WANG (SM’17) received the B.E. degree
in electronic information engineering and the M.E.
degree in communication and information sys-
tem from Wuhan University, China, and the Ph.D.
degree in electrical and computer engineering
from the Illinois Institute of Technology, USA.
He has been an Assistant Professor with the
Department of Computer Science, City University
of Hong Kong, since 2012. His current research
interests include data and computation outsourcing
security in the context of cloud computing, network security in emerging
Internet architecture, multimedia security and its applications, and privacy-
enhancing technologies in the context of big data and IoT. His research has
been supported by multiple government research fund agencies, including
National Natural Science Foundation of China, Hong Kong Research Grants
Council, and Hong Kong Innovation and Technology Commission. He was
arecipient of the President’s Awards from the City University of Hong Kong
in 2016. He was a co-recipient of the Best Student Paper Award of the
IEEE ICDCS 2017, the Best Paper Award of the IEEE MSN 2015, and
CHINACOM 2009. He is a member of the ACM. He has been serving as
the TPC co-chairs for a number of the IEEE conferences/workshops.

XIAOLIN GUI received the B.E., M.E., and Ph.D.
degrees from Xi’an Jiaotong University, Xi’an,
China, in 1988, 1993, and 2001, respectively. He is
currently a Professor and the Deputy Dean of the
School of Electronic and Information Engineering,
Xi’an Jiaotong University. His research interests
include secure computation, data privacy, and the
Internet of Things.

VOLUME 6, 2018

	INTRODUCTION
	PRELIMINARIES
	NOTATIONS
	CHAMELEON HASHING
	INDISTINGUISHABILITY OBFUSCATION

	PROBLEM STATEMENT
	SEARCHABLE SYMMETRIC ENCRYPTION DEFINITION
	SYSTEM MODEL
	THREAT MODEL

	THE PROPOSED SCHEME
	THE PROPOSED SCHEME
	SECURITY ANALYSIS

	EXPERIMENTS
	EXPERIMENTS SETUP
	SYSTEM IMPLEMENTATION
	STORAGE SYSTEM
	FILE ENCRYPTION/DECRYPTION
	INDEX SETUP
	TOKEN GENERATION
	RETRIEVAL

	EXPERIMENTS RESULTS
	INDEX SETUP COST
	TOKEN GENERATION COST
	SEARCH COST WITHOUT iO
	iO BRANCHING PROGRAM GENERATION COST
	DISCUSSION

	RELATED WORK
	SECURE SEARCHABLE ENCRYPTION
	INDISTINGUISHABILITY OBFUSCATION

	CONCLUSION
	REFERENCES
	Biographies
	JING YAO
	YIFENG ZHENG
	CONG WANG
	XIAOLIN GUI

