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Abstract—In online surveys, many people are reluctant to provide true answers due to privacy concerns. Thus, anonymity is important
for online message collection. Existing solutions let each member blindly shuffle the submitted messages by using an IND-CCA2 secure
cryptosystem. In the end, the message sender’s identities are protected since no one knows the message submission order. These
approaches cannot efficiently handle groups of large size. In this paper, we propose an efficient anonymous message submission
protocol aimed at a practical group size. Our protocol is based on a secret sharing scheme and a symmetric key cryptosystem. We
propose a novel method to aggregate members’ messages into a message vector such that a group member knows only his own
position in the submission sequence. The protocol is accountable for capturing malicious members breaking the protocol execution.
We provide a theoretical proof showing that our protocol is anonymous under malicious attacks. We also discuss our simulation results
to demonstrate the efficiency of our protocol.
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1 INTRODUCTION

In the real world, anonymity has always been an impor-
tant societal issue. This issue is becoming increasingly
important as more and more people discover the digital
world and find the need for anonymous participation,
In addition, the new wave of online social networks has
created an unprecedented demand for anonymity in the
digital world.

Consider a health care product company that wants
to do an online survey about its products via an online
social network, such as Facebook. The company wants
to receive accurate feedback from its users and avoid
redundant responses from the same person. Hence, the
company would like the participants to login to their
social network accounts. This can be easily achieved by
having, for example, a “Login with Facebook” button on
the survey web page. In this way, the company could get
the participants’ demographic data and reject repeated
submissions. However, the participants may not feel
good about this approach, because their social identities
are exposed. Particularly, people would rather not par-
ticipate in the survey when the answers contain private
information, such as their health conditions. Another
example is that some online career social networks, such
as LinkedIn, often conduct surveys like “how do you like
your current company”. The result of this kind of survey
is very helpful to other people’s career development.
However, people would not like to answer or may not
give their truthful thinking if they are worried that their
negative answers may link to their real identities and
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backfire on themselves.
Anonymous message submission has attracted broad

attentions [4], [10], [30]. In [30], Yang et al. proposed
the first construction for online anonymous message
submission. Bickell and Shmatikov revisited this prob-
lem and proposed a collusion resistant anonymous data
collection protocol in [4]. Recently, Dissent protocol [10],
[25] has been proposed which is accountable and can
send variable length messages [10]. Anonymity in the
above protocols is guaranteed by a “shuffle” process,
which is collaboratively done by all group members.
The existing solutions [4] [10] are based on two rounds
of IND-CCA2 secure encryption that are done by group
members one by one. The fact that the protocol’s com-
munication rounds grows linearly in the group size
makes it inefficient to handle groups of scalable size.

The motivation of this paper is to construct an efficient
and collusion resistant anonymous message submission
protocol for groups of a practical scale (e.g., hundreds of
group members). We propose a novel technique which
secretly aggregates the group members’ messages into a
message vector with each message being a component
in the vector. Each member knows his selected compo-
nent index but is unaware of other members’ choices.
Our work aims to promote the practical application of
message submission with strong anonymity guarantees,
which will increase privacy protections and anonymity
in the digital world.

Our main contributions are as follows:
1) We propose a novel anonymous position application

technique, which enables each group member to
obtain a position in the final message submission
sequence in a manner that each member is oblivious
to other members’ positions.

2) We propose an efficient anonymous message sub-
mission protocol, AMS, for groups of practical scale.
Our protocol runs in time bounded by a polynomial
in the group size, and has constant communication
rounds.

3) We prove that the AMS protocol is anonymous



and collusion resistant under malicious attacks. The
AMS protocol does not rely on any trusted third
party. The security of our protocol is based on
the security of the secret sharing scheme and the
symmetric key cryptosystem.

4) We analyze the performance of our protocol from
the aspects of security and efficiency. We conduct
comprehensive simulations showing that our pro-
tocol is more efficient than existing ones, especially
when the group size is large.

The entire system consists of two protocols: AMS and
BULK [10], [25]. We use AMS to shuffle N messages of
fixed length to disconnect the link between the message
and its sender. The extractor is of fixed length. Using
AMS to anonymously shuffle the message extractors,
BULK can submit variable length messages in an anony-
mous way. To achieve accountability, we also adopt the
approach proposed in [25]. Each group member signs
and commits all messages he sent. If any misbehavior is
reported, all members disclose their temporary secret in
this run and an individual member can replay, verify
other members’ actions, and blame the misbehaving
member.

We adopt the signature based audit protocol and the
DC-net based message transmission protocol proposed
in [10].

The novelty of our AMS protocol is to let each member
efficiently and secretly choose a unique number between
1 and N . This number is then used as the slot posi-
tion to anonymously submit messages. Specifically, each
member has a vector. The component of his choice is
set to 1 and the rest are set to 0. AMS uses Shamir’s
secret sharing [22] to integrate all members’ vectors
without leaking the content of each vector. The members
know the conflicts by checking whether a component
in the integrated vector is larger than 1. AMS uses a
novel way to remove conflicts and achieves high success
(no conflict) probability. Since Shamir’s secret sharing
scheme mainly uses additions, AMS is lightweight and
can handle large groups.

The rest of this paper is organized as follows. We
formulate the problem in Section 2. In Section 3, we
present the related work. We demonstrate the protocol
construction in Sections 5, 6, and 8. We analyze our pro-
tocol from the security and efficiency aspects in Section
7 and show our simulation results in Section 9.

2 PROBLEM FORMULATION

In this section, we present the network model, the threat
model, and the security objectives.

2.1 Network Model
Our network consists of N+1 parties: a setM consisting
of N group members, and a collector C who collects all
group members’ messages. Each group member has a
unique group ID. Without loss of generality, we assume
that an ID is a number from {1, 2, · · · , N}. The group

members want to submit their messages to the collector
without exposing their identities. The initiator of the
protocol could be either the collector or any group mem-
ber. We assume that there are at least two honest group
members, since it is impossible to ensure anonymity if
there is only one honest member.

We do not assume the existence of a trusted third party
during our protocol execution. Our protocol runs in a
completely distributed manner. All the communications
are carried out on secure channels. We assume that each
member has a public/private key pair. The secure chan-
nels can be set up by using a public key cryptosystem.
We also assume that all members keep connected to the
network during the protocol execution.

2.2 Threat Model
There are two types of adversaries: semi-honest adver-
saries and malicious adversaries [14] [15]. Semi-honest
adversaries honestly follow the protocol execution but
are curious about people’s private information. They will
do their best to collect all messages that they can obtain,
analyze them, and infer private information. Malicious
adversaries do not necessarily follow the protocol and
may eavesdrop the communications, modify, replay, or
inject messages. Adversaries could be multiple parties
or a single party (e.g., the collector). If multiple parties
collude, we consider they are controlled by one adver-
sary so that we only need to consider a single adversary
hereafter.

In this paper, we consider the security of our protocol
in the presence of a malicious adversary. Since a party
can always abort from a protocol execution, we do not
claim that our protocol can successfully deliver messages
under any circumstance, which is the same as in [4] and
[10]. Instead, we prove that the security properties are
always preserved when the protocol terminates.

2.3 Security Objectives
The security objectives of our work are stated as follows.
• Anonymity: If k (k ≤ N − 2) out of the N (N ≥ 3)

group members collude with the collector, they can-
not infer the sender’s identity for a given message.
Note that anonymity cannot be guaranteed when
there is only one honest group member. Having
all N − 1 messages and identities, the adversary
can easily link the remaining message to the honest
member.

• Integrity: When the protocol terminates, the collec-
tor should either receive the honest members’ mes-
sages or be notified that the messages are modified.
In the latter case, the culprit should be exposed.

• Accountability: At least one malicious member
should finally be exposed by the group members
if the protocol execution is broken.

We use an anonymization game [4] to formalize our
notion of anonymity for the anonymous message sub-
mission protocol. The anonymization game is played
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between an adversary and an oracle with a security
parameter 1λ, where λ is an integer. Suppose that k out
of the N group members and the collector are dishonest.
The adversary plays the roles of the collector and the k
dishonest members, while the oracle plays the roles of
the honest members. A protocol is said to be anonymous
if the adversary can win the game with only a negligible
probability. Prior to the game, the adversary chooses
N − k messages and gives them to the oracle, who
then participates in the anonymous message submission
protocol and submits these messages to the collector on
behalf of the honest members. The adversary may repeat
this process for a polynomial number of times. Formally,
the anonymization game is defined as follows.

1) The adversary chooses two honest members α and
β, and two messages d0 and d1 in plaintext. He
also assigns a message di, in plaintext, to each
remaining honest member i. The adversary gives
these messages to the oracle.

2) The oracle selects a bit b ∈ {0, 1} uniformly at
random, and sets dα = db and dβ = db̄, where b̄
denotes the negation of b.

3) The oracle participates in the anonymous message
submission protocol. When a message is needed for
an honest member i, the oracle responds with the
message di.

4) After observing the protocol execution, the adver-
sary outputs his guess about b.

Let D be a probabilistic polynomial time adversary. Then
Pr[D(1λ, α, β, d0, d1, 0) = 1]

is the probability that D outputs 1 when b = 0, and
Pr[D(1λ, α, β, d0, d1, 1) = 1]

is the probability that D outputs 1 when b = 1. The
adversary’s advantage is

AdvD = Pr[D(1λ, α, β, d0, d1, 1) = 1]

− Pr[D(1λ, α, β, d0, d1, 0) = 1].

Definition 1. A message submission protocol is anonymous
if, for any probabilistic polynomial time adversary D, its
advantage in the anonymization game is a negligible function
in λ.

Again, we note that this definition is valid only when
there are at least two honest group members, i.e. k ≤
N − 2.

3 RELATED WORK

In this section, we review closely related work on
anonymous message submission and secure multi-party
computation (SMC).

In [4], Brickell and Shmatikov proposed a collusion
resistant anonymous data collection protocol. In their
protocol, each member generates his primary and sec-
ondary public/private key pairs. The users first encrypt
their messages using the collector’s public key, then
encrypt the resulting ciphertexts using each member’s

secondary public key, and finally encrypt the resulting
ciphertexts using each member’s primary public key.
Next, each ciphertext is randomly shuffled by its owner
who also strips off one layer of the encryption during the
shuffle. Finally, the ciphertexts are sent to the collector
in a random order. The collector decrypts the ciphertexts
using the secondary private keys sent by the members
and his own private key. In [10], Corrigan-Gibbs and
Ford extended the shuffle protocol and proposed an
accountable anonymous message submission protocol,
called Dissent. Dissent consists of two protocols: shuffle
and bulk. They still use the shuffle technique in [4]
in their shuffle protocol. In addition, each member in
the protocol of [10] creates a log file and updates its
state during the protocol execution. If at some point
the protocol terminates abnormally, all members execute
the protocol again according to their log files so that
they can expose the member who is responsible for
the abnormality. The bulk protocol enables the members
to send variable length messages. It requires 2N + 7
communication rounds and O(N2) total computations.

Many anonymous messaging systems focused on end
to end anonymous communications. HerbivoreFS [23]
is a typical example, which dynamically and indepen-
dently assigns users to small cliques and applies DC-
net protocol in a small clique to achieve end-to-end
anonymous file sharing.

Mix-networks [5] provides practical anonymous but
high latency communication. Many mix-network de-
signs are vulnerable to active disruptions [13], [17]. Cryp-
tographically verifiable shuffle [21] may be a solution
to the disruptions and pursues the similar goals of our
work. However, verifiable shuffle focuses on verifying
a shuffle’s correctness, i.e., whether the final shuffle
is a permutation of original messages, rather than its
anonymity and accountability. Many current verifiable
shuffle designs are not efficient in handling unbalanced
message load and large group size. E-voting system [9] is
another solution to the disruption. But many proposals
are designed for delivery of small size messages and
cannot handle unbalanced load efficiently.

Recently, Young and Yung proposed an end-to-end
anonymous communication scheme [31]. Their work’s
concentration is different from that of AMS. The scheme
in [31] focused on hiding existence of communication
between sender and receiver. AMS is a group messaging
system, concentrating on hiding sender’s identity while
maintaining message integrity and accountability.

Low-latency designs, such as onion routing [5], [26],
are independent of upper layer communication appli-
cations, but they typically provide weaker anonymity.
For example, the onion routing protocol is vulnerable to
traffic analysis if an attacker sniffs the network traffic
and monitors the streams going into and out of the
network [27]. While using ring signature [7] may help to
strengthen the anonymity of onion routing, the ring sig-
nature cannot protect against an attacker’s Sybil attack,
i.e., a malicious sender submits more than one message.
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Other anonymous data submission schemes, such as
Mix-networks and DC-nets [6] [16] [23] [28], also achieve
strong anonymity. However, they seem to be a poor
match for our scenario, since the collector may need
to know who the group members are. In this case,
complicated techniques are needed to enable a well-
defined group to submit their messages to the collector,
and one or more nodes in the network may be compro-
mised, which breaks down anonymity. Our protocol can
provide strong anonymity even when k (k ≤ N − 2) out
of the N group members are compromised.

To make strong anonymous communications scalable,
Corrigan-Gibbs et al. proposed a client/server architec-
ture in [29] and then developed it in [11]. In their archi-
tecture, clients are divided into several groups and each
group is assigned to a server, which is called the group’s
“upstream” server. Each client only communicates with
its upstream server during the entire communication
session. An upstream server collects message ciphertexts
from downstream clients and communicates with other
servers as its downstream clients’ agent. Servers then
collaboratively put messages together and hand down to
their downstream clients. The system’s anonymity relies
on DC-nets and the assumption that at least one up-
stream server is trusted. Different from their approaches,
the AMS protocol proposed in this work is a peer-to-peer
protocol and does not assume the existence of a trusted
third party.

Our previous work on anonymous group messaging
system was published in [32]. Compared to the work of
[32], we make several improvements in this work. First,
in [32], all group members can only submit equal length
of messages. In this work, we use bulk protocol [10] as a
building block, which enables group members to submit
variable length of messages. Second, we revised our
system construction, and added signature based audit
log. Group members can trace to the faulty member who
does not follow the protocol execution or maliciously
modify, reply, or inject messages. Third, we did extensive
simulations to demonstrate the performance of bulk
protocol built on C-shuffle and R-shuffle protocols [10],
respectively, versus bulk protocol built on our AMS
protocol. We also added the performance comparison
between the padding technique and the bulk protocol,
both of which can be used to transmit variable length
of messages. We gave more detailed simulation setup
descriptions and result analysis.

4 SECRET SHARING SCHEMES

A (t,N)-secret sharing ((t,N)-SS) scheme is an efficient
scheme that shares a secret among N parties. As stated
in [22], in the scheme, a secret is divided into N shares
and the i-th share is given [s]

(t,N)
i to the i-th party. At

least t parties are required to reconstruct s. The notation
[s]

(t,N)
i denotes the share specifically for the i-th party.
When t = N , there is a simplified (N,N)-SS scheme

which can achieve linear time complexity [24]. Suppose
there is a secret s ∈ Zm that is to be shared among N

parties. First, we secretly choose (independently at ran-
dom) N −1 elements s1, s2, · · · , sN−1 from Zm, compute
sN = s− s1 − · · · − sN−1 mod m, and give si to the i-th
party. In order to reconstruct s, N parties expose their
shares, and compute s = s1 + s2 + · · ·+ sN . In this paper,
we use (N,N)-SS in our protocol construction. We use
the notation [s]i to denote the share for the i-th party.

The aforementioned (N,N)-SS is additive homomor-
phic [3]. Particularly, given two secrets a0 and a1, we
have [a0 + a1]i = [a0]i + [a1]i, where [a0 + a1]i, [a0]i, and
[a1]i are the i-th shares of a0+a1, a0, and a1, respectively.

We say that an (N,N)-SS is indistinguishable if it is
impossible to learn any information about a secret from
any of its N − 1 shares. The indistinguishability of an
(N,N)-SS is defined by the following distinguishing game,
which is played between an adversary and an oracle.

1) The adversary splits the secret using the (N,N)-SS,
and performs any operation on the shares.

2) The adversary submits two distinct secrets a0 and
a1 to the oracle.

3) The oracle selects a bit b ∈ {0, 1} uniformly at ran-
dom, splits ab, ab̄ using the (N,N)-SS, and returns
N − 1 shares of ab followed by N − 1 shares of ab̄.
The indices of returned shares are specified by the
adversary. Without loss of generality, we assume
that the returned shares are [ab]1, · · · , [ab]N−1 and
[ab̄]1, · · · , [ab̄]N−1, respectively.

4) The adversary is free to perform any operation on
the returned shares, and, finally, outputs a guess for
the value of b.

Let A be an adversary algorithm. Then
Pr[A(a0, a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1, 0) = 1]

is the probability that A outputs 1 when b = 0, and
Pr[A(a0, a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1, 1) = 1]

is the probability that A outputs 1 when b = 1. The
adversary’s advantage is
AdvA =

Pr[A(a0, a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1, 1) = 1]−
Pr[A(a0, a1, [ab]1, · · · , [ab]N−1, [ab̄]1, · · · , [ab̄]N−1, 0) = 1].

Definition 2. An (N,N)-secret sharing scheme is said to
be unconditionally indistinguishable if for any two secrets, a0

and a1, the advantage of any algorithm A in the distinguish-
ing game is 0.
Theorem 1. The simplified (N,N)-secret sharing scheme is
unconditionally indistinguishable.

Proof: Suppose A gets N−1 shares [a0]1, · · · , [a0]N−1

generated by the aforementioned simplified (N,N)-SS,
where a0 ∈ Zm. Then for any a′0 ∈ Zm, there is a unique
[a′0]N ∈ Zm such that [a0]1 + · · · + [a0]N−1 + [a′0]N = a′0.
Since a′0 is distributed uniformly over Zm, the construc-
tion of [a′0]N is equally likely. Thus, [a0]1, · · · , [a0]N−1

could be N − 1 shares of any number a′0 ∈ Zm with
equal probability. It is true for any N − 1 shares of a
secret in Zm. We conclude that the distribution of the
N − 1 shares of a0 and a1 is identical. Observing the
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N − 1 shares, the adversary gets no information about
the secret. Thus AdvA = 0.

5 PRELUDES TO PROTOCOL CONSTRUCTION

5.1 Protocol Overview

Our protocol consists of two sub-protocols: an anony-
mous message submission (AMS) protocol and a bulk
protocol. The bulk protocol is used to send variable
length messages and is proposed by Corrigan-Gibbs and
Ford in [10]. We adopt it as a building block for our
protocol. Our contribution is an efficient peer-to-peer
anonymous message submission protocol for groups of
scalable size. It is comparable to the anonymous shuffle
protocol [4]. The purpose of AMS is to submit a sequence
of messages to a designated collector without disclosing
the message senders’ identities.

AMS consists of six phases: application, encryp-
tion, anonymization, verification, decryption, and blame.
Compared with existing shuffle protocols, AMS saves
the computation time in the following aspects: 1) The
core of AMS relies on two light-weight operations – a
simplified (N,N)-SS and a symmetric key encryption
(i.e., AES); and 2) A member’s operations in each phase
are independent of that of other members. However,
AMS requires the messages to be of the same length,
which is a common weakness of existing shuffle pro-
tocols. We briefly introduce the six phases of the AMS
protocol in the following.

- Application: The application phase is to make each
member choose a position in the final sequence but
be oblivious to other members’ choices. When the
application phase ends, each member i obtains a
unique position πi (1 ≤ πi ≤ N). Here, [π1, · · · , πN ]
is a random permutation of [1, · · · , N ].

- Encryption: Each member i encrypts his data di
using his symmetric key ki and gets the ciphertext
ei = Encki(di) with equal length of r bits.

- Anonymization: Each member i constructs a data
vector ~e such that the πi-th component is ei and the
rest components are 0. All members split the data
vector using the (N,N)-SS, keep their own shares
confidential, and send out the remaining shares.

- Verification: Each member i reconstructs ~e and
checks whether his ei is the πi-th component of ~e.
If any member’s message has been altered, an alert
message is broadcasted and all members go to the
blame phase; otherwise, all members encrypt their
symmetric key using a distributed ElGamal encryp-
tion [20] and anonymously broadcast the ciphertext
via the same technique as in the anonymization
phase. Finally, all members obtain a key ciphertext
vector ~k′ with πi-th component being the ElGamal
encryption key k′i (1 ≤ i ≤ N).

- Decryption: After checking the integrity of key ci-
phertexts, each member retrieves the key ciphertexts
from ~k′, decrypts them, and uses the keys to decrypt
the corresponding messages.

- Blame: All members publishes their secret choices
of their positions, the message ciphertexts, the key
ciphertexts, the messages received from and sent to
other members, and their message logs. All mem-
bers then replay the protocol execution and each
member’s behaviors to expose at least one culprit.

We use the bulk protocol [10] to send variable length
messages. To execute the bulk protocol, each member
generates a ciphertext of his data by XORing the data
pseudo random numbers generated by himself. Next,
the member constructs a message extractor that helps
other members to reproduce the corresponding pseudo
random numbers. All members’ message extractors are
of equal length. Hence, we transform variable length
messages into equal length ones. All members then
execute the AMS protocol to anonymously broadcast
the message extractors. Using the message extractors,
the collector can reconstruct the messages by XORing
necessary pseudo random numbers.

5.2 Anonymous Data Aggregation
A technique used in our protocol is to aggregate
data held by group members into a data vector ~v =
[vσ−1(1), vσ−1(2), · · · , vσ−1(N)] in a way that a member’s
position is only known to himself. Here, vi is the data
held by a member i and σ is the permutation

σ =

(
1 2 · · · N
π1 π2 · · · πN

)
.

Each member i obtains the position πi in the application
phase. To achieve this, each member i constructs an
individual vector ~vi such that the πi-th component is
vi and the remaining components are 0. Each member i
generates N shares for ~vi by splitting each component of
~vi using (N,N)-SS. The t-th share of the vector is a vector
of all components’ t-th shares. Next, all members send
their j-th share to member j (1 ≤ j ≤ N) and keep their
own share secret. Hence, each member receives N − 1
shares from other members. Since (N,N)-SS is additive
homomorphic, each member i sums up the received
N − 1 shares and his own share to form one share of
vector ~v. The group members together can reconstruct
~vi .

~v1

 v1 v3 v2 0 0 v2

 v3 0 0

~v2

~v3

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 

 

 v1 0 0

Fig. 1. Data aggregation

Fig. 1 illustrates the process of the data aggregation.
There are three members 1, 2, and 3. In this example,
N = 3. The positions they obtained are π1 = 1, π2 = 3,
and π3 = 2. Members 1, 2, and 3 construct individual
vectors ~v1, ~v2, and ~v3 as shown in Fig. 1. Using a (3, 3)-
SS, members 1, 2 and 3 share ~v1, ~v2, and ~v3 with the other
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two members, respectively. In this way, each member
gets two shares from the other members. Due to the
homomorphic property of (N,N)-SS, each member sums
up the two received shares and the share kept by himself,
and gets a share of ~v. Finally, we can sum up three shares
to get the vector ~v.

6 ANONYMOUS MESSAGE SUBMISSION PRO-
TOCOL

In this section, we present the details of each phase in our
AMS protocol. Before the protocol execution, each mem-
ber i generates a signature key pair (ui, vi), where ui is
the signing key and vi is the verifying key. The signature
of a message m is denoted as Sigui

(m). When a signature
is sent with its message, we use the notation Sigui{m} to
denote the concatenation, i.e., Sigui{m} = m||Sigui(m).
Each member generates an individual encryption key
ki (1 ≤ i ≤ N) for a symmetric key system. In addition,
the system selects a cyclic multiplicative group G of
prime order p and one of its generators g.

For a member i, the AMS protocol can be viewed as
a function AMS(di,K, nR, fi), where di is the message
to be sent, K is the set of all members’ verification
keys, nR is the nonce identifying this run, and fi is a
boolean indicating whether this is a bypass run. The
output of this function is either (success, D′), where
D′ is a shuffle of all messages, or (fail, blamei), where
blamei is a set of (j, proofij). j is the misbehavior
person in i’s point of view and proofij is i’s proof logs.
For the purpose of accountability, each group member
keeps a log file during each protocol execution. Given
a step in a protocol phase, a member’s log file contains
all his previous incoming and outgoing messages along
with the member’s generated secrets (e.g., secret shares,
random numbers used in encryption) during the execu-
tion up to the current step. For each protocol step, the
hash value of a member’s log file is sent out for the
commitment purpose. We use hφ.ki to denote the hash
value of member i’s k-th log file in the phase φ. All
members agree on a nonce nR to uniquely identify one
protocol execution and a cryptographic hash function,
denoted as h(·).

Fig. 2 shows the application phase. The purpose of
the application phase is to let each of the N members
privately pick a unique number between 1 and N . The
number will be used to assign a slot for following mes-
sage submissions. The application flow is: each member
i first selects a number α, generates a vector ~p, and sets
the α-th component to 1 and all other components to
0. Then the protocol adds all vectors together obtaining
an integrated vector. If each member selects a unique
component index, then the integrated vector is of all
1’s. Otherwise, the integrated vector has some compo-
nent value larger than 1, indicating the occurring of a
collision. If ~p is of size N , the probability of collisions
is expected to be high. Thus, another novelty in the
application phase is that we use a sparse vector of size
M >> N to decrease the collision probability. When a

Phase 1: Application
Round 1:
Each member i(1 ≤ i ≤ N) executes the following:

1) Initially, i initializes an individual position vector ~pi =
[pi1, · · · , piM ], where M = max{361 + N, 2N2 − 2N}. He
randomly chooses a component, say piα, and sets piα to 1 and
the rest components to 0, indicating that he wants to occupy
index α.

2) Member i splits vector ~pi by dividing each component into
N shares, obtaining N vectors ~pi1, · · · , ~piN For member
l(l 6= i), i constructs a message m1.2

l = Con(~pil)||h1.1i ||nR,
and sends Sigui{m1.2

l } to member l. Con(~p) concatenates
the components of ~p.

3) Upon receiving Siguj {m1.2
i } from members j(1 ≤ j ≤

N, j 6= i), i computes his share [~p′]i =
∑N
j=1 ~pji, broadcast

Sigui{[~p′]i||h1.2i ||nR} to all other N − 1 members.
4) Upon receiving other members’ shares, member i now has all

N shares {[~p′]j}Nj=1 and reconstructs ~p′ =
∑N
j=1[

~p′]j .
5) Each member i counts the collision headcount in ~p′, i.e. c =∑

p′a>1 p
′
a. If c > 6, i broadcasts “failure” to the rest of the

group. Then all members repeat Round 1 again. After two
failures of running Round 1, all members directly go to Phase
6. If 0 < c ≤ 6, i broadcasts “round 2” to the rest of the group.
Then all group members go to Round 2, otherwise, they go
to Step 9. If there is no collision, i broadcasts “success” to the
rest of the group. If all other users report “success”, the entire
group goes to the next step.

Round 2:
Each member i(1 ≤ i ≤ N) executes the following:

6) Since each member has ~p′, they know which components
are occupied and which ones have collisions. In vector ~p′,
if the value at index πi is 1, then i does not change his
individual vector ~pi; otherwise i resets all vector components
to 0, randomly chooses another index except the occupied
ones, and sets it to 1.

7) Repeating Step 2 to Step 4 in Round 1, i can reconstruct
another final vector ~p′′.

8) i checks the number if there is any collision in ~p′′. If any
collision exists, i broadcasts “collision in round 2” to the rest
of the group and all members repeat Phase 1. Otherwise, i
broadcasts “success in round 2” to the rest. After the second
failure of running Phase 1, all members go to Phase 6. If all
other users report “success”, the entire group goes to the next
step.

9) Assuming member i selects the α-th (1 ≤ α ≤ M ) index of
~p′ (or ~p′′), member i’s final component index in the position
vector is πi =

∑α
t=1 p

′′
t . In this way, each member obtains a

unique component index which is between 1 and N .

Fig. 2. Application phase

collision happens, instead of giving up current results
and redoing from the beginning, our protocol checks
whether the collision number is less than a number Nc. If
so, the protocol is re-executed in a special way, i.e., non-
colliding members keep their α unchanged and colliding
members randomly select another α. The non-collision
probability of the entire phase is determined by M and
Nc. We select M = max(361 +N, 2N2 − 2N) and Nc = 6
obtaining a probability no less than 95%.1

In Step 2, each member splits the individual vector
into N shares using the (N,N)-SS and sends the j-
th share to member j. At the same time, member i
also receives shares from other members. Utilizing the
additive homomorphic property of the (N,N)-SS, i gets
one share of ~p: [~p]i = (

∑N
a=1[pa1]i, · · · ,

∑N
a=1[paM ]i). With

the shares, the group members together reconstruct a

1. The proof and intuition behind this selection are given in Section
7.
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vector ~p′ and check if there is any collision. There are
three cases:
• If (

∑
p′i>1 p

′
i) = 0, all members directly go to Step 9.

• If (
∑
p′i>1 p

′
i) > 6, all members repeat Round 1 again.

• If 1 ≤ (
∑
p′i>1 p

′
i) ≤ 6, all members go to Round 2.

Here, p′i is the i-th component of ~p′. In step 9, if no
collision occurs, all components in ~p′′ should be either
1 or 0. In the end, member i computes the selected
component index which is the α-th index using the
formula: πi =

∑α
t=1 p

′′
t . Note that in Phase 1-Round

1, each component is of dlogNe bits in case that all
members select the same component. However, each
component can be shrunk to 3 bits in Phase 1-Round
2 so as to save space.

Now, one might think of a jamming attack, in which
an adversary always fills each component of ~p such
that the application phase cannot be ended with a non-
collision vector. This is the reason why we need a blame
phase, which is to expose at least one faulty member. The
success probability of finding a non-collision vector is
greater than 99.75% after two runs of Phase 1. Therefore,
if the members still cannot find a non-collision vector,
it is quite possible that some members deviate from the
protocol specification. In this case, all members go to the
blame phase to find out the culprit.

Phase 2: Encryption
Each member i(1 ≤ i ≤ N) executes the following:

1) i encrypts di using the symmetric key encryption scheme,
and gets ei = Encki (di).

Fig. 3. Encryption phase

Fig. 3 shows the encryption phase. In the encryption
phase, each member i encrypts his data di using the
symmetric key encryption scheme. The ciphertext is
ei = Encki(di).

Phase 3: Anonymization
Each member i(1 ≤ i ≤ N) executes the following:

1) i constructs an individual vector ~ei by putting ei at index πi
and 0 at others.

2) Member i divides each component of ~ei into N shares.
For each member l, i constructs the message m3.2

l =
Con(~eil)||h3.1i ||nR, and sends Sigui{m3.2

l } to member l.
3) Upon receiving the above messages from all other mem-

bers, i locally computes [~e]i =
∑N
j=1 ~eji, sends message

Sigui{Con([ ~e ]i)||h3.2i ||nR} to all remaining N−1 members.

Fig. 4. Anonymization phase

Fig. 4 shows the anonymization phase. In this phase,
each member i first constructs an N -dimensional mes-
sage vector ~e with the πi-th component being the cipher-
text of ei and the rest being 0. All members split their
message vectors and send shares to other corresponding
members. Thus, each member i receives N − 1 shares.
Each member i sums up those N − 1 shares together
with his own share and obtains one share of ~e.

Fig. 5 shows the verification phase. After the recon-
struction of ~e, each member i checks whether the πi-
th component is equal to his ciphertext ei or not. If

Phase 4: Verification
Each member i(1 ≤ i ≤ N) executes the following:

1) Upon receiving Sigui{[ ~e ]i||h3.2i ||nR}(1 ≤ j ≤ N, j 6= i),
member i locally reconstructs ~e =

∑N
j=1[~e]j .

2) i checks if πi-th component of ~e is his ciphertext ei. If not,
i broadcasts a message b = ⊥; If fi=TRUE, i broadcasts a
message b = ⊥; Otherwise, i broadcasts b=GO.

3) each member continues to next step if he receives all remain-
ing N − 1 GO messages. Otherwise, he goes to Phase 6.

4) Each member i picks a random integer xi ←R Z∗p and keeps
it secret, where p is the order of group G. Member i calculates
yi = gxi and broadcasts yi. The group members calculate a
common public key y =

∏N
i=1 yi.

5) Each member i computes an ElGamal encryption of his
symmetric key k′i: k

′
i = gγ ||kiyγ , where γ ←R Z∗p.

6) Member i constructs an N dimensional vector ~k′i with πi-th
component being k′i and the rests being 0. Member i divides
each component of ~k′i into N shares, constructs the message
m4.6
l = Con(~k′il)||h4.1i ||nR, for each other member l, and

sends Sigui{m4.6
l } to member l.

7) Upon receiving the above message from all other group
members, i locally computes [~k′]i = (

∑N
j=1

~k′ji, and sends
Sigui{Con([~k′]i)||h4.2i ||nR} to the other N − 1 group mem-
bers.

Fig. 5. Verification phase

not, member i broadcasts an alarm message b = ⊥. If
there is a b = ⊥ message, all members go to the blame
phase, otherwise all members encrypt their individual
symmetric key using a distributed ElGamal encryption
system [20]. With the distributed ElGamal encryption,
the message is encrypted by a common public key and
the decryption requires all members’ secret keys. This
encryption is necessary because the members will not
expose their key in the blame phase if the key trans-
mission is broken by a malicious adversary. We do not
require the ElGamal encryption to be IND secure. An
encryption scheme that can maintain confidentiality is
sufficiently suitable for our protocol. The reason is that
the plaintext, i.e., the secret key, is a random number and
the resulting ciphertext is thus indistinguishable from a
random number. The members secretly construct an N -
dimensional key vector ~k′ such that the πi-th component
is k′i. To achieve this, they use the same data aggregation
technique that is introduced in Section 5.2.

Fig. 6 shows the decryption phase. After the key
vector is reconstructed, all members retrieve each key
ciphertext k′i from ~k′. If all ciphertexts are not corrupted,
all members publish their secret xi so that the distributed
ElGamal decryption key can be constructed to decrypt
the ciphertexts of the secret keys. Finally, the obtained
secret keys are used to decrypt the ciphertexts of the
messages.

Fig. 7 presents the blame phase. Group members pub-
lish all secret information, including the secret choice of
component index, all messages received from and sent to
other members, their secret shares, message ciphertexts,
and key ciphertexts, and replay the protocol execution
again to find the culprit.

7 ANALYSIS OF AMS PROTOCOL
This section analyzes the security and efficiency of AMS
protocol.
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Phase 5: Decryption
Each member i executes the following:

1) Upon receiving Sigui{[~k′]i||h4.2i ||nR}(1 ≤ j ≤ N, j 6= i),
member i locally reconstructs ~k′ = (

∑N
b=1

∑N
a=1[k

′
a1]b, · · · ,∑N

b=1

∑N
a=1[k

′
aN ]b).

2) Member i checks if the πi-th component of ~k′ is k′i. If not, he
will send an alarm message and all members go to Phase 6,
otherwise, he broadcasts xi.

3) Upon receiving xj(1 ≤ j ≤ N, j 6= i) , member i checks
its validity by checking whether the equation gxj = yj
holds. If any xj is invalid, member i reports member j
as a faulty member. Having all valid xj ’s, the distributed
ElGamal decryption key is x =

∑N
j=1 xj mod p. Member i

retrieves a secret key k′j = gγ ||kjyγ from ~k′, decrypts it, and
obtains kj = kjy

γ/(gγ)x. Having kj , member i decrypts the
corresponding ciphertext dσ−1(j) from ~e.

4) Member i broadcasts a copy of (dσ−1(1), · · · , dσ−1(N)) to the
group and the collector.

5) If any of the sequence from other member doesn’t match i’s
copy, he broadcasts b = ⊥; otherwise he broadcasts b = GO.
Members and the collector enter the blame phase if any ⊥
message is received; otherwise they exit the protocol.

To ensure the completion of the protocol, a predefined timeout is
set for waiting other member’s flags.

Fig. 6. Decryption phase

Phase 6: Blame
The members may enter the blame phase from the application,
verification, or decryption phase. There should be a corresponding
blame for each different entrance. However, the descriptions are
similar and we put them together to save space. We use entrance
phase to denote the phase from which the members enter the blame
phase. When they enter this phase, members publish as much secret
information as they could and replay the protocol execution as far
as they could go.
Each member executes the following:

1) If the entrance phase is Decryption, each member destroys
his own secret key xi and symmetric key ki.

2) Each member i reveals his own secret shares when he splits
vectors before entrance phase, i.e., [~pi]i, [~ei]i, and [~k′i]i. These
secret shares are never sent out during the previous phases.
Members also reveal all incoming and outgoing messages
along with the signatures up to the entrance phase. If the
entrance phase is after the encryption phase, members also
need to reveal the randomness used in the encryption phase,
e.g. initialization vector for AES-CTR. With these information,
member i can replay any other member’s behaviors and
reconstruct their individual vectors.

3) Member i exposes j as faulty if
• The hash value of any replayed message does not match

the corresponding hash value in the log file;
• Any of the replayed messages does not match the corre-

sponding messages received in the previous phase;
• In the application phase, the vector ~pj is ill-formed, i.e.,

not in the form of one component being 1 and the rests
being 0;

• In the anonymization phase, the ciphertext vector ~ej is ill-
formed, i.e., ∃n ∈ {1, · · · , N} s.t. n 6= j ∧ en 6= 0;

• In the decryption phase, member j’s key vector ~k′j is ill-
formed;

• If the entrance phase is Anonymization or Decryption,
everything is verified to be correct, but j claims that his
ciphertext or key is corrupted.

• j improperly reports bj = ⊥ in 2 of Fig. 5.

Fig. 7. Blame phase

7.1 Security

In this section, we prove that the security properties
defined in Section 2.3 can be preserved under malicious
attacks.

7.1.1 Anonymity
We prove the anonymity (Definition 1) of our protocol
in two aspects. First, we prove that if the collector
and some members behave dishonestly and learn some
associations between the identities and the ciphertexts,
they cannot pass the verification phase and thus they
cannot learn the plaintexts. Second, we prove that if
the collector and the dishonest members behave hon-
estly, they pass the verification phase and learn the
final decrypted plaintexts, but they will not learn the
associations between the identities and the plaintexts.
Theorem 2. In the AMS protocol, if the collector colludes
with no more than N − 2 group members and the symmetric
encryption is IND-CPA secure, the collector has only a negli-
gible probability to get the associations between the messages
and the identities of the honest group members.

Proof: Our proof is done in two parts. First, we
show that in the verification phase, either there is exactly
one copy of the ciphertext for each honest member,
or the deviation from the protocol could be detected
by the members before the collector gets the secret
keys. Second, we show that an adversary who can win
the anonymization game while maintaining the security
properties can also win the distinguishing game, which
is a contradiction because the (N,N)-SS is uncondi-
tionally indistinguishable and the underlying encryption
scheme is IND-CPA secure.

Part 1: The honest members’ messages cannot appear
more than once due to the indistinguishable property
of (N,N)-SS. If the adversary can reproduce the honest
members’ messages, then the adversary can break the
(N,N)-SS scheme from less than N shares, which is a
contradiction to the property of the (N,N)-SS.

Now we show that if the adversary modifies the
honest members’ messages, this modification will be
detected in the verification phase, since the honest mem-
bers do not find their ciphertexts in the message vector.
Hence, the protocol is abort and the adversary cannot
get the secret keys of the ciphertexts. In this case it
is infeasible for the adversary to learn the plaintexts
without the secret keys since the underlying encryption
scheme is semantically secure.

Part 2: Now suppose that the adversary honestly
handles all ciphertexts belonging to the honest members.
If there is a probabilistic polynomial time algorithm D
that allows this adversary to win the anonymization
game with a non-negligible probability, we show how to
use D as a subroutine to the algorithm A that wins the
distinguishing game with a non-negligible probability.
Because the underlying (N,N)-SS is unconditionally in-
distinguishable, this is a contradiction, and we conclude
that no such D exists.

Let the set of N − k honest group members in the
anonymization game be K = {1, · · · , N − k}. Let D
be an algorithm that allows the adversary to win the
anonymization game with a non-negligible probability.
Then there exist honest group members α and β such
that for a negligible function in λ, ε(λ), the advantage
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AdvD > ε(λ).
To apply D, A must simulate the oracle in the
anonymization game to reproduce the view of the ad-
versary. We show how A is able to achieve this.

Algorithm A begins by applying D to learn its choices
in Step 1 of the anonymization game. A therefore learns
the following:
• two honest participants α and β, and two plaintext

messages d0 and d1; and
• a message di for each honest member i.

Then, for each honest member i, A chooses a secret key,
ki. A selects plaintext messages d0 and d1 for α and β,
respectively.
A is now ready to play the role of the oracle in

the anonymization game by simulating the messages
of the honest members in the protocol execution. For
each phase of the protocol, we explain how A is able to
reproduce the messages sent in that phase.

Phase 1: A has all the necessary information to exactly
reproduce this phase.

Phase 2: For all honest members other than α and β,
A encrypts di using ki, which results in the ciphertext
ei. A then encrypts d0 and d1 using the keys k0 and k1,
respectively, getting e0 = Ek0(d0) and e1 = Ek1(d1).

Phase 3: A gives e0 and e1 to the distinguish-
ing game oracle, getting back [eb]1, · · · , [eb]N−1 and
[eb̄]1, · · · , [eb̄]N−1.

Suppose that in the application phase, α and β obtain
positions πα and πβ , respectively. A now constructs N −
1 shares of ~eα as follows. The components at positions
other than πα are set to 0 and their shares can be easily
constructed. The πα-th component of N−1 share vectors
are respectively filled by N − 1 shares of eb obtained
from the distinguishing game oracle. N − 1 shares of ~eβ
are constructed in the same way except that eb̄ is used
instead of eb.

At the end of Phase 3, A needs to compute a share of
the message vector ~e. A does not have the N -th share
of eb or eb̄. But he has the original ciphertexts e0 and e1.
With any N−1 shares and e0 (resp. e1), A could compute
the last share such that all shares are reconstructed as e0

(resp. e1). At this moment,A randomly picks a ciphertext
from e0 and e1, computes the last share, and puts it
on the πα-th component for a member α. The other
ciphertext is used for a member β. We argue that this
does not change D’s view when it does the reconstruc-
tion. Because all honest group members’ positions are
chosen randomly and the position sequence is a random
permutation on the set {1, · · · , N}, the probability that
e0 appears in πα and e1 appears in πβ is equal to the
probability that e1 appears in πα and e0 appears in πβ .
Therefore, randomly allocating e0 and e1 on πα and πβ
does not change D’s view.

Phase 4 and Phase 5: A has all the necessary information
to complete the phases.

Now A simulates the view of the adversary and
applies D to the view. If D outputs 1, then A outputs
1; if D outputs 0, A outputs 0.

We now analyze the probabilities of A outputting 1
when the distinguishing oracle chooses b = 0 and when
the distinguishing oracle chooses b = 1. If b = 0, then the
view of the adversary is (α, β, d0, d1, 0). If b = 1, then
the view of the adversary is (α, β, d0, d1, 1). Based on
our assumption that D wins the anonymization game,
we have that AdvD > ε(λ). Now we make a simple
substitution,

AdvA = AdvD > ε(λ).

We conclude that A can win the distinguishing game
with a non-negligible probability, which contradicts with
the unconditionally indistinguishable property of the
(N,N)-SS.

7.1.2 Integrity
In the verification phase, the honest members verify
whether their ciphertexts appear in the message vec-
tor ~e. If the verification fails, i.e., the ciphertext of at
least one honest member has been altered, the protocol
aborts. So the adversary cannot get the secret keys.
If the verification succeeds, the honest members share
their message decryption keys via distributed ElGamal
encryption/decryption systems in the decryption phase.
After all messages are decrypted, members send them
to the collector. We conclude that the property defined
in Section 2.3 is preserved.

7.1.3 Accountability
Accountability of an anonymous messaging system is
first proposed and studied in [10]. The proof of our
system’s accountability follows the similar philosophy.

A member i cannot expose another honest member j
unless i obtains evidence of j’s misbehaviors that are ver-
ifiable to a third member. Accountability is maintained
if
Condition I: no member can accuse an honest member;
Condition II: at the end of a protocol execution, either

(a) the protocol completes successfully; (b) the pro-
tocol fails in the application phase, which is not
caused by malicious attacks; or (c) at least one faulty
member is exposed.

Condition I is shown as follows. An evidence of
member j’s misbehavior consists of some “incorrect”
data content dj signed by j at the step stp of some
phase, together with all his log messages and all mem-
bers’ generated secret shares up to a particular step stp.
Member j will be exposed as faulty only if he signed
some incorrect messages or his behavior deviates from
the protocol. For example, a member j has two non-zero
elements in his individual encryption vector ~ej to block
another member’s message. However, this contradicts
the assumption that the member j is honest. A member i
may collude with another member k to accuse an honest
member j by forging a message signed by the member
k prior to the step stp and the message is different from
the one received and used in generating j’s message
mj . The message received by j must be valid because
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j will check against k’s signature. However, since each
message is signed and contains a unique nonce, two
valid messages at the same step will also expose k as
faulty, which weaken i’s accusation against j.

Since the application phase cannot guarantee to al-
ways find each member a unique position, our AMS
protocol may fail even when all members are honest.
However, as shown in the following section, the failure
probability of two application executions is no more than
0.25%, which is small enough to omit in practice. When
the application fails, members still enter the blame phase
to check if it is a failure caused by malicious attacks or
not. If it is, a faulty member will be exposed.

We now show that our AMS protocol satisfies con-
dition II(c), i.e., a faulty member is exposed in the
blame phase. A member enters the blame phase if a) the
application phase fails twice; b) some members report
that his ciphertext is manipulated in the verification
phase; or c) some members report that his encryption
key is manipulated in the decryption phase. In case a),
the blame phase requires members to recover their secret
shares and log messages in the previous two attempts.
This enables a member to reconstruct each member’s
position vector and a faulty member will be immediately
exposed. In cases b) and c), all members recover their
secret shares and log messages up to the current step.
Also it will expose a faulty member or a member i
himself if he untruthfully reports that his information
is manipulated.

7.2 Efficiency
In this section, we analyze the success probability of
finding a non-collision vector in Phase 1, and the com-
munication rounds.

7.2.1 The Success Probability in Phase 1

Theorem 3. In the application phase, at the end of round 2,
the success probability of finding a non-collision vector ~p is
greater than 95%.

Proof: Let ηij denote the event that members i and j
choose the same position, leading to a collision. Let φwi
denote the event that a member i chooses position w(1 ≤
w ≤ M). Because all members choose their positions
independently at random, the probability p(φwi ) = 1/M .
Using Bayes’ theorem, we have

p[ηij ] =

M∑
w=1

p[φwi |φwj ]p[φwj ] =

M∑
w=1

1

M
p[φwj ] =

1

M
.

We define an indicator random variable Xij such that
Xij = 1 if the event ηij happens and Xij = 0 if ηij does
not happen. Since Xij only takes the value 0 or 1, it is
a Bernoulli variable. We define X to be the number of
collisions, i.e. X =

∑
i<j Xij . Then we compute

E[X ] = E[
∑
i<j

Xij ] =
∑
i<j

E[Xij ]

=
∑
i<j

p[Xij = 1] =
∑
i<j

1

M
=

1

M

(
N

2

)
.

Assume that E[X ] = µ, from the above equation, we get
µ = N(N − 1)/2M . If we choose M = 2N2 − 2N , then
µ = 1/4. Utilizing the Chernoff bound [8], we have

p[X ≥ (1 + δ)µ] ≤ (
eδ

(1 + δ)1+δ
)µ

for any δ > 0. Let δ = 11, we get (1 + δ)µ = 3

and p[X ≥ 3] ≤ ( e11

(1+11)1+11 )0.25 ≈ 0.009. Hence, at the
end of Phase 1-Round 1, the probability that there exist
no less than 6 collisions is not greater than 0.9%. In
Phase 1-Round 2, since there are at most 6 members
who collide with each other, we need to have enough
positions for the colliding members to choose from.
Suppose the positions left at the end of round 1 is
Ml, the probability that 6 members’ positions do not
collide is p = Ml(Ml−1)(Ml−2)···(Ml−5)

M6
l

. We let p > 0.96,
and get the smallest integer which is 361. So the lower
bound of M is 361 + N . We define % to be the event
that the members find a non-collision vector in Phase
1. p[%] ≥ p[succeed in round 1 ∧ succeed in round 2] ≥
(1− 0.009)× 0.96 = 0.95136. The theorem is proved.

We define the total number of execution times of Phase
1 to T . The expectation E[T ] =

∞∑
i=1

i(1 − p[%])i−1p[%] =

1/p[%]. Since p[%] > 95%, the average number of execu-
tions needed to find a non-collision vector is d1/0.95e =
2. In fact, the failure probability is less than 5%× 5% =
0.25% after two executions of the application phase.

7.2.2 Communication Rounds
All phases are parallelizable. In Phase 1, the number of
communication rounds is 4. There is no communication
in Phase 2. Phase 3 needs 2 communication rounds.
Phase 4 needs 4 communication rounds. Finally, there
are 2 communication rounds in Phase 5. The expected
total number of communication rounds is 4/p[%] + 8,
which is approximately 12 and independent of the group
size. In contrast, in Brickell and Shmatikov’s [4] protocol,
the total communication rounds is 2N + 7. Note that
our protocol is probabilistic, while the protocol in [4]
is deterministic.

We note that we have ruled out the case where
multiple malicious users collude, corrupt each other’s
messages, but do not report their misbehaviors. Since
the corruption is within malicious members, it does
not modify honest members’ messages. We leave the
detection of such mishaviors within colluded members
to our future works.

8 BULK PROTOCOL

On top of the shuffle protocol [25], the bulk protocol
is constructed to handle variable length messages. The
bulk protocol was first proposed in [10] and improved
in [25]. The anonymity property of the entire protocol
is guaranteed by the shuffle protocol, which is replaced
by the AMS protocol in this work. For completeness of
the protocol, we give the description of the bulk protocol
here. More details of its analysis can be found in [25].
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For each variable length message, BULK builds a fixed
length message extractor. Then, BULK uses AMS to
shuffle all message extractors and obtains a permutation
of message extractors. Finally, BULK concatenates all
messages in the permuted order and gives it to the
collector.

Each member i has a signature key pair (ui, vi) and
another encryption key pair (xi, yi), where the first one
is the private key, i.e. singing key or encryption key, and
the second one is the public key, i.e. verification key
or decryption key. The bulk protocol is executed in 3
stages: Setup, Anonymize, and Blame, as per [25]. Setup
is using each member’s vi to generate three nonces: nR
identifying a run of Anonymize, nR1 identifying a run
of AMS, and nR2 identifying a run of AMS in blame.
This nounce generation may be achieved via standard
consensus tools, e.g. Paxos [19]. To obtain a copy of
shuffled messages, the collector participates the BULK
protocol with an empty message.

In the message extractor generation (Step 2), each
member i generates a message extractor di =
(Li, h(msgi), ~Hi, ~Si) which is used to recover the mes-
sage. Here, ~Hi is the vector of hash values generated
from h(Cij)(1 ≤ j ≤ N, j 6= i), where Cij is the pseudo
random number used to XOR member i’s message. ~Si
is a vector of the ciphertexts of the pseudo random
generator seeds. The message extractor consists of all the
information needed to recover the original message. The
details of BULK protocol are presented as follows:

Anonymize:
Step 1a: Each member i chooses an encryption key

pair (xi, yi) and broadcasts µi1a = Sigui
(yi||nR||1a||i).

Step 1b: Upon receiving other member’s public keys,
member i broadcasts all the keys she receives: µi1b =
Sigui

{ ~Ki, nR, 1b, i}, where ~Ki = [µ11a, . . . , µN1a].
Step 2: Member i generates a message extractor di for

his message msgi. The extractor is of fixed length ∆.
Member i sets Li to be the message length or 0 if she
does not want to send any message. Member i verifies
each set of public key ~Kj she received to ensure that she
has the same public keys, if:
case 1 each key set contains the same valid public

keys, then i chooses a random seed sij for each
member j and generates an Li-bit random number
Cij = RAND(Li, sij) (i 6= j). Member i XORs
his message with all Cij ’s and obtains Cii, Cii =
Ci1⊕· · ·⊕Ci(i−1)⊕msgi⊕Ci(i+1)⊕· · ·⊕CiN . Member
i computes Hij = h(Cij), encrypts each seed sij ,
Sij = Encyi(sij , rij), using member j’s public key
and a secret random number rij . Member i sets Sii
to a random number. Member i collects all hash
values and seed ciphertexts to form two vectors
~Hi = {Hi1, · · · , HiN}, ~Si = {Si1, · · · , SiN}, and gets
the message extractor di = {Li, h(msgi), ~Hi, ~Si}. The
length of the extractor is ∆.

case 2 key verification fails, member i creates an empty
message extractor di = 0∆.

case 3 member i has no message to send, he sets Li = 0

and random values to ~Hi and ~Si. Then i forms his
extractor di = {Li, h(msgi), ~Hi, ~Si}.

Step 3: Message extractor distribution. Each mem-
ber i runs AMS protocol in Section 6 with input
(di, ~K, nR1

, fi), where i sets fi=TRUE if he creates an
empty message in the previous step and sets fi=FALSE
otherwise. Message descriptors are the messages to be
shuffled in AMS. if AMS succeeds, Each member i gets
a sequence of message extractors with di appearing at
πi-th position. If AMS fails, the protocol outputs (fail,
blamei) and member i saves blamei. If i sets fi=TRUE,
he prepares a proof of a dishonest member j and
broadcasts it to other members.
case 1 If j sent an invalid key, proof=(j, c5, µj1a), where

c5 denotes the failed check of all 6 checks [25] in
BULK.

case 2 If j equivocated, proof=(j, c6, µj1a, µ
′
j1a), where

µj1a is the message received by i and µ′j1a is the
message contained in some other’s ~Km.

If there is more than one misbehaving member, i
randomly chooses one to blame. Then, i broadcasts
µi3 ==Sigui{proof, nR, 3, i}.

Step 4: If previous AMS fails, member i shares his
blame set blamei, sets GOi=FALSE, and broadcasts µi4 =
Sigui

{GOi, blamei, nR, 4, i}.
If AMS succeeds, i sets GOi=TRUE. i now holds a

message extractor sequence D = (dσ−1(1), · · · , dσ−1(N)),
where (dσ−1(1), · · · , dσ−1(N)) is a permutation of
(d1, · · · , dN ). Member j recognizes his own message
extractor dσ−1(i) in D, and sets C ′σ−1(i)i = Cii. For each
dj ∈ D (j 6= σ−1(i)), member i extracts i-th component
Sji from ~Sj and decrypts Sji using his private key xi
obtaining the seed sji.

Member i computes the pseudo random number Cji =
RAND(Lj , sji) and checks h(Cji) against Hji. If the
check has passed, i sets C ′ij = Cij . If Sji is not a valid
ciphertext, sji is not a valid seed, or hash Hji is not valid,
j sets C ′ji=NULL.

Member i assembles all C ′ji’s in the received order,
i.e. putting C ′ji at the j-th position, and broadcasts the
message ui4 = Sigui{GOj ||C ′1i|| · · · ||C ′Ni||nR||4||j} to the
group.

Step 5: Each member i notifies the remaining members
about the outcome of the previous step.
case 1 If there is one or multiple GOj=FALSE, member i

forms a vector ~Vi =[ µj4| GOj=FALSE ].
case 2 If GOj=TRUE for each member, member i checks

each C ′kj he receives from every other member j
against Hkj from dk.
If C ′kj is empty or the hash value is not valid,
member i notifies this fact to other group members
by adding each corrupted µj4 into vector ~Vi.
If GOj = TRUE for each member and all ciphertexts
are correct, member i sets ~Vi = NULL.
In each case, i broadcasts µi5 = Sigui{~Vi, nR, 5} to
the entire group.

Step 6:
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1) If GOj = TRUE for each member The collector checks
the hash value of each C ′ij from member j against
Hij from di ∈ D. If C ′ij is NULL or h(C ′ij) 6= Hij ,
the message on the i-th position is corrupted and
ignored.

2) For each uncorrupted slot, the collector reconstructs
the data by computing di = C ′i1 ⊕ · · · ⊕ C ′iN .

Blame:
Step 7: If i noticed his descriptor di is corrupted but

received GOj = TRUE, then i generates an accusation
Ai = {j, π(i), sij , Rij} to blame j. If there are multiple
j’s, i randomly picks one. If there is no such j, i sets
Ai = 0δa , where δa is the fixed length of accusations.

Member i compares each message µ′j4 that he received
in Step 5 with the message that he received directly from
j in Step 4. If any mismatch happens, member i sets
fi = TRUE to cause AMS to fail in order to inform other
members about equivocation. Otherwise, he sets fi =
FALSE.

Member i runs AMS(Ai,K, nR2 , fi). For a member
who sets fi = TRUE because of conflicting of µ′j4 and µj4,
i creates a proof of j’ equivocation: p′i = (j, c1, µj4, µ

′
j4)

If fi = FALSE, i sets p′i = 0. Member i then broadcasts
µi7 = Sigui

{p′i, nR, 7, i}.
Let Oi be the output of AMS protocol for i. After

receiving all µj7 from others, i executes the followings:
Case 1 Oi = (fail,blameAi ), i sets successi = FALSE.

i exams each proofj in blameAi . If proofj is not
due to improperly reporting bj (Fig. 7), j has no jus-
tifiable way to terminate AMS and i puts (j, c2) into
bulk’s blame blameBi . If µj7 contains two versions of
the same C ′lk for some member k, then i adds (k, c1)
to blameBi . Otherwise, he adds (j, c2) to blameBi .

Case 2 Oi = (success, A′) and ~Vi is empty. i sets
successi = TRUE.

Case 3 Oi = (success, A′) and ~Vi includes ciphertexts.
i checks the validity of each accusation in the re-
ceived A′. If accusation Aj is valid, i puts (j, c3)
into blameBi . If there is no valid accusation target-
ing an incorrect ciphertext received by i, he sets
successi = TRUE. Otherwise, he sets successi =
FALSE.

Case 4 Oi = (success, A′) and ~Vi contains GOj =
FALSE. i sets successi = FALSE. Member i checks
each GOj in ~Vi. i checks validity of blamej , that
blames some k’s misbehaviors, of Step 4. Since i has
all log files and necessary secrets in the failed AMS
run, the validity checking is performed by replaying
the protocol and checking each step. If it is not
valid, i puts (j, c4) in blameBi . Otherwise, i exams
each proofk ∈ blamej . If proofk is not due to
improperly reporting bk, then i puts k into blameBi .
Otherwise, i needs to check µk3 to see if k justifiably
causes AMS failure to expose l in Step 3. If l sent an
invalid key, i adds (l, c5) to blameBi . If l equivocated,
i adds (l, c6) to blameBi . Otherwise, i adds (j, c2) to
blameBi .

If successi = TRUE, member i gets shuffled mes-

sages. Otherwise, he gets a blame list blamei and cor-
responding logs.

9 PERFORMANCE EVALUATION

We made a proof-of-concept implementation of our
protocol, and compared it with the protocols in [4]
and [10]. All the experiments were carried out on an
Intel R© CoreTM2 Duo CPU P8600 @ 2.40GHz computer.
We used Crypto++ [12] as our underlying cryptographic
library.

Dissent [10] uses the same technique as the one in
[4] in its shuffle protocol, which requires an IND-CCA2
secure cryptosystem. Since Crypto++ does not have any
IND-CCA2 secure algorithm in the standard model, we
implemented the Cramer-Shoup cryptosystem by using
SHA-1 and a 3, 072-bit integer group, MODP-15 [18]. To
compare with the implementation in [10], we also imple-
mented a shuffle based on RSA-OAEP [2], which is CCA-
2 secure only in the random oracle model. The modulus
for RSA is of 3, 072 bits. The symmetric key cryptosystem
in AMS protocol was implemented by using AES-128
in counter (CTR) mode, which is CPA secure in the
standard model [1]. The distributed ElGamal encryption
used in AMC protocol is also built on top of MODP-15
group. All the modules were implemented in C++ and
compiled by g++ 4.4.3 with -O3 level optimization.
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Fig. 8. The distribution of needed rounds in Application

First we tested the number of rounds needed in
Phase 1. We increased N from 100 to 1, 000 using an
increment of 100. For each value of N , we ran Phase 1 for
1, 000 times and recorded the number of rounds needed
to find a non-collision vector ~p. We remark that one
Application execution contains two rounds. Fig. 8 shows
the result. We observe that at least 77% of the tests were
completed in 1 round no matter what N is. Furthermore,
97% of them were completed within 2 rounds, finding a
non-collision vector ~p.

Next, we compared the computational overhead of
our protocol to that of the shuffle protocol in [4]. We
used “C-shuffle” and “R-shuffle” to denote the Cramer-
Shoup based and the RSA based shuffle implementa-
tions, respectively. To obtain a point in a plot, we ran
the corresponding simulation for 10 times and calculated
the average over the 10 runs. Also, we used box plot to
visualize the distribution of the 10 results. The top and
bottom bars of a box plot represent the max and min
values in the collection. A squeezed box denotes that the
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data points are close to the average value. Fig. 9(a)-9(d)
show the computational overheads for the collector and
the members under different group sizes N and message
sizes l. Note that the little bar on each line is a squeezed
box plot. First we fixed N = 40, changed l from 1KB to
16MB, and compared the computation time needed for
each member and the collector in different anonymous
message systems. Note that in Fig. 9(b), the computation
time of the collector in our protocol is much shorter
than that in C-shuffle and R-shuffle. This is because the
decryption time of an IND-CCA2 secure cryptosystem is
much shorter than that of a symmetric key decryption
algorithm. In addition, the shuffle protocol needs N2+N
decryptions on the collector, while the collector in our
protocol only needs to decrypt N ciphertexts. From
Fig. 9(a) and 9(b), we observe that AMS performs better
than the two shuffle implementations, especially when
the message size goes big. In Fig. 9(c) and 9(d), we fixed
l to 1KB, and changed N from 10 to 80 at an increment of
10. Since the number of communication rounds depends
on N in the shuffle protocol, the execution time of each
member increases with N , while the execution time
of each member in our protocol increases slowly. In
both sub-figures, for the shuffle implementations, the
execution time increases polynomially in N . However,
the execution time of the collector in our protocol is
almost constant, which shows that the addition and
symmetric key decryption is so fast that we cannot tell
the time difference when the group size is small. We
remark that a party’s computational overhead in our
protocol is not the protocol’s execution time. In the

AMS system, a member’s computation is in parallel
with other members, and the protocol is finished within
constant rounds while the shuffle protocol needs O(N)
communication rounds. We next show the execution
time for C-shuffle, R-shuffle, and AMS implementations
in Fig. 9(e) and 9(f).

From Fig. 9(e) and Fig. 9(f), we observe that the
execution time of AMS is much shorter than that of
the shuffle implementations. We also ran the simulation
of AMS under larger group sizes, from 100 to 400. The
results are plotted in Fig. 9(g). The blue and green lines
in the plot denote the execution time of C-shuffle under
a 15-member group and R-shuffle under a 30-member
group, respectively. We observe that the execution time
of AMS was much faster even when the group size was
increased to 400. The longest time cost by AMS in the
tests when the group size was 400 is still better than the
average time of R-shuffle when the group size was 35.

To compare end-to-end performaces under different
shuffles, i.e., C-shuffle, R-shuffle, and AMS, we imple-
mented Bulk protocol in [25]. Comparing to the previous
design [10], the extra overhead of the new Bulk protocol
is due to the execution of shuffle protocol in Blame stage
(Section 3.4 of [25]). The shuffle protocol is shuffling
fixed-length accusation messages. We note that in our
evaluation the accusation message length is 10 bytes,
where 1 byte for member index, 1 byte for π(j), 4 bytes
for random seed, and 4 bytes for randomness used in
encrypting the seed. We replaced Bulk protocol’s shuffle
with AMS, C-shuffle, and R-shuffle, respectively, and
compared their execution times. The comparison result
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is shown in Fig. 9(h).
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To do the comparison, we fixed the group size as 40
and let each member randomly pick a message size from
[l− 1K, l+ 1K], where l = 1K, 2K, 4K, · · ·, 8M, 16M . The
message size is in terms of bytes. After all members ob-
tained their message size, they executed bulk protocol to
submit the messages and repeated the protocol execution
for 10 times. In Fig. 9(h), the x-axis represents the total
message size and the y-axis represents the bulk execution
time. We observe that AMS performs significantly better
than the shuffle protocols. For example, to handle a
total message size of 640MB, the average running time
is 3003.97471 seconds for C-shuffle, 1040.87252 seconds
for R-shuffle, and 23.89172 seconds for AMS. We also
note that the difference between AMS and R-shuffle is
not remarkably big when the transmitted message is of
small size. This is because the data transmission in bulk
will cost more time than shuffling message extractors
when the transmitting data size is small. Hence, we
are curious about the time cost on sending message
extractors and data transmission by using AMS as a sub-
protocol. Again, we fixed group size as 40 and let each
member randomly pick their message size in the same
way as in the previous test. We separately recorded the
time cost on AMS and bulk data transmission and show
the result in Fig. 10(a). The y-axis represents the time cost
and is in log-scale. First, we observe that the time cost
on AMS is almost the same, indicating that transmitted
message extractors size is independent of the transmitted
total message size. Besides, we note that the time cost
on AMS is nearly 0.1 seconds while that on bulk data
transmission increases to over 500 seconds.

We introduced the bulk protocol because AMS itself
cannot handle variable length message transmissions.
If we want to use AMS as a stand-alone system to
transmit variable length messages, we have to pad the
messages to a fixed maximum length over all to-be-
sent messages. Since AMS is so fast, we are curious
about its performance against the bulk protocol. To this
end, we set up another experiment in the following
way. First, we fixed the group size as 40 and set l =
32K, 64K, 128K, · · · , 8M, 16M . For each l, we ran bulk
protocol, using AMS as a sub-protocol, under 3 different

settings: 1Max, same-length, and random-length. In the
1Max setting, one member set the message length as l
and the remaining members set their message length as
l/1024; in the same-length setting, each member set his
message length as l; in the random-length, each member
set his message length as a random number rand such
that 0 < rand ≤ l. Each member set the message size
as l when we ran AMS as a stand-alone system. The
result is shown in Fig. 10(b). From the figure, we observe
that AMS alone took shorter time than that of the bulk
protocol under the same-length setting. We also note
that AMS (represented by the red dash line) cost almost
the same time as that of the bulk protocol under the
random-length setting (represented by the blue doted
line). At last, it is obvious that AMS cost more time
than that of the bulk protocol under the 1Max setting.
This is reasonable and expected because under the 1Max
setting, it is actually a special circumstance favoring
the bulk protocol. In this case, the AMS system has to
do N − 1 paddings and transmitting more unnecessary
contents. Therefore, we suggest to use AMS directly
when the sizes of submitted messages are close to one
another. This situation is common in the real world life.
Online surveys introduced in our introduction section is
one of such examples. Answers to a set of questionnaires
usually have similar lengths because a set of question-
naires consist of either multiple-choice questions or short
comments.

10 CONCLUSION
In this paper, we have proposed an efficient online
anonymous message submission protocol. Utilizing the
simplified secret sharing scheme, we have designed a
novel position application technique, in which all mem-
bers secretly select their positions in a position vector,
such that a member knows nothing about the other
members’ message positions. We have introduced a data
aggregation technique, in which all members aggregate
their messages into a message vector and submit it to
the collector without exposing their identities. We have
theoretically proved that our protocol is anonymous
under malicious attacks. We have also demonstrated the
efficiency of our protocol through rigorous evaluations
and experiments.
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