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Abstract—Offline or deferred solutions are frequently 

employed for high quality and reliable results in current video 

stabilization. However, neither of these solutions can be used for 

strict real-time applications. In this paper, we propose a practical 

and robust algorithm for real-time video stabilization. To achieve 

this, a novel and efficient motion model based on inter-frame 

homography estimation is proposed to represent the video motion. 

An important feature of the proposed motion model is that it 

updates at each frame input to reduce the accumulation errors 

caused by parallax or scene changes. We also propose a novel 

Kalman filter for the motion smoothing and a unique mosaic 

algorithm for the video completion. The proposed Kalman filter 

and mosaic algorithm enable the development of a practical real-

time video stabilizer that not only produces steady video but also 

retains the full resolution of the original video. We verify the 

proposed algorithm through a broad range of video sequences that 

demonstrate that the proposed algorithm is computationally 

efficient while being able to robustly stabilize videos with various 

challenges.   

 
Index Terms—video stabilization, motion estimation, optical 

flow, normalized cross correlation, frame orbits, Kalman filter, 

mosaic. 

 

I. INTRODUCTION 

ideo filmed on hand-held or vehicle-mounted cameras 

frequently suffers from annoying jitters owing to the 

unsteady motion of the platform. Video stabilization is the 

process of improving video quality by removing the effect of 

fluctuant motion caused by jittering. The goal can be achieved 

by employing solutions based on sophisticated sensors and lens 

systems to modify the manner that the camera receives the input 

light or using mechanical tools to avoid undesired shakes during 

recording. Though these approaches are feasible for some 

specialized applications, the drawback is obvious: they are 

either overly expensive because of the requirement for 

sophisticated hardware or are inconvenient owing to the 

necessity of cumbersome equipment. Conversely, digital video 

stabilization (DVS) does not require additional hardware nor 

does it require any knowledge of the capturing device. It 

provides a convenient and economical solution for various 

vision tasks such as unmanned aerial vehicle (UAV) 

exploration [1], robot navigation [2], and video retargeting [3]. 

In the remaining sections of this paper, we will focus on DVS. 
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Offline or deferred solutions are frequently employed by 

current DVS [4-8]. The commonly used smoothing approaches 

such as Gaussian low-pass filter [4], smoothing by optimization 

[5-7], and dual pass filter [8] are used for either offline or 

deferred DVS. The state-of-the art methods [7, 9-11] typically 

require sophisticated motion estimation, which is 

computationally expensive. Consequently, these methods are 

only applicable to offline DVS because they usually run under 

5 fps on an ordinary machine. In fact, offline DVS is used for 

stabilizing a video only after it has been recorded. Deferred 

DVS can process online; however, it requires a frame buffer for 

path planning. Hence, the deferred DVS output frame is always 

delayed from the input frame. Clearly, neither offline DVS nor 

deferred DVS can be applied to strict real-time applications. 

Unquestionably, strict real-time video stabilization is 

challenging for existing DVS methods. 

Motivated by the limits of the current methods and practical 

demands, we propose a practical and robust algorithm for strict 

real-time video stabilization. There are three main contributions 

in our work. 

A novel motion model parameterized by frame orbits 

Our key observation is that video motion over a short time 

interval can be approximately modeled by four short frame 

orbits based on inter-frame homography estimation. A frame 

orbit is a set of 2-dimensional (2D) points ��� | �� ≤ 	 ≤ �
� 

across the frames between the starting frame ��  and ending 

frame �
 . Each point of the frame orbit can be iteratively 

estimated as follows, 

 �� = �������                                 (1) 

where ��� is the homography estimated between frame 	 and 	 − 1. An example of a frame orbit is presented in Fig. 1. 

A well-known fact is that homographies can model inter-

frame motion only when the scene is coplanar or when there is 

no camera translation. That is, there will be accumulation errors 

caused by parallax or scene changes if homographies are 

employed for representing the motion of video that is captured 

by a camera moving in a non-planar scene. Fortunately, 

accumulation errors can be substantially reduced if 

homographies are employed to represent the video motion over 

a short time interval only. The reason is that we can assume 

there is virtually no camera translation within a short timeframe. 

Hence, we update the frame orbits to ensure they account for 

the motion within a short interval only (The details of the update 
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process are described in Section III.B). Consequently, the 

accumulation errors caused by parallax or scene changes are 

substantially reduced. 

Although the proposed method is based on a 2D model in 

nature, it is superior to traditional 2D methods [1, 12]. 

Specifically, the traditional 2D methods use 2D transformation 

matrixes to model the video motion. For decomposing the 

matrixes into independent components such as rotation, 

translation, and zoom, they must choose a model with low 

degrees of freedom (DOF). Consequently, some complicated 

motions including wobble and shear are ignored by their 

methods. Conversely, we use four frame orbits, which is a 

model with eight DOF, to represent the video motion. As the 

employed motion model has higher DOF and decomposition is 

avoided, the proposed method is actually more precise and 

robust than the traditional 2D methods.  

The merits of the proposed motion model are further 

discussed and confirmed in the experimental portion of this 

document. 

A novel Kalman filter for smoothing frame orbits 

A Kalman filter is a standard real-time filter. However, the 

traditional Kalman filter (TKF) cannot smooth a short frame 

orbit. To decrease the accumulation errors caused by parallax 

or scene changes, we must use short frame orbits to model the 

video motion and update them at each frame input. The update 

causes displacement, which is observed as noise by TKF. Hence, 

there would be unsteady movements caused by the update in the 

output of TKF. To solve the problem, we propose an associate 

Kalman filter (AKF) to smooth the frame orbit. After the frame 

orbit has been updated, AKF resets its corrected state to 

compensate for the displacement. Experiments indicate that 

AKF outperforms TKF when smoothing a short frame orbit. 

A highly efficient and robust solution for real-time DVS 

The proposed method is highly efficient while being robust 

to various challenging scenes with light change, motion blur, 

severe occlusion, or scene change. Furthermore, the proposed 

method achieves full resolution using a novel backward mosaic 

algorithm. Lastly, the proposed method does not cause any 

additional lag (except the time for processing) as it does not 

require a frame buffer, resulting in a practical solution for 

telecontrol, which requires that the input image be immediately 

stabilized and presented to the operator to request feedback 

commands. 

We developed the proposed algorithm with C++ code. Some 

basic modules of this algorithm are available from OpenCV 

(http://opencv.org). To allow our work to be conveniently 

reproducible, software and testing videos will be released 

through our website (http://Real-timeDVS.blogspot.com/). 

The proposed algorithm consists of three main steps: motion 

estimation, motion smoothing, and video completion. The 

flowchart is presented in Fig. 2.  

The remainder of this paper is as follows. Section II describes 

the related works. The motion estimation and motion filter of 

the proposed algorithm are presented in Section III and Section 

IV, respectively. Video completion based on image warping 

and backward mosaic is described in Section V. In Section VI, 

we conduct a thorough evaluation of the proposed algorithm 

and compare it with other recent efforts. Finally, the 

conclusions, limitations, and future work are presented in 

Section VII.  

II. RELATED WORK 

According to the motion model employed, DVS can be 

approximately divided into 2D and three-dimensional (3D) 

methods. The 2D methods [1, 4, 12, 28] employ 2D 

transformations to model the video motion and smooth them 

with a low pass filter. Then, a steady video is generated by 

warping the image according to the smoothed motion. The 2D 

methods are robust, efficient, and perform well on videos with 

distant and static backgrounds. However, they cannot process 

parallax, which is introduced by capturing a 3D scene using a 

moving camera.  

 

Fig. 1.  Frame orbit starting from the top-left corner of the frame rectangle. 
This frame orbit consists of six points depicted by the six dots. The solid line 

connecting the dots depicts the trajectory of the frame orbit. The transitions 

between the dots are estimated based on inter-frame homographies.  

 

Fig. 2.  Flowchart of the proposed algorithm. 

start

end

homography estimation frame obits generating

asscociate Kalman filter

image warping backword mosaic

is the last 

frame?

motion estimation

video completion

motion filter

no

yes

read the next frame

output the synthetic image



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2589860, IEEE
Transactions on Circuits and Systems for Video Technology

Recently, Liu et al. [7] used a spatially variant 2D model to 

represent the video motion and smooth it appropriately with an 

“as-similar-as-possible” regularization constraint. Their 

method managed parallax well and was tested with a wide range 

of consumer videos [13]. However, the method is not applicable 

for strict real-time DVS as it relies on a frame buffer for path 

optimization.  

Early 3D stabilization methods [14, 15, 27] use structure 

from motion (SFM) [25] to estimate 3D camera motion. After 

motion smoothing, new images are rendered by homography 

approximation [15] or content-preserving warp (CWP) [14, 16]. 

These 3D methods produce superior results to 2D methods 

when there are significant depth variations in the input video. 

However, SFM is brittle and time-consuming [9] and cannot 

manage videos without sufficient depth variations [26]. 

Feature trajectories is an ideal motion model for video with 

both 2D and 3D scenes. Lee et al. [5] proposed a novel DVS 

method using robust feature trajectories to model the video 

motion. However, this method is not full 3D stabilization as the 

output image is rendered based on 2D global transformation. 

Liu et al. [9] smoothed the feature trajectories with a 9-

dimensional subspace constraint based on the observation that 

a trajectory matrix should have at most rank 9 for video motion 

within a short time interval [17]. To perform full 3D 

stabilization, their method also uses CWP to address the image 

deformation caused by viewpoint change. Consequently, the 

method achieves superior quality of 3D stabilization without 

the requirement of 3D reconstruction. However, feature 

trajectories can be interrupted by motion blur, rapid camera 

rotation, or severe occlusion, which makes the feature tracking-

based methods fragile. 

To relieve the requirement of long feature trajectories, Liu et 

al. [6] use a simplified model, a Bézier curve, to represent the 

feature trajectory and stabilize the input video by performing a 

spatial-temporal optimization on the curves. This method 

achieves video stabilization by solving a global optimization 

that can address short feature trajectories. Most recently, Liu et 

al. [11] proposed a novel DVS method based on SteadyFlow, 

which is a specific optical flow enforced by strong spatial 

coherence. Similar to feature trajectories, SteadyFlow can 

represent spatially variant motion. Hence, the method can 

stabilize complicate videos without the requirement of long 

feature trajectories. The methods presented in [6] and [11] are 

more robust than the methods requiring long feature trajectories. 

However, both the methods are overly computationally 

expensive to be implemented for real-time DVS owing to the 

requirements of enormous feature trajectories or dense optical 

flow. 

Some researches presented online DVS; however, only a 

small number of them focused on strict real-time DVS. Wang 

et al. [1] used an adaptive Kalman filter to smooth the inter-

frame motion. However, their method may introduce significant 

accumulation errors because they use a 2D similarity model that 

has only three DOF to represent the video motion. To manage 

with this, they restart the accumulated motion estimation when 

detecting a scene change. However, the method works poorly 

for videos with continuous scene changes because the 

performance of the Kalman filter is limited if it is restarted 

frequently. Ryu et al. [18] presented real-time video 

stabilization by filtering the feature trajectories that are directly 

generated by a KLT tracker [19]. However, their method is not 

as reliable as the methods presented in [6] and [11] because the 

feature trajectories are not produced in a reliable manner. Most 

recently, Dong et al. [20] proposed a lightweight DVS for a 

UAV platform. The method represents video motion using 

robust motion trajectory that is a longer edition of the frame 

orbit. As a motion trajectory is smoothed with a linear fitting 

filter, they must extend the trajectory to 10 - 15 points. Similar 

to frame orbit, motion trajectory is based on a 2D 

transformation. Hence, a longer motion trajectory will 

introduce more severe accumulation errors. 

The motion model of the proposed algorithm is partially 

based on the work presented in [20]. However, we improve 

their work using considerably shorter orbits to model the video 

motion and propose a novel motion filter to smooth the orbits 

appropriately. Further, we develop a backward mosaic 

algorithm to render a full-frame image in real-time. 

III. FRAME ORBITS 

Frame orbit is the motion model employed by the proposed 

algorithm; this is estimated in two steps: inter-frame 

homography estimation and frame-orbit generating. In the 

following subsections, they will be described in detail. 

A. Inter-frame Homography Estimation 

The state-of-the art methods such as SIFT [22] and SURF [24] 

can estimate inter-frame homography robustly. However, they 

are overly computationally expensive for real-time DVS. To 

address this, we develop a reliable and efficient method for 

inter-frame homography estimation. The proposed method can 

manage various challenges including light change, motion blur, 

and severe occlusion and is considerably faster than other state-

of-the art methods.  

The proposed homography estimation is based on the point 

correspondences between two adjacent frames. We first detect 

the feature points using a highly efficient algorithm introduced 

by Rosten et al. [21]. Typically, the number of detected feature 

points is enormous and the detected points tend to have 

converged in highly textured regions, which can increase the 

estimation time and make the result vulnerable to occlusion. To 

avoid this, we track only some of the feature points and 

distribute them evenly on the frame. Specifically, the frame is 

evenly divided into � × � blocks. For each block, the feature 

point with the greatest response is selected as the key point to 

track, where the response is calculated based on the corner 

strength, which is introduced in [21].   

 A KLT tracker is an efficient point-tracking algorithm. 

Unfortunately, it cannot manage excessive light change because 

a point is tracked under the assumption that the gray of the same 

point does not change across the frame. To make the proposed 

method more reliable to light change, we develop a key point-

tracking algorithm as a complement to the KLT tracker and 

template matching. Specifically, we first track the � × � key 

points using the KLT tracker alone. Then, a key point is 

removed if the gray of its local area changes significantly when 
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tracking across frames. Then, the image is evenly divided into � × � blocks. If all the key points included in one block are 

removed, the center of the block is selected as the key point and 

then re-tracked by the template matching. The template 

matching searches the key point in the next frame using 

normalized cross correlation (NCC), which is invariant to linear 

gray change [29]. It is worth noting that NCC template 

matching is more computationally expensive than the KLT 

tracker. Therefore, we set � smaller than � if the re-tracking 

process causes a significant increase in the time cost. In practice, 

we set � = 12  and � � 7  for all our experimental results. 

Following the key-point tracking, we use the RANSAC 

algorithm [23] to estimate the inter-frame homography with the 

motion vectors generated by the tracking process. An example 

of key-point tracking under light change is exhibited in Fig. 3. 

We can see that the results of the KLT tracker are incorrect 

owing to the light change. However, many results of NCC 

template matching are correct and are retained after the 

rejection performed by the RANSAC algorithm.  

In addition to light change, key-point tracking can also fail 

because of a textureless object or motion blur. Fortunately, 

increasing the size of the tracking patches can avoid these issues. 

In all our experimental results, the size of the patches tracked 

by KLT was set to 13 � 13 and the size of the patches tracked 

by the template matching was set to16 � 16.  

B. Frame-orbits Generating  

After the homography estimation, four frame orbits are 

generated by transforming the four corners of the frame 

rectangle with inter-frame homographies. The definition of the 

frame orbit was presented in Section I.A. For real-time 

stabilization, the ending frame is the current input frame and the 

starting frame is � � 1 frames before, where � is the length of 

four frame orbits.  

To reduce accumulation errors, we set � to a small constant 

number and update the four frame orbits at each frame input. 

An example of the update process is displayed in Fig. 4. We can 

see that the frame orbit is regenerated at each frame input and 

always starts from the top left corner of the frame rectangle, as 

indicated in Figs. 4 (a) and (b). When generating the current 

frame orbit, the old homography �, which is used to transform 

the first point to the second point in the last frame orbit, is 

deleted, whereas the remaining homographies and the new 

homography �, which is estimated between the current frame 

and the last frame, are used to generate the current frame orbit. 

If we place the two frame orbits in the same coordinates, as in 

Fig. 4 (c), we can observe that the update process introduces a 

displacement (from �  to �’ ) between the two frame orbits. 

Table 1 displays the pseudo code for frame orbit generating 

from the top left corner of the frame rectangle. 

IV. ASSOCIATE KALMAN FILTER 

As mentioned previously, TKF is not a correct solution for 

filtering a short frame orbit because the displacement caused by 

the update will be treated as observed noise, which it actually is 

not. To correct this, we propose AKF, which compensates for 

 

Fig. 3.  Process of key-point tracking. Images (a) and (b) are two adjacent 
frames. The arrows in image (b) indicate the true motion of the inter-frame. 

The detected feature points and selected key points are depicted in (c) and (d), 

respectively. In image (e), the green (light color) lines are the results of the 
KLT tracker; the red (dark color) lines are the results of the NCC template 

matching. Some result of the KLT tracker are removed because the gray of 

their local area changes significantly when tracking across frames. Image (f) 
illustrates that only the results tracked by the NCC template matching are 

retained after the rejection performed by the RANSAC algorithm.  

TABLE I 

PSEUDO CODES FOR FRAME-ORBIT GENERATING  

�: � !!"#$ %!&'". 
): �&*$ %!&'". 
�: $+" %!&'" ,!-.$ �/�| 0 � 	 � � � 1�. 
�: $+" �"#$+ ,% $+" %!&'" ,!-.$. 
Q:  the queue keeping the inter-frame homographies. 
�’ � �: $+" C.*/�&�"'"#$ %,! �D� !"*"$$.#E 

 

/� ← $+" $,/ �"%$ �,!#"! ,% %!&'" !"�$&#E�"; 
H+.�" � .* #,$ # �� I 

      � ← /J�� ; 
      � ← +,',E!&/+K %!,' ) $, �; 
      L"�"$" $+" %.!*$ +,',E!&/+K � .# M; 
      �CC �  $, $+" M ; 

Generate P by transform /� with Q ; 
      �S ← /J��; 
      ) ← �; 
      � ← #"T$ %!&'"; 
U 
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the displacement by resetting the corrected state. It is initiated 

as follows, which is not different from the standard method. 

A. Initiation of AKF 

Given the increment of the variable at time t, the process 

model of AKF can be expressed as follows, 

V TWTWXKWKWXY
Z

= [1 10 1 0 00 00 00 0 1 10 1\ V TWTWXKWKWXY
Z��

+ V 0�(0, à)0�(0, c̀)Y   (2) 

where the translation of the frame orbit is described by the 

variables TW  and KW; the velocity variables TWX  and KWX  are auxiliary 

variables that are not observed. The observation model for each 

parameter is independent, leading to the observation model as 

follows, dTeKef = dTWKWf + d�(0, èa)�(0, èc)f                       (3) 

The variances of the processing noise à  and c̀  are 

initialized by a small constant value to limit the randomness of 

the motion estimation. We assume the vibration amplitude of a 

video is proportional to the frame size owing to the fact that for 

two videos captured by a camera moving in the same unsteady 

manner, the video with the higher resolution exhibits greater 

shake compared with the video with lower resolution. Therefore, 

we initialize the variances of measurement noise èa , èc  as 

follows,  èag = (H − � × H)g 4⁄ ,     ècg =  (ℎ − � × ℎ)g 4⁄        (4) 

where the size of the frame is H × ℎ  and the variable �  is a 

constant value in the range (0, 1). In practice, we set � = 0.9 

and àg = c̀g = 0.1 in all our experimental results. 

B. Corrected state resetting 

The difference between TKF and AKF is that the corrected 

state of AKF will be reset after the frame orbit has been updated. 

We assume that the update process does not change the 

velocity variables because the moving pattern of the frame orbit 

is not changed by the update, as indicated in Fig. 4 (c). Thus, 

we must only reset the translation parameters of the corrected 

state according to the displacement from A to A’: dTWSKW Sf = dTWKWf + (�’ − �)                              (5) 

where TW and KW are the translation parameters of the corrected 

state. 
C. Predicting and updating 

After the resetting, AKF will predict the motion with the 

newest observed value lZ mnZ = omnZ�� + DZplZ − ZomnZ��q                   (6) 

where DZ is the matrix of the Kalman gain, o is the transition 

matrix of states in equation (2), and Z is given as the following, HZ = s10 00 01 00t                            (7) 

A more specific description of the updating of DZ  can be 

found in [30], which does not differ from the standard Kalman 

filter. 

V. VIDEO COMPLETION 

To generate the stabilized video, the image must be warped 

(a) (b)

(c) (d)  

Fig. 5.  Comparison of the two mosaic algorithms: (a) is the input image, (b) 
is the result of image warping, (c) is the result of Matsushita et al. [4], and (d) 

is the result of the proposed method. The circle highlights the mosaicking 

boundary. We can observe the result achieved by the proposed method is more 

seamless. 

0
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last frame

current frame

last frame

current framelast frame
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Fig. 4.  Frame-orbit generating. For easy viewing, only the orbit starting from the top left corner is depicted. The dashed line indicates the frame orbit generated at 

the last frame input. The solid line indicates the frame orbit generated at the current frame input. Image (a) depicts the frame-orbit generating at the last frame 

input. Image (b) is the frame-orbit generating at the current frame input. Image (c) is when the two frame orbits are placed in the same coordinates.  
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according to the smoothed motion, which will leave unfilled 

areas in the result. An example is displayed in Fig. 5 (b). The 

consistency mosaic presented by Matsushita et al. [4] is an 

effective method for removing the unfilled areas. However, it is 

not a real-time solution because it synthesizes the output image 

by sweeping the video in both a forward and backward direction. 

Rather, we develop a real-time mosaic algorithm that renders 

the output image by sweeping the video in a backward direction 

only. However, the proposed method leaves more unfilled areas 

in the synthetic image compared with the consistency mosaic. 

To relieve the visual unpleasantness, we interpolate the 

remaining unfilled areas with a reflected copy. The motion 

inpainting introduced in [4] can address the residue caused by a 

moving object or parallax; however, it is not employed in the 

proposed algorithm as it requires dense optical flow, which is 

considerably time consuming. 

The consistency mosaic presented in [4] can cause a seam-

line in the mosaicking boundary if the estimation of the global 

transformation is not sufficiently precise. To address this seam-

line, we generate the value of a pixel /Z 	in the missing area 

using a weighted average of the warped pixels IZZS/ZU that are 

included in the neighboring frames: 

u^/Zb �
∑ w^|Z�ZS|bx^yzz

{|zbz{
∑ w^|Z�ZS|bz{

                          (8) 

where $ and $′ represent the indexes of the frame and ZZS is the 

homography transform from frame $ to frame $′. 
It is reasonable to assume that the accumulation error 

increases as the homographies cascade. Therefore, we calculate 

the weight H^|$ � $′|b as follows, 

H^|$ � $′|b 	� "�|Z�ZS|                          (9) 

According to (8) and (9), the warped pixel in the frame closer 

to the current frame contributes more to rendering the unfilled 

pixel.  

A comparison of the two mosaic algorithms is presented in 

Fig. 5. We can observe that the result of the proposed approach 

(in the right image) is more seamless compared to the other 

method. 

VI. RESULTS AND DISCUSSION 

We tested the proposed algorithm on a desktop machine with 

a Core i5 3.6 GHz CPU and GeForce GTX760 GPU. Our 

implementation did not exploit the multicore processing. Table 

2 presents the timing statistics for the proposed algorithm 

without GPU support. A major portion of the time cost is due 

to the global transformation estimation. This time cost can be 

reduced by utilizing fewer key points to track or by decreasing 

the size of the tracking patches. For high-resolution video, the 

image warping and mosaic consume the majority of the time. 

Fortunately, image warping and mosaic are per-pixel rendering 

solutions that can be easily parallelized with a GPU. In fact, 

GPU-accelerated modules for feature-point detection, KLT 

tracker, template matching, and image warping are 

conveniently available from OpenCV. Except that, a GPU-

accelerated module is realized for the mosaic of the proposed 

 
Fig. 7.  Example of filtering frame orbits and feature trajectories. The red  (dark 

color) lines are the frame orbits and the green (light color) lines are the feature 

trajectories. The video is provided by Liu et al. [26] 

 

Fig. 6.  Two examples of stabilizing videos with challenging cases. The first row illustrates the images with feature point trajectories from a video with significant 

light change. The second row displays the images with feature point trajectories from a video with excessive motion blur. (a) and (d) are the feature point trajectories 

of the original videos. (b) and (c) are the feature point trajectories from the results of the proposed algorithm. (c) and (f) are the feature point trajectories from the 
results of the algorithm introduced by Ryu et al. [18]. We can see that the results achieved with the proposed algorithm are smoother. More information regarding 

the algorithm introduced by Ryu et al. is provided in Section VI-D. 
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algorithm. All those modules are employed for parallelizing the 

proposed algorithm with GPU. Table 3 presents the timing 

statistics for the proposed algorithm with GPU support. 

We conducted a thorough evaluation using a broad range of 

video sequences to demonstrate the effectiveness of the 

proposed algorithm. The results can be reviewed in the 

supplementary material or on our website. In the following 

section, we first evaluate the motion model and motion filter of 

the proposed algorithm and then compare the entire approach 

with other methods. 

A. Robust Global Transformation Estimation 

We estimate the global transformation under the assumption 

that the majority of the selected key points belong to a static 

planar background. Therefore, the transformation estimation 

will fail when encountering a severe occlusion. For addressing 

strong occlusions, we use the inlier ratio and the root mean 

squared error (RMSE) of the inliers to determine if the 

transformation estimation failed. If the estimation failed, we 

allow AKF to predict the current motion with the last observed 

data. Hence, the prediction will maintain stable video output for 

a period, even if there is a global occlusion in the video.  

Except for severe occlusion, our global transformation 

estimation can be adapted to the other challenges described in 

Section III. Fig. 6 displays two examples of still images; the 

results of stabilizing those videos using the proposed method 

are provided in challenges.mp4. 

B. Simplified Motion Model  

For a video with non-coplanar scenes, one can use feature 

trajectories to model the video motion precisely. However, to 

obtain long feature trajectories requires significant work [26].  

Frame orbits may be overly simple to model the motion for a 

video with non-coplanar scenes; however, we can filter frame 

orbits to smooth the video motion, though the orbits may not be 

able to represent the video motion precisely. Fig. 7 helps us to 

understand how this works. The left image indicates that both 

the frame orbits and feature trajectories start from the same 

point; however, they do not move in the same paths because the 

points are non-coplanar. However, after filtering the frame 

orbits and compensating the video sequence using global 

transformation based on homographies accordingly, the right 

image illustrates that both the frame orbits and feature 

trajectories have become smooth. This result confirms that we 

can filter the frame orbits to smooth the feature trajectories 

implicitly. That is, we can filter frame orbits to smooth the 

video motion.  

Compared with the motion model based on a greater number 

of feature trajectories, the proposed motion model reduces the 

computation requirements enormously, which is a significant 

advantage for real-time DVS. 

C. AKF vs. TKF 

We compared AKF with TKF using two different video 

sequences. For the video captured by a static camera, we used 

long frame orbits (extended from the first frame to the last 

frame) to estimate the video motion. In this case, the results of 

AKF and TKF were comparable because neither filter was 

interrupted by the update of frame orbits. However, for a video 

with continuous scene changes or parallax, we were required to 

use short frame orbits (length of three) to estimate the video 

motion and update the orbits at each frame input. In this case, 

AKF was considerably more effective because TKF could not 

process the displacements introduced by the update. The video 

results are provided in filter_comparison.mp4. 

D. Comparison 

We defined an objective metric to measure the smoothness 

of the results produced by the different methods. Specifically, 

we first used feature trajectories to represent the video motion 

and then estimated the speed variation of each trajectory as 

follows, 

~^T, Kb � ∑�^T��� � 2T� + T���bg + ^K��� � 2K� + K���bg    

(10) 

where ^T� , K�b is the position of point ^T, Kb at frame j in the 

feature trajectory. Then, the average normalized decrease of 

speed variation was calculated to evaluate the smoothness: 

*',,$ℎ#"** � &�"!&E" �|�����|�� �                (11) 

where ~� is the speed variation estimated by the original video 

and ~�  is the speed variation estimated by the output video.  

We re-implemented two real-time DVS algorithms that were 

introduced by Wang et al. [1] and Ryu et al. [18] and compared 

them with the proposed algorithm. Fig. 8 presents samples of 

the tested videos and the smoothness of the output videos 

stabilized by the three compared algorithms. The algorithm 

introduced by Wang et al. failed to stabilize the “foodcore” 

video because this algorithm cannot process the continuous 

scene change presented in the video, as mentioned in Section 2. 

For the other videos, the smoothness of the result achieved was 

inferior to the proposed method because the motion model of 

their algorithm is based on similarity transform, which cannot 

account for complicated motion such as wobble and shear. The 

algorithm introduced by Ryu et al. is based on smoothing 

feature trajectories with a Kalman filter. However, the 

geometric correlation between the feature points can be broken 

because each trajectory is filtered independently. Hence, their 

method can create unacceptable output for video with severe 

depth variation such as the “foodcore” video. Moreover, the 

TABLE III 

TIME STATISTICS OF OUR ALGORITHM WITH GPU SUPPORT 

Resolution 

GLOBAL 

TRANSFORMATION 

ESTIMATION 

Image 

Warping and 
Mosaic 

Total 

320 × 240 2.6 ms 0.6 ms 4.0 ms 640 × 480 1280 × 720 

4.3 ms 

9.5 ms 

2.1 ms 

5.9 ms 

7.3 ms 

16.2 ms 1920 × 1080 15.2 ms 11.6 ms 27.7 ms 

 

TABLE II 

TIME STATISTICS FOR THE PROPOSED ALGORITHM WITHOUT GPU SUPPORT 

Resolution 

Global Transformation 

Estimation 

Image 

Warping and 
Mosaic 

Total 

320 × 240 11.1 ms 10.2 ms 22.1 ms 640 × 480 1280 × 720 

14.3 ms 

19.5 ms 

24.3 ms 

48.9 ms 

39.7 ms 

69.4 ms 1920 × 1080 32.4 ms 111.6 ms 144.9 ms 
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feature trajectories employed by their algorithm are produced 

by the KLT tracker, which is sensitive to light change. 

Consequently, their algorithm failed to stabilize the “bridge” 

video, which has excessive light change. 

 We also compared the proposed algorithm to some recent 

efforts [7, 9, 10, 14]. Fig. 9 indicates that all the algorithms 

significantly decreased the speed variation of the input videos. 

In general, the proposed method could not achieve results as 

steady as the other algorithms; however, the proposed algorithm 

was the only method in the comparison that provided a real-

time solution and was computationally efficient.  

 Finally, we compared our method with the state-of-the art 

method introduced by Matsushita et al. [4], which is based on a 

deferred solution. The input video was captured by a UAV. The 

compared result indicated that the deferred solution caused 

evident lags. For telecontrol, the lags could influence the 

judgement of the operator and cause inappropriate operations.   

All the video results of the comparisons discussed above are 

provided in comparisons.mp4. 

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK 

Real-time video stabilization is a challenging issue for 

current DVS methods owing to the time limitation and 

requirement for high reliability. The resolution to this issue is 

an efficient solution consisting of a simple, yet robust motion 

model and a novel real-time motion filter. This approach was 

proposed in this work. The proposed method can offer real-time 

stabilizing for a wide range of videos, which is rarely achieved 

by the existing methods.  

Because of the real-time constraint, the proposed method 

cannot detect motion change in advance. Therefore, large 

unexpected motion changes such as fast camera rotation or 

rapid zoom may cause evident artifacts in the output video. 

Further, the proposed method is 2D DVS in nature. Although 

the proposed method can be adaptive to a scene with moderate 

depth variation, it may cause wobble or distortion for video with 

strong parallax. Failed examples are illustrated in 

limitations.mp4. 

In a future work, we will attempt to improve the proposed 

method with a spatially variant motion model that can achieve 

superior results for video with strong parallax. 
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Fig. 8.  Quantitative results of three compared real-time DVS algorithms. The 

result with higher smoothness is superior. 
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Fig. 9.  Quantitative comparisons with other DVS algorithms on publicly available data [10,13]. The result with higher smoothness is superior.. 


