2016 IEEE 6th International Conference on Advanced Computing

Vectorization and optimization of fog removal
algorithm

Krishna Swaroop Gautam
Uurmi Solutions Pvt. Ltd.,
Hyderabad, India
Email: krishnasg@uurmi.com

Abstract—Some of the image processing algorithms are very
costly in terms of operations and time. To use these algorithms
in real-time environment, optimization and vectorization are
necessary. In this paper, approaches are proposed to optimize,
vectorize and how to fit the algorithm in low memory space. Here,
optimized anisotropic diffusion based fog removal algorithm is
proposed. Fog removal algorithm removes the fog from image
and produces an image having better visibility. This algorithm
has many phases like anisotropic diffusion, histogram stretching
and smoothing. Anisotropic diffusion is an iterative process that
takes nearly 70% of time complexity of the whole algorithm.
Here, optimization and vectorization of the anisotropic diffu-
sion is proposed for better performance. However, optimization
techniques cost some accuracy but that can be neglected for
significant improvement in performance. For memory constraint
environment, a method is proposed to process the entire block
of image and maintains the integrity of operations. Results
confirm that with our optimization and vectorization approaches,
performance is increased up to 90 fps (approximately) for VGA
image on one of the image processing DSP simulator. Even if,
system doesn’t have vector operations, the proposed optimization
techniques can be used to achieve better performance (2x faster).

Index Terms—Anisotropic diffusion, image smoothing, DSP
(Digital Signal Processing), Vectorization, SIMD, image restora-
tion, DMA (Direct Memory Access).

I. INTRODUCTION

Poor weather conditions such as fog and rain degrades at-
mospheric visibility. Low visibility degrades perceptual image
quality and efficacy of the computer vision algorithms such
as surveillance, object segmentation, recognition and tracking.
Thus, it is essential to make vision algorithms more robust to
change in weather conditions. Low visibility in poor weather
is due to the suspension of water particles in atmosphere.
Light coming from the atmosphere and light reflected from
an object are scattered by these water particles, resulting the
low visibility of the scene. Fog removal algorithm is used
to remove the fog from the foggy image/scene. However, fog
removal algorithm is costly and complex in terms of operations
for both low and high resolution images. Any computer
vision based application looks more realistic with its high
resolution image/video processing capability and consumer
wants to use only high quality real-time computer vision based
applications. So, it is very important for any vendor to provide
the solution for such a heavy computer vision application.
They are supposed to resort powerful hardware to support

978-1-4673-8286-1/16 $31.00 © 2016 IEEE
DOI 10.1109/TIACC.2016.73

Abhishek Kumar Tripathi
Uurmi Systems Pvt. Ltd.,
Hyderabad, India
Email: abhishekt@uurmi.com

362

M.V. Srinivasa Rao
Uurmi Systems Pvt. Ltd.,
Hyderabad, India
Email: mvs@uurmi.com

operations used in particular algorithm with adequate perfor-
mance and also needs to optimize the algorithm according
to chosen hardware capabilities, which utilize it at extreme.
Unfortunately, fog removal algorithm is one that cannot be
used directly in real-time high resolution image processing
applications. Here, some sorts of generic optimization and
vectorization techniques are proposed for SIMD and non-
SIMD based processors to use the fog removal algorithm on
real-time high quality application.

Optimization is a process to reduce the number of oper-
ations. Vectorization is a process to vectorizing the scalar
operations into vector operations. In scalar operations, single
instruction of operation is perform on one pair of operand,
while in vectorization, single instruction of operation refers
to a pair of vector operands. Vectorization is based on SIMD
(Single Instruction Multiple Data) architecture, which achieves
the parallelism. If, anisotropic diffusion based fog removal
algorithm [1] is implemented without any optimization, vector-
ization and memory constraints then to process a VGA image
on Intel 73 with processor 3.1 GHz takes 0.2 sec i.e. 5 fps
(frame per second). To use the fog removal algorithm in the
real-time environment, proposed optimization and vectoriza-
tion approaches can be used in environments like GPU, DSP
processor and FPGA to achieve much higher performance. Fog
removal algorithm works on 24-bits precision, to optimize the
anisotropic diffusion operations, a conversion from 24-bit float
to 16-bit integer needs to be done.

This paper is organized as follows. In section II, related
work is discussed. Section III describes the fog removal al-
gorithm and its optimization and vectorization methodologies.
Results are discussed in section IV. Section V concludes the

paper.
II. RELATED WORK

In last few years, many vision algorithms [1]-[6] have been
proposed for the removal of fog from images and videos. It is
noted that amount of fog is directly proportional to the distance
between the viewer and the object. At long distance, density
of fog is high in comparison with short distance. Hence for
the removal of fog, estimation of the scene depth is required.
If, input is a single foggy image then estimation of the scene
depth is under constrained. There are many algorithms [1]-[5]
which remove fog from single image. For the estimation of

Input Contrast . Output
'y 'S -
image|::> Fogremoval N Eihkaticemsnt =) De-noising e
Anisotropicdiffusion Histogram smoothening
based Stretching

Fig. 1: Block diagram of fog removal algorithm

scene depth, these vision algorithms rely on some assumptions
like pre-estimated scene distance, relation between shading &
transmission functions, and relevant scene properties. Here, we
proposed the optimization of fog removal algorithm proposed
by Tripathi et.al [1] due to its efficiency and performance. This
algorithm is data driven and avoids user intervention and can
be used for color as well as monochrome image. Even in case
of high amount of fog, this algorithm performs well.

There is no previous work on optimization of fog removal
algorithm. But as the part of its improvement, parallelization
of fog removal algorithm is performed, where, multi-threading
concept is implemented by using pthread and OpenCV li-
braries in C. pthread is multi-threading library available in C.
OpenCV is a open source computer vision library under open-
source BSD license. By using 8-threads on 8 cores, nearly two
times better performance is achieved than its single thread
implementation. For further improvement, optimization and
vectorization of all the operations in the algorithm need to
be done.

III. FOG REMOVAL ALGORITHM

According to Koschmieder’s law, fog phenomenon can be
represented as the combination of attenuation and airlight as
mentioned in Eq (1)

I(x,y) = Io(x,y)e oY) 4 I (1 — e P10y (1)

Where, Iy(z,y) is image intensity in clear weather condition,
B is the extinction coefficient and d(z,y) is the scene point
distance from the camera. I, is global atmospheric constant
and I(x,y) is observed image intensity.

In Eq (1), right hand side is the combination of two terms
i.e. attenuation and airlight. Attenuation is a monotonically
decreasing exponential function of distance which reduces
contrast of the object and thus its visibility in the scene.
Airlight is an increasing function of the scene point distance
d(z,y) which adds whiteness in the scene. Block diagram of
the fog removal algorithm is shown in Fig. 1. First module,
fog removal is used for the removal of fog from the images.
As amount of fog depends on the depth of the scene thus
estimation of the depth for the image is required. Airlight
map is estimated, which stores the depth information. Airlight
map is the function of the distance of object from the camera.
Value of airlight should be different for those objects which
are at different distance. Considering this requirement, airlight
map should be smooth except the edges of the objects. Hence,
airlight map preferred intra-object smoothing over inter-object

363

smoothing. This requirement is satisfied by anisotropic diffu-
sion. Thus coarse airlight map is estimated by dark channel
prior. Anisotropic diffusion is used for the refinement of the
airlight map. Once airlight map is estimated, image is restored
using inverse Koschmeider’s law. De-foggy image may have
low contrast thus histogram stretching is used to enhance the
contrast. Finally, de-noising is performed to remove the noise
present in the image. Box filter of kernel size 3 x 3 is used
for image de-noising.

A. Optimization

Optimization is a process of improving the algorithm or
reduces the time complexity. In optimization, anisotropic dif-
fusion and histogram stretching are focussed here, as these are
the most time consuming process in the algorithm.

1) Anisotropic Diffusion: Anisotropic diffusion performs
smoothing by preserving edge information. Thus, where edge
information is high, less smoothing or diffusion required.
According to Perona and Malik [7], there are two diffusion
functions for anisotropic diffusion as given in Eq (2) and Eq
(3), where D is the edge information and c is the conduction
coefficient of the diffusion process. Both are asymptotically
decreasing, but operation wise Eq (2) is more costly, because
of the use of exponential function.

2

= —7 3
C=11p2 3)

On real time environment computation of Eq (3) is faster
than Eq (2). For further optimization, diffusion functions is
replaced with one lookup table (LUT). That mean, no need
to calculate the diffusion function every time for each pixel.
However, lookup table can be used only in case of conversion
of algorithm from 24-bits float precision to 16-bits integer
that defines the range/size of lookup table. Lookup table
implementation for both diffusion methods (Eq (2) and Eq
(3)) gives the same performance, because of its one time
calculation of diffusion function.

2) Histogram Stretching: Histogram stretching is used to
improve the contrast of the image. For that, transfer function of
the image is calculated. We replaced the histogram stretching
function with one lookup table that reduces the computation
time for each pixel. Transfer function of histogram stretching
is shown in Fig. 2. Where, 7 and s axis represent input and
output intensity values respectively and parameters r1, s1, r2,
and s2 determine the shape of the transfer function. Values

55| [- e e :
|
0D |
'; |
. |
o |
(%] i
S I
[1
et |
o
= 1
= |
= |
© |
(r1,s1) !
0,0
(0. 0) Input Gray Scale (r) 255

Fig. 2: Transfer function of histogram stretching

of the parameters are chosen based on the histogram of the
image. The values of r1 and r2 are intensity values of 10%
and 90% of the cumulative histogram respectively. The values
of sl and s2 are 5% and 95% of the output intensity range.
Estimation of these parameters is data driven which avoids the
user intervention.

B. Vectorization

Vectorization is a process to speed up the algorithm
by processing multiple elements in a vector. Vectorization
achieves the parallelism. Vectorization is based on SIMD
(Single Instruction Multiple Data) architecture. For vectoriza-
tion, we have to select the appropriate vector data structure
to maintain the integrity and accuracy of algorithm. Some
DSP processor doesn’t provide floating point operations on
vector. To port the algorithm on such a platform a conversion
is required as per processor configuration. To vectorize any
algorithm, first identify the parts that can be vectorized.
For example, below mentioned sample pseudo code can be
vectorized.

for(i=0;i <n;i++)
Ali) = B[i] + Clil;

Elements of A can be calculated from B and C parallelly,
because A is not dependent on the previous or old value of
itself. A[i], A[i + 1] and so on can be calculated parallelly.
Following sample code cannot be vectorized as element at ¢
of A is dependent on element at (i — 1) of itself. So, A[i+ 1],
Ali], Ali — 1] and so on, cannot be calculated parallelly and
cannot be vectorized.

for(i=0;i <mn;i++)
Ali] = Bli] + A[i — 1];

Vectorization of the fog removal algorithm is a big
challenge, because the algorithm has many phases and every
phase needs a kind of shift/selection operations to achieve
vectorization. In the below sections, all phases are described

with their corresponding vectorization method.

1) Anisotropic Diffusion: Anisotropic diffusion performs
smoothing on intra region and preserves the edges. This
function uses the neighbor’s information to estimate the
amount of smoothing required. Pictorial diagram to get the
neighbor’s information is given in Fig. 3. Detailed explanations
of anisotropic diffusion are given in [7] and [8]. Below is scalar
pseudo code to get edge information for anisotropic diffusion:

for (i=1; i<height —1; i++)
for (j=1; j<width—1; j++){
// calculate nabla—N,S,W,E (nabla is

edge information in particular direction)
nablaN = image[i—1][j] — image[i][]j];//North

nablaS = image[i+1][j] — image[i][]j];// South
nablaW = image[i][j—1] — image[i][]]:// West
nablaE = image[i][j+1] — image[i][]j];//East

//Code for diffusion using nablaN, nablaS,
nablaW and nablaE

i

N
i|WiC\W

S

Fig. 3: Neighbor Pixels in Image

For vectorization of above code, vectors for each direction
north, south, west and east as vecNablaN, vecNablaS, vecN-
ablaW and vecNablaE respectively are created. Suppose size
of each vector is n, vectorization of anisotropic diffusion will
be as given in below pseudo code:

for(i=1; i<height —1; i++)

for(j=1; j<width—1; j=j+n){

/% Vector for each direction vector =/
vecCentre[1:n] image[i][j:j+n—1];
vecNorth[1:n] image[i—1][j:j+n—1];
vecSouth[1:n] image[i+1][j:j+n—1];
vecEast[1:n] image[i][j+1:j+n];
vecWest[1:n] image[i][j—1:j+n—2];

/+* Calculate nabla—N,S,W,E using above vectors x/

vecNablaN[1:n] = vecNorth[l:n] — vecCentre[l:n];// North
vecNablaS[1:n] = vecSouth[l:n] — vecCentre[l:n];// South
vecNablaW [1:n] = vecWest[1l:n] — vecCentre[1:n];// West
vecNablaE[1:n] = vecEast[1:n] — vecCentre[l:n];// East

/* Code for edge information for diffusion using
vecNablaN, vecNablaS, vecNablaW and vecNablaE =x/

j-1 j j+1 j+n-2 j#n-1 j+n
i-1 N, N, Ny e N,
i |W, [c/w, [G/Wa/E, [C/E, | (W, |, [E,
i+l S, S, S, S,

Fig. 4: Pictorial diagram to get vector for all direction

Pictorial diagram shown in Fig. 4 shows the selection of
vectors of directions (North, South, East and West) for vector
of center pixels. Where, Cy, Co, Cs, ... C), refers to vector

of n center elements indexed from (i,j) to (¢,5 +n — 1).
N1, Ns, N3, ... N, refers to vector of n north direction
neighbor’s elements for corresponding centers Cp, Cs, Cs,
... Cy, and indexed from (i — 1,j) to (¢ — 1,5 +n —1). Sy,
Sa, Ss, ... Sy, refers to vector of n south direction neighbor’s
elements for corresponding centers Cy, Cy, Cs, ... C, and
indexed from (i +1,j) to (i+ 1,5 +n—1). Wy, Wa, Wi, ...
W, refers to vector of n west direction neighbor’s elements
for corresponding centers C1, Co, Cs,... C), and indexed from
(i,7 — 1) to (i,j +n —2). Eq, Es, Es,... E, refers to vector
of n east direction neighbor’s elements for corresponding
centers C1, Cy, Cs, ... C, and indexed from (i,j7 + 1) to
(i,§ +n).

2) Restoration: Output A (airlight map) of anisotropic
diffusion is used to restore the image Iy (z,y). For restoration,
inverse Koschmeider’s law is used and given in Eq (4).

I(J,‘7y,C)—A($7y)
1= (A((s,9))/Is(c))
Where, ¢ belongs to channel red, green and blue i.e.

¢ ¢ {r,g,b}. Here, vectorization is possible. First, store
the data into intermediate vectors and then process the vectors.

“

IO($7y7C) =

Sample scalar pseudo code for restoration of red channel as
follows

for(i=1; i<height; i++)
for(j=1; j<width; j++){
factor = 1.0/(1 =A[i][]j]);
Red = image[il[j] — A[il[j];
out[i][j] Redxfactor;

Vectorization for the above pseudo code is:

for(i=1; i<height; i++)
for(j=1; j<width; j=j+n){
vecl[l:n] = image[i][j:j+n—1];
vecA[l:n] = A[i][j:j+n—1];
vecF[1:n] = 1/vecl[l:n];
vecR[1:n] = veclI[l:n] — vecA[l:n];

out[i][j:j+n] = vecR[l:n] * vecF[l:n];

i

where, vecl, vecA, vecF and vecR are vectors of size n.

3) Histogram Stretching: Histogram stretching algorithm is
used to stretch the histogram of an image using a transfer
function that enhanced the contrast of image. This transfer
function (see Fig. 2) can be used as a look-up table. Histogram
of an image depicts the contrast of the image. A narrow
histogram means low dynamic range which corresponds to
the low contrast. A wide histogram means high dynamic
range or high contrast. Section III-A2 shows the optimization
on histogram stretching using lookup table. Vectorization of
histogram stretching using lookup table is used to take the
advantage of both optimization and vectorization to achieve
higher performance on SIMD based architecture. Sample
scalar pseudo code of histogram stretching for single channel
is as follows

/+* Scalar code: Histogram stretching using lookup

"LUT_stretch” of transfer function x*/
for (i=0; i<height; i++)

365

for(j=0; j<width; j++){
temp = image[il[j]:
res LUT_stretch[templ];
image[i][j] res;

Vectorized pseudo code for above scalar code is:

/+* Vectorized code: Histogram stretching using
lookup LUT_stretch =/
for (i=0; i<height; i++)
for (j=0; j<width; j=j+n){
vecTemp[1l:n] image[i][j:j+n—1];
/% Selection is used here to get correct values
from lookup table x/
vecRes[1:n] LUT _stretch[vecTemp[l:n]];
image[i][j:j+n—1] = vecRes[l:n];

}

4) Smoothing: Smoothing is a process to reduce the effect
of noise in image. There are many methods to do smoothing
like linear filter includes Uniform filter, Gaussian filter and
Triangular filter, and non-linear filter includes Median filter
etc.. A sample scalar pseudo code for smoothing using Uni-
form filter of kernel size b x b is as follows

filter_size b *x b;
for(i= b/2; i<height—b/2; i++)
for(j=b/2; j<width—b/2; j++){
avg 0;
for(k=—b/2; k<=b/2; k++)
for(1==b/2; 1<=b/2; 1++){
avg += imageln[i+k][j+1];

avg avg/filter_size;
imageOut[i][]] avg;

}
Vectorized pseudo code for above scalar code is:

filter_size = b % b;

for(i= b/2; i<height—b/2; i++)
for(j=b/2; j<width—b/2; j++){
vecAvg[l:n] = 0;
for (k=—b/2; k<=b/2; k++)
for(1==b/2; 1<=b/2; 1++){

vecTemp[1:n]
vecAvg[l:n] +=

imageIn[i+k][j+]1:j+1+n—1];
vecTemp([1l:n];

}
vecAvg|[l:n] vecAvg|[1:
imageOut[i][j:j+n—1] =

n]/filter_size;
vecAvg[l:n];

C. Memory Constraints Environment

Fog removal algorithm has many blocks of image and sizes
of these blocks are big enough to not to be fit in low memory
space system. Which indicate that the entire block of image
cannot be processed in one go. To fit this algorithm on such
high memory constrained environment, tilling approach is
used, in which each block is divided into tiles and processed
every tile, like that entire block can be processed. DMA is
used to move the tiles from SRAM to DRAM and vice-versa.
Tilling approach is shown in Fig. 5. It depicts the scenario,
in which tiling approach is used to process the entire block
of an image stored in SRAM memory space that cannot be
processed in small DRAM memory space.

IV. RESULTS

Simulation and porting of the above proposed approaches
are performed on different platforms like CPU and DSP
processors and achieved the better performance. We have

DMA

Tile 0
Tile1

Tilen

Block to process

DRAM

SRAM

Fig. 5: Tilling approach

analyzed the performance qualitatively and quantitatively.
Qualitative results are shown in Figs. 6, 7 and 8. These results
depict the test input images and output images with different
approaches. Quantitative analysis is shown in Table I, II and
III. Performances of these approaches are compared in terms of
computation time, contrast gain and perceptual quality matrix
(PQM) [11]. Here in Table I, computation time is estimated
for OFR, FRPO, FRPV, FRPOV, and FRPOVT on CPU and
DSP platforms (OFR - Original Fog Removal by Tripathi et al,
FRPO -Fog Removal with Proposed Optimization, FRPV -Fog
Removal with Proposed Vectorization, FRPOV -Fog Removal
with Proposed Optimization and Vectorization, FRPOVT -
Fog Removal with Proposed Optimization Vectorization and
Tilling, NA- Not Applicable. All values are in second. Less
value indicates high performance).

TABLE I: Comparison between OFR, FRPO, FRPV, FRPOV,
and FRPOVT on CPU and DSP platforms.

Platforms Approaches
OFR ERPO [FRPV [FRPOV | FROPVT |
CPUi33.1GHz | 022 012 NA NA NA |
DSP 600 MHz 6.667 3.005 0.015 0.0113 NA ‘
DSP 60 MHz . - 1.667 | 0933 0.106
low memory

TABLE II: Contrast gain for OFR and FRPOV on CPU and
DSP platforms respectively.

Image | Input OER FRPOV

testl [0.0186 |y eor | 0717 \
test2 0.0235 0.0641 0.0715 ‘
test3 | 0.0648 0.0781 0.0900— |

TABLE III: Perceptual Quality metric (PQM) for OFR and
FRPOV on CPU and DSP platforms respectively.

Image OER ERPQV. ‘

T

[testl 913569 | 90726
| tes2 1 95400 | 93978
[test3 9.7040 9.7797

Table I shows the improvement in performance on each
individual platform. Vectorization of fog removal algorithm

366

for CPU intel ¢3 processor is not done, that’s why values
for approaches FRPV, FROPV and FROPVT are NA. On
DSP 60 MHz platform values are in minutes for approaches
OFR and FRPO, because processor is specially design for
vector operation and original fog removal is based on scalar
operation, which gives very poor performance on DSP 60
MHz platform. In the Table I, entries in CPU and DSP 600
MHz processor for approaches OFR and FRPO, values in
FRPO are nearly 2 times lesser than that of OFR approach for
respective processors. From here, it is clear that only proposed
optimization gives two times better performance. Values in
DSP 600 MHz processor for approaches FRPV and FRPOV
proves the improvement of algorithm over vectorization. Value
in DSP 60 MHz low memory space processor for approach
FRPOVT is nearly 9 times lesser than that of FRPOV , which
proves that tilling approach improves the performance in low
memory constraint. Performance in terms of contrast gain is
shown in Table II. It is noted that clear day or non-foggy
images have more contrast in comparison with foggy images.
Thus gain in contrast for any fog removal algorithms should
be positive. Higher gain in contrast shows better performance.
Performance in terms of PQM is shown in Table III, this metric
computes (a) discontinuities at block boundaries in horizontal
and vertical direction, (b) activity in images expressed by devi-
ations of gradients from their respective block discontinuities,
and (c) the no. of zero-crossings in these gradient. According
to [11] the PQM value should be close to 10 for best perceptual
quality. Results verify that our optimization approaches do not
degrade the performance significantly.

V. CONCLUSION

In this paper, various approaches are proposed for opti-
mization and vectorization of fog removal algorithm. Results
verify that the proposed approaches improve the performance
significantly. As proposed optimization techniques give two
times of better performance, but causes negligible change in
quality (in terms of the contrast gain and PQM), because of
the conversion from 24-bits float to 16-bits integer to use the
lookup table for diffusion. If, realtime performance is a bottle-
neck then proposed optimization approaches are very effective.
Proposed vectorization approaches achieved a much higher
improvement on DSP platform, which gives a sign that pro-
posed approaches are effective as well as efficient. Proposed
tilling approach is also effective in low memory space. Overall
the proposed approaches are very effective individually and/or
combined. Results confirm that with the proposed optimization
and vectorization approaches, performance of the fog removal
algorithm is increased up to 90 fps (approximately) for VGA
image on DSP platform. Proposed approaches have wide
range of application for realtime implementation of various
computer vision and machine learning algorithms. In future,
research will focus on the memory optimization for further
improvement in the performance.

Fig. 6: Results of fog removal algorithm of optimization and vectorization. (a) Original ‘testl’ Image, result of (b) OFR
algorithm, (c¢) FRPO approach, (d) FRPOV approach.

(2) (b)

© (C)

Fig. 7: Results of fog removal algorithm of optimization and vectorization. (a) Original ‘test2’ Image, result of (b) OFR
algorithm, (c) FRPO approach, (d) FRPOV approach.

()

Fig. 8: Results of fog removal algorithm of optimization and vectorization. (a) Original ‘test3’ Image, result of (b) OFR
algorithm, (c) FRPO approach, (d) FRPOV approach.

[5]
(6]

REFERENCES

A K. Tripathi and S. Mukhopadhyay, “Single image fog removal using
anisotropic diffusion” in IET image processing Oct, 2011, 6, pp. 966 -
975.

Narasimhan, S. G., and Nayar, S. K., “Chromatic Framework for Vision
in Bad Weather”, in IEEE Conference on Computer Vision and Pattern
Recognition, 2000, 1, pp. 598-605.

Tarel, J. P., and Hautiere, N., “Fast visibility restoration from a single
color or gray level image”, IEEE International Conference on Computer
Vision, 2009, pp. 2201-2208.

Fattal, R., “Single image dehazing”, in International Conference on Com-
puter Graphics and Interactive Techniques archive ACM SIGGRAPH”,
2008, pp. 1-9.

Tan, R. T., “Visibility in bad weather from a single image”, in IEEE
conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O.,
Uyttendaele, M., and Lischinski, D., “Deep photo : Model-based pho-
tograph enhancement and viewing”, in ACM Transactions on Graphics,
2008, 27, 5, pp. 116:1-116:10.

Perona, P. Malik, J., “Scale-space and edge detection using anisotropic
diffusion”, in Pattern Analysis and Machine Intelligence IEEE Transac-
tions, 1990, 12, 7, pp. 629 - 639.

367

[8] Joachim Weickert, “Anisotropic Diffusion in Image Processing” Germany,
ECMI Series, Teubner-Verlag, Stuttgart, 1998.

[9] M. Weinhardt and W. Luk, “Pipeline vectorization” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, November
2006, 20, 2, pp 234-248.

[10] S. Biswas, N. R. Pal and S. K. Pal, “Smoothing Of Digital Images Using
The Concept Of Diffusion Process” in Pattern Recognition, Elsevier ,
March, 1996.

[11] Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-Reference Perceptual
Quality Assessment of JPEG Compressed Images”, in IEEE International
Conference on Image Processing, 2002, vol. 1, pp. 477-480.

