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Abstract—Accurate reconstruction of anatomical connections between neurons in the brain using electron microscopy (EM) images is
considered to be the gold standard for circuit mapping. A key step in obtaining the reconstruction is the ability to automatically segment
neurons with a precision close to human-level performance. Despite the recent technical advances in EM image segmentation, most of
them rely on hand-crafted features to some extent that are specific to the data, limiting their ability to generalize. Here, we propose a
simple yet powerful technique for EM image segmentation that is trained end-to-end and does not rely on prior knowledge of the data.
Our proposed residual deconvolutional network consists of two information pathways that capture full-resolution features and
contextual information, respectively. We showed that the proposed model is very effective in achieving the conflicting goals in dense
output prediction; namely preserving full-resolution predictions and including sufficient contextual information. We applied our method
to the ongoing open challenge of 3D neurite segmentation in EM images. Our method achieved one of the top results on this open
challenge. We demonstrated the generality of our technique by evaluating it on the 2D neurite segmentation challenge dataset where
consistently high performance was obtained. We thus expect our method to generalize well to other dense output prediction problems.

Index Terms—Residual learning, deconvolutional networks, deep learning, image segmentation, electron microscopy, brain circuit
reconstruction.

✦

1 INTRODUCTION

THE automated 3D reconstruction of neurites in brain
EM image stacks remains one of the most challeng-

ing problems in neuroscience [1], [2], [3]. In such prob-
lems, neurons spanning multiple adjacent image slices are
expected to be consistently identified and reconstructed.
Conventionally, this problem has been approached as a
2D prediction task, where each image slice is segmented
individually. Then, a post-processing step was performed to
generate 3D segmentation. The post-processing step usually
involves heuristic off-the-shelf classifiers that were trained
to link similar segments together across the entire image
stack. These classifiers usually rely on hand-crafted features
which incorporate prior knowledge and understanding of
the data. Thus, classifiers that worked well on some prob-
lems/datasets are not guaranteed to perform similarly in
different scenarios. It is thus desirable to design a fully
trainable system with minimal post-processing to perform
the 3D segmentation task in an end-to-end fashion.

Currently, deep convolutional neural networks
(CNNs) [4] are one of the main tools used for semantic
segmentation. These models are very powerful and capable
of extracting hierarchical features from raw image data.
They are characterized by their ability to learn features
directly from the raw images without relying on prior
knowledge. CNNs have achieved success in different
areas of machine learning and computer vision. Improved
performance has been achieved in image classification [5],
[6], [7], [8], [9] and object detection tasks [10]. Recently,
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this success has been extended to dense output prediction
problems such as semantic segmentation [11], [12], [13], [14],
[15]. These problems find applications in neuroscience of
neuronal membrane segmentation in electron microscopy
(EM) images [16], [17], [18] and multi-modality infant
brain image segmentation [19]. Although deep models
are rapidly approaching human-level performance on
object recognition tasks, their performance on dense output
prediction problems is still far behind human expert
performance, especially in brain connectomics involving
high-resolution EM image analysis [20], [21], [22], [23], [24],
[25], [26], [27], [28].

Several other computational methods have been used to
tackle the membrane detection problem from EM images in
addition to deep learning techniques. These include hier-
archical contextual models [29], cascades of classifiers [30],
[31], random forests [32] and biological priors [33]. How-
ever, deep learning techniques have been proved to out-
perform these techniques on several computer vision tasks.
Consequently, it is believed that continuously improving the
deep learning models is a promising direction for achieving
better performance on challenging tasks such as dense out-
put prediction.

In dense output prediction tasks such as EM image
segmentation, CNNs are expected to generate pixel-level
predictions. That is, each pixel in the input image is given a
prediction, resulting in a probability map whose size equals
to that of the input image. A common approach to achieve
dense prediction is to extract a fixed-sized patch centered
on each pixel and employ a regular CNN as used in image
classification to determine the label of the center pixel [16],
[17]. However, such approaches only incorporate limited
contextual information contained in the patch. Contextual
information can be increased by enlarging the patch size,
but excessively large patches tend to compromise the full-
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resolution, pixel-level predictions. Thus, dense output pre-
diction problems face the conflicting goals of full-resolution
prediction and incorporation of sufficient contextual infor-
mation [34].

In this work, we proposed a simple yet powerful model
known as residual deconvolutional network (RDN) to ad-
dress this challenge. Our proposed model naturally balances
the tradeoff between increasing contextual window required
for multi-scale reasoning and the ability to preserve pixel-
level resolution and accuracy expected for dense output
prediction. We achieved these goals by adding multiple
residual shortcut paths to a fully deconvolutional network
with minimum additional computations. This allows for
the training of very deep deconvolutional networks that
incorporate sufficient contextual information, and the multi-
scale full-resolution features are extracted and provided
through the residual paths. The final dense predictions
are made by integrating features computed through both
pathways, thereby achieving the conflicting goals in dense
output prediction in the same framework.

We evaluated our method on the challenging problem
of neurite segmentation from 3D EM images, which is a key
step in dense brain circuit reconstruction. We participated in
the open challenge on 3D EM image segmentation [35], and
we achieved the second place among many teams. Note that
most of the challenge participants rely on the given proba-
bility maps generated by a CNN as inputs to their tech-
niques and focus on creating heuristic post-processing tech-
niques to generate final segmentations. In contrast, we used
end-to-end trainable models with minimum post-processing
to achieve the top results. Our technique does not rely on
prior knowledge of the data. We thus expect our method to
generalize well to other dense output prediction problems.
We demonstrated this by extending our experiments to the
2D EM image segmentation challenge dataset [36], where
consistently high performance was achieved. The results
generated by our method can be coupled with any post-
processing technique used in the challenge, leading to im-
proved performance.

2 RESIDUAL DECONVOLUTIONAL NETWORKS

Most of the dense prediction methods do not explicitly
address the problem of losing pixel-level resolution. This
is mainly because most of the CNNs that were used for
dense output prediction are variations of the ones that
achieved excellent performance on classification and recog-
nition tasks. In those tasks, it is a common approach to
reduce the feature map sizes using pooling layers to increase
the receptive fields of the resulting feature maps, thereby
increasing the contextual window used to generate the
single prediction for a given image. When those networks
are tailored towards dense prediction, the attempts to recon-
struct a full-resolution prediction is hampered by the loss of
pixel-specific resolution information.

Fully convolutional networks (FCNs) [13], [37] are effi-
cient approaches to generate dense predictions for image
segmentation. The idea is to reconstruct the full-sized input
by performing several deconvolution operations at multiple
scales through aggregated bilinear interpolation. The seg-
mentation performance of FCNs is limited by the absence

of real deconvolution, and full-resolution features are not
well preserved. To address this limitation, deconvolution
networks [12] have been proposed recently by performing
actual deconvolution. The pooling layers are reversed in the
decoding stage by unpooling layers which keep track of the
maximum activation position selected during the pooling
operation. While both of these two approaches are attempts
to design novel deep models specifically for dense predic-
tion problems, they do not have explicit mechanisms to
address the conflicting goals in dense prediction problems.
They still suffer from loss of information due to excessive
reduction of resolution as we show in our experiments.

2.1 Residual Deconvolutional Network Model

In the design of our model, we intend to achieve three
goals: (1) Generate dense predictions equal in size to any
arbitrary-sized input. (2) Increase the receptive fields of
output maps to increase the contextual information used to
make pixel-level decisions. (3) Achieve pixel-level accuracy
by incorporating high resolution feature information.

We build on the deconvolution scheme proposed in [12]
to generate dense predictions. We enhance the performance
of deconvolution networks by adding residual connections
between every several stacks of convolution or deconvo-
lution layers. These shortcut connections perform projec-
tion mapping and are added to the output of the stacked
layers with minimum additional computation cost. It has
been shown in [9] that it is much easier to optimize a
residual mapping (with shortcut connections added) rather
than the original plain one. Residual networks in [9] also
demonstrated a significant performance gain as a result of
increased network depth on tasks of image classification
and object detection. For our dense prediction network
architecture, we propose to introduce projection shortcuts
not just on the convolutional stage responsible for extract-
ing the feature representations, but also on the deconvo-
lutional stage responsible for reconstructing the shape and
producing the objects segmentation. We believe that with
this design, our network is able to acquire more multi-
scale contextual information while reducing the effect of the
degradation problem [9], [38].

We also propose the use of a novel resolution-preserving
path to facilitate the reconstruction of full-resolution out-
put. The resolution-preserving paths are essentially the
projection mapping of the pooling layer outputs added
to the output of the corresponding deconvolution layer
before performing the unpooling operation. These paths
are responsible for transferring the missing high resolution
information from the encoding stage to the decoding stages.
Together, the context-growing and the resolution-preserving
paths have significantly boosted the performance of non-
residual deconvolutional networks as shown in Section 3.
An illustration of the RDN architecture is shown in Figure 1.

2.2 Network Architecture and Training

The RDN architecture is mainly inspired by the ideas in [7],
[9], [12] with three main differences:

• The convolution stage of the network has been mirrored
in the deconvolution stage to produce dense probability
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Fig. 1: Architecture of the residual deconvolutional network (RDN). The network consists of two pathways, namely context-
growing path and resolution preserving path. All convolution and deconvolution layers in the encoding and decoding
stages are of size 3x3. A kernel of size 1x1 is used to implement the projection mappings. Max pooling is used to reduce
the feature map sizes in the convolution stage while unpooling is used to restore the original size in the decoding stage.

maps instead of a single value prediction for each train-
ing instance. Context-growing paths have been added
to the deconvolution as well as the convolution layers.
Also, resolution-preserving paths have been added to
transfer resolution-specific information from encoding
to decoding stages.

• The input to the network is 3D patches extracted from
consecutive slices to exploit the 3D aspect of the data
in a way similar to how a human annotator perform
segmentation. Square patches were extracted randomly
from the entire image stack. We performed mirror-
padding for patches extracted from the first and last
slices to generate the 3D input to our network.

• We attempt to use minimal post-processing that in-
volves handcrafted features throughout the entire
pipeline (see Section 2.4).

The network contains 23 convolutional layers and 20
deconvolutional layers in total as the network is not entirely
symmetric. The kernel sizes are either 3x3 or 1x1 when we
performed branching before adding the residual paths. Zero
padding was used whenever size preserving was needed in
the learned layers. We added a batch normalization layer
after each learned layer and rectified linear units were used
as the non-linearity transformation. We used a patch size of
128x128x3 in training while the entire image was used in
testing.

No pre-processing was used on the raw input images.
However, we modified the training labels to reduce the
segment sizes by increasing the border width in-between
them (see Figure 2. The widening of borders was done using
a minimum kernel of size 5x5 by assuming that all segments
are having a label of 1 and borders are having a label of
0 in the ground truth label stack. Any pixel that was in a

neighborhood of size 5x5 of a border pixel was considered
to be border as well. Label widening was crucial in allowing
the network to differentiate border from non-border pixels.

Our model implementation was based on the publicly
available C++ Caffe [39]. We trained our RDN using back
propagation [4] with stochastic gradient decent. The mini-
batch size used was 15 as the dense prediction requires a
lot of memory. However, the network requires roughly 15k
iterations to achieve its full potential due to the existence
of residual paths which speeds up the computations. We
used a momentum of 0.9 and weight decay of 0.005. We
started with a base learning rate of 10−2 with a polynomial
decay. Random initialization was used for all learned layers.
The experiments were carried out on an NVIDIA K80 GPU
machine, taking roughly 2 days of training.

To improve the robustness of the resulting probability
maps, we applied 8 variations to the testing images before
passing them down through the network. A reverse trans-
formation was then applied to each resulting probability
map before taking the average across all variations. The
transformations were combinations of horizontal and verti-
cal mirroring, and/or rotations by +90, -90 and 180 degrees.

2.3 EM Image Dense Prediction Problem

In our experiments, we used two separate datasets [40]
for training and testing from the ISBI 2013 challenge. Each
dataset is a 3D stack of 100 sections from a serial section
scanning electron microscopy (ssSEM) of mouse cortex. The
pixel resolution is 6x6x30 nm/pixel which covers a mi-
crocube of approximately 6x6x3 microns. Both datasets have
high x- and y-direction resolution whereas the resolution
of z-direction is low. The neurites in the training stack
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Original label image Widened border label image

Fig. 2: An illustration of the effect of border widening on the training labels. We show the original label image (slice 50 of
the training stack) on the left and the corresponding altered label on the right. We show that label widening reduces the
segments sizes and increases the distance between them.

have been manually delineated, generating a corresponding
label stack of 100 sections. The training stack contains 400
neurites that have been labeled consistently across the 100
slices. Some neurites are split into several segments in some
slices while still required to preserve their unique label
across sections, which increases the complexity of the 3D
segmentation task (see Figure 3). The labels of the testing
stack are not available to challenge participants.

We formulated the 3D segmentation problem of 400
neurites in the training stack as a single 2D segmentation
problem. We built a pixel classifier (Section 2) that accepts
patches extracted from the raw input image to generate
2D probability maps. Each resulting probability map indi-
cates the probability of each pixel being either a membrane
(border) pixel or non-membrane (neurite). The probability
maps have no reference of which neurite a pixel belongs to,
had it been identified as a non-membrane pixel. The final
3D segmentation was obtained by a simple post-processing
technique described below.

2.4 Post-Processing

Super-pixel level algorithms are commonly used as a build-
ing block in most post-processing techniques for 2D and
3D segmentation tasks [11], [41], [42], [43]. They are used
mainly to generate an over-segmentation from probability
maps or affinity graphs. Later, another classifier is built
on top of the results of the super-pixel level algorithms to
accurately merge some of the overly segmented regions. The
key limitation of these approaches is that they reduce the
generality of the overall proposed techniques, since they
rely on hand-crafted features to build classifiers on top of
super-pixel algorithms. One of the fundamental advantages
of the proposed method is the ability to learn features from
the data, hence their ability to generalize to many other
datasets.

It has been shown before [11] that relying heavily on the
learned network while simplifying post-processing could
result in a dramatic increase in the speed of computations

while maintaining the generalization of the proposed tech-
nique. We followed this scheme by applying 3D watershed
algorithm directly to the entire probability map stack to
generate the final segmentations. The 3D watershed method
uses 26-connected neighborhoods to determine the catch-
ment basins in an image. We blurred the probability maps
with a Gaussian kernel of size 6x6 and a standard deviation
of 1. We also suppressed all minima in the probability
maps whose depth were less than a specific threshold. This
threshold was mainly used to control the level of over-
segmentation and can be tuned using the training data.
Our model tends to reduce the predicted segment sizes
due to the widening of training label borders described in
Section 2.2. As a result, we applied a reverse transformation
which used a maximum kernel to increase segments sizes.
The overall processing is simple, fast and requires minimum
additional computations.

The 3D watershed method does not rely on any hand-
crafted features and needs only 1 parameter to be tuned.
The quality of the probability maps generated by our RDN
is a key for the 3D watershed to be able to generate the
final segmentations directly without relying on any ad-
ditional computations. We demonstrate in Section 3 that
its performance on probability maps with lower quality
is hampered, making the use of more sophisticated post-
processing techniques a necessity.

3 RESULTS

In our experiments, we divided the training stack into 80
slices for training and the rest for validation. We trained
our network on the training data for 15K iterations using
random sampling of patches. We then evaluated on the
validation data. The adapted Rand error metric was used
by the ISBI 2013 challenge organizers [35] to assess the
segmentation results. The adapted Rand error is defined as:
1 - the maximal F-score of the Rand index (excluding the
zero component of the original labels). To evaluate on the
testing data, we relied on an automated online system where
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Fig. 3: In this figure, we show the images of the first 3 consecutive slices of the training data cropped at the same position.
Segments having the same color across the 3 slices represent the same neurite. The arrows point towards a neurite that has
been split in slices 1 and 2 while it appears as a single segment in slice 3. The required segmentation should assign the
same label for the splits in slices 1 and 2 even if they are not connected as they belong to the same neurite.

TABLE 1: Comparison between different techniques applied
to the validation data. The performance reported is after
applying 3D watershed with the best over-segmentation
threshold for each set of probability maps independently.

Method Rand error

RDN 0.0814
IDSIA 0.1184
Deconvolution Network (DN) 0.1514
DIVE CNN 0.1541

our submitted results were compared to the hidden ground
truth labels available only to the challenge organizers.

We demonstrated the superiority of our proposed model
over other techniques by using the results in Table 1.
The results were obtained by applying the 3D watershed
method to the validation probability maps as discussed
in Section 2.4. We performed grid search to obtain the
best parameter to control the over-segmentations for each
set of probability maps independently while applying 3D
watershed. We compared our proposed RDN to three other
techniques:

• IDSIA [16]. Probability maps obtained from training a
CNN. These probability maps are provided by the chal-
lenge organizers as an optional parameter to use by the
participants to evaluate their proposed post-processing
techniques.

• DIVE CNN [17]. Probability maps obtained from training
a CNN. These probability maps are obtained from one
of the leading teams in the ISBI 2012 2D segmentation
challenge [36] and we used their proposed model to
generate these probability maps for the 3D challenge data.

• Deconvolution Network (DN): Probability maps obtained
by training the same exact RDN network without the
residual paths.

From Table 1, it is clear that our RDN outperforms all

the other CNN-based models by a significant margin. For
the IDSIA probability maps, we do not know which slices
were used as validation data by the generating team as
they provided their probability maps for the entire training
stack. However, we assumed that they used the same val-
idation slices as ours (slices 1-20 from the training stack).
This assumption is either fair or in favor of the IDSIA
probability maps in case the chosen slices were in fact used
as training instances by them. Nonetheless, our RDN still
achieved a much better segmentation using 3D watershed.
A qualitative evaluation of the performance of those models
are provided in Figure 4. We showed the probability map
generated for the same slice by different networks and we
highlighted sample areas of improvement in colored boxes.
Our RDN was able to recover most of the missed borders
by the CNN trained by IDSIA and DIVE and also improve
the certainty of some others. In contrast to DN, our RDN
is less sensitive to noise and produces clear probability
maps. We compare the final segmentation obtained from our
RDN, the IDSIA CNN and the DIVE CNN in Figure 5 after
applying 3D watershed. We showed 3 consecutive slices
from the validation data where pixels have been consistently
given the same color across the 3 slices to denote that they
belong to the same neurite. We noticed that the quality of
the probability maps generated by RDN has significantly
impacted the segmentation results. The CNN-based proba-
bility maps result in poor segmentation by either splitting
or merging many segments, thus requiring the use of more
sophisticated post-processing methods.

We applied our trained model on the testing stack where
the labels are hidden and submitted our results to the
ISBI 2013 challenge. We achieved the 2nd ranking among
many participating teams. Most of the challenge partici-
pating teams are working on improving post-processing
techniques while relying entirely on the probability maps
provided by the IDSIA team. For example, the leading team
generated over-segmentations based on the IDSIA probabil-
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(a) Raw Image (b) Ground Truth (c) IDSIA

(d) DIVE CNN (e) DN (f) RDN

Fig. 4: Qualitative comparison between the results of several models with respect to training slice number 50. Sample
areas with clear differences are marked with colored boxes. A: Raw input image. B: Ground truth 2D label image. C:
Probability map generated by team IDSIA with a CNN [16]. D: Probability map generated by team DIVE with a CNN [17].
E: Probability map generated by a deconvolution network (DN). F: Probability map generated by our RDN.

TABLE 2: Comparison between our method and the other
techniques in the ISBI 2013 challenge. This ranking is based
on the results published on the challenge leaders board on
May 19, 2016. We showed only the top 9 teams.

Team Rand error

IAL 0.07107
DIVE (our team) 0.09104
Team Gala 0.10041
SCI [42] 0.10829
MIT [43] 0.11361
Anonymous 0.11501
FlyEM [44] 0.12504
rll 0.13111
Rhoana 0.14835

ity maps and then built a random forest classifier based on
features computed from the over-segmentations. In contrast
to these technique, we do not rely on any hand-crafted
features throughout the entire processing pipeline and our
method is very fast with minimum additional computations.
The corresponding team rankings are shown in Table 2. We
note that this challenge is an ongoing one and rankings are
subject to change as more teams start joining.

By analyzing the provided dataset, we noticed that the
testing stack contains segments with much larger sizes than
the ones present in the training stack and with a higher
frequency. As a result, a regular deconvolution network is
not able to recognize those large segments, resulting in their
over-segmentations. We highlight the effectiveness of the

proposed RDN model in dealing with this problem and the
importance of resolution-preserving paths in Figure 6. We
trained a RDN model without resolution-preserving paths
and evaluated it on the testing stack where this problem
occurs. We noticed that without resolution-preserving paths,
the network was not able to reconstruct the full-resolution
output effectively, resulting in a poor over-segmentation
of very large segments. On the other hand, a regular
RDN avoided this over-segmentation, thereby confirming
its ability to reconstruct full-resolution output by using the
resolution-preserving paths.

Evaluation on the ISBI 2012 challenge dataset

To demonstrate the ability of our proposed model to gen-
eralize, we extended our experiments to the ISBI 2012
dataset [45]. The dataset consists of a full stack of EM
image slices of Drosophila first instar larva ventral nerve cord
(VNC). The stack contains 30 grayscale sections of 512 by
512 pixels each. In our experiments, we divided this stack
to 20 training slices and 10 for validation. We trained the
same RDN classifier explained in Section 2.2 with only a
few differences:

• 2D patches were extracted instead of 3D. This is mainly
due to the extremely low Z-direction resolution for the
provided data.

• Only 2D kernels were used through the entire network.

We used 2D watershed as our post-processing with only
8 neighborhood pixels used to determine the catchment
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RDN

IDSIA

DIVE

Fig. 5: Comparison between the segmentations obtained by applying the 3D watershed method to our RDN probability
maps (top row), the IDSIA probability maps (middle row) and the DIVE probability maps (bottom row). We show 3
consecutive slices from the training stack (slices 2-4) to demonstrate that pixels belonging to the same neurite are segmented
consistently (identified by the same color across slices).

basins in the image. Again we did not rely on any problem-
specific post-processing technique to ensure the generaliza-
tion of our technique. We compared our results with a CNN-
based classifier trained by the DIVE team [17] participating
in the ISBI 2012 EM segmentation challenge [36]. They used
an advanced post-processing technique [42], [46], where
a random forest classifier is built on top of super pixels
output followed by building a Merge Tree (MT). Unlike
our technique, the features extracted for the random forest
classifier in the MT are generated based on prior knowledge
of the data.

We used three common metrics to evaluate the segmen-
tations generated:

Minimum Splits and Mergers Warping error is a seg-
mentation metric that penalizes topological disagreements,
i.e: the number of splits and mergers required to obtain the
desired segmentation.

Foreground-restric Rand error is defined as 1 - the
maximal F-score of the foreground-restricted Rand index,

a measure of similarity between two segmentations.

Pixel error is defined as 1 - the maximal F-score of
pixel similarity, or squared Euclidean distance between the
original and the result labels.

We compared the results of our RDN followed by 2D wa-
tershed to the DIVE CNN followed by Merge Tree in Table 3.
The results are obtained from evaluating on the validation
data (slices 21-30). Our RDN with a general post-processing
technique clearly outperforms its CNN counterpart across
all evaluation metrics. We note that the Rand error is be-
lieved to be the most suitable metric to evaluate semantic
segmentations as it penalizes over and under segmentations
of objects instead of pixel mispredictions. The improvement
obtained from using our RDN is mainly demonstrated in
the improved Rand error value. We provided a qualitative
comparison between both techniques in Figure 7.
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With resolution-preserving paths Without resolution-preserving paths

Fig. 6: An illustration of the effect of resolution-preserving paths on the final segmentation. We show the results generated
for testing slices number 45 (top row) and 82 (bottom row) by our RDN with and without resolution-preserving paths on
the left and right respectively. Colored boxed have been placed on the compared segments.

TABLE 3: Comparison between our RDN and the DIVE
CNN segmentations on the ISBI 2012 challenge validation
set.

Method Rand error Warping error Pixel error

RDN 0.0282 0.0026 0.0937
DIVE CNN 0.0388 0.0029 0.0939

4 CONCLUSION

We proposed a computational technique for EM image
segmentation by obtaining dense predictions that combined
multi-scale contextual reasoning along with full-resolution
reconstruction. Our approach achieved promising perfor-
mance while relying on minimum post-processing. We ex-
pect better probability maps be generated with improve-
ment in the z-dimension resolution of the data provided.
A limitation in the underlying post-processing techniques
is that it requires a specific parameter to control the level
of over/under segmentation. Automatic tuning of this pa-
rameter is not straightforward and can be data-specific even
if it is tuned on the validation dataset. We used semi-
automated visualization of the segmentations to overcome
this limitation. Nonetheless, our method can be paired with
any other post-processing techniques, leading to an overall
performance improvement. We did not use hand-crafted
features either in the network training or post-processing
stages. Consequently, we demonstrated the ability of this

model to generalize by applying it to multiple datasets
obtained from different species. Our method achieved con-
sistently promising performance. We believe this method
can generalize well to other similar dense output prediction
tasks.
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