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Region of interest (ROI) extraction techniques based on saliency comprise an important branch of remote
sensing image analysis. In this study, we propose a novel ROI extraction method for high spatial reso-
lution remote sensing images. High spatial resolution remote sensing images contain complex spatial
information, clear details, and well-defined geographical objects, where the structure, edge, and texture

lifting wavelet transform to preserve local detail features in the wavelet domain, which is beneficial for
the generation of edge and texture saliency maps. We also improve the extraction results by calculating
the amount of self-information contained in the spectra to obtain a spectral saliency map. The final
saliency map is a weighted fusion of the two maps. Our experimental results demonstrate that the
proposed extraction algorithm can eliminate background information effectively as well as highlighting
the ROIs with well-defined boundaries and shapes, thereby facilitating more accurate ROI extraction.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Increases in the ability to acquire high spatial resolution remote
sensing images by various satellites and sensors have led to great
challenges in the detection of valuable targets from high spatial
resolution remote sensing images [1–3]. Region of interest (ROI)
extraction techniques based on saliency have been introduced into
the remote sensing image analysis field and they have become a
research hotspot in recent years [4–9]. In addition, these techni-
ques are employed as an efficient information processing method
to handle the rapidly growing volume of remote sensing images.
After providing a potential ROI, the viewer can search for specific
objects in the region and computing resources can be allocated in
a reasonable manner to enhance the operating efficiency of an
image processing system [10].

In remote sensing images, typical ROIs include residential
areas, airports, airplanes, wharfs, and ships. Compared with the
background, they have salient features that immediately grab
human attention; hence, it is suitable to extract ROIs via saliency
models. In particular, the salient characteristics are as follows.

a) Abundant and complex structure, edge, and texture informa-
tion, which is typical of the interior of a residential area.
).
b) Unique shapes, particularly for airplanes, which are not as
texture rich as residential areas, but their unique shape makes
them stand out.

c) Orientation information, e.g., the ships usually head in the
same direction because of the similar ocean currents and
weather patterns in nearby waters.

d) Their distinct spectra compared with the surrounding
environment.

The ROIs possess these characteristics, whereas the background
does not, so high contrast stimuli are generated in receptive fields
of the human visual system and human cortical cells may be
hardwired to respond preferentially to these stimuli [11]. Visual
saliency refers to distinctive parts of a scene that immediately
attract significant attention without any prior information, thus it
is flexible in adapting to different ROI extraction tasks, in which
retraining is unnecessary.

Saliency-based methods were originally designed for natural
scene images [12–15] by utilizing the intensity, color, orientation,
texture, and other low-level features to determine contrast for
saliency computation. One of the earliest computational models,
which was built on a biologically plausible architecture [16], was
proposed by Itti et al. (IT) [17]. This model obtains saliency maps
based on the intensity, color, and orientation channels, and com-
putes the final master saliency map by combining these three
conspicuity maps based on center-surround differences.

Various computational models have been inspired by the bio-
logical concept of center-surround contrast in the IT model. These
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estimation models can be broadly classified as biologically-based,
purely computational, and a combination. Harel's graph-based
visual saliency method (GB) [18] is a combination model that
employs an idea from graph theory to concentrate mass in acti-
vation maps and to obtain activation maps from raw features.

Among the purely computational models, Achanta et al. [14,15]
attempted to build a saliency model (FT) using color contrast
information. The feature vector was acquired in the CIE Lab color
space and the absolute difference between the Gaussian-blurred
image and the arithmetic mean vector was then calculated to
obtain the saliency map. Goferman et al. [19] proposed a novel
algorithm called context-aware saliency detection (CA). Supported
by psychological evidence, CA uses a detection algorithm that
relies on four basic principles reported in the psychological
literature.

Cheng et al. [20] proposed a histogram-based contrast (HC)
method to measure saliency for image pixels using color statistics
determined for an input image. They also presented a regional
contrast-based saliency extraction algorithm (RC), which simul-
taneously evaluates the global contrast differences and spatial
coherence. In RC, the input image is first segmented into regions,
before estimating saliency for each region as the weighted sum of
the region's contrasts compared with all of the other regions in the
image. The weights are set according to the spatial distance, where
more distant regions are assigned smaller weights. RC obtains high
precision and recall rates with natural images. In addition to these
models, saliency models have been proposed in the spatial
domain, such as an information theory-based computational
model [21] and contrast-based filtering for salient region detection
[22].

Recently, researchers have also tried to obtain solutions in the
transform domain. The Fourier transform can be expressed in
polar form using two different components: phase and amplitude
spectra. By analyzing the log amplitude spectrum, Hou et al. [23]
defined the spectral residuals (SR) algorithm, where the saliency
map is derived by applying the inverse Fourier transform to an
exponential function that combines spectral residual and phase
spectrum information. In addition, Guo et al. [24] proposed a
computational model based on the quaternion Fourier transform.
Compared with the Fourier transform, the wavelet transform can
perform multi-scale spatial and frequency analyses simulta-
neously, and thus it has begun to attract more attention from
researchers. Murray et al. [25] computed weight maps from the
high-pass wavelet coefficients of each level and the saliency map
was obtained by the inverse wavelet transform of the weight
maps. To improve this model, Imamoglu et al. [26] proposed a
wavelet transform-based computational model (WT) that uses
low-level features, which considers both local center-surround
differences and the global contrast, thereby obtaining better
results than the method of Murray et al. [25].

It should be noted that these standard saliency detection
methods were not designed specifically for remote sensing images
and differences exist between ROI extraction from remote sensing
image and natural scenes. The ROIs in natural scenes have less
complex textures and their distinct colors make them instantly
recognizable from the surroundings. In addition, when shooting a
picture, photographers manually set the lens to blur the back-
ground and focus on the ROI, which helps to highlight the ROIs.
Furthermore, there is a strong center bias because human photo-
graphers tend to place one or two objects of interest in the center
of photographs [27], which significantly narrows the search when
locating ROIs. By contrast, ROIs such as airplanes and ships are
scattered in the background of remote sensing images, where their
positions and number are unpredictable. Moreover, the structure,
shape, and texture information is abundant and complex in a high
spatial resolution remote sensing image. To ensure that the input
is accurate for subsequent applications, such as object recognition,
image compression, and image retrieval, the principles followed to
achieve good ROI extraction are stricter in remote sensing images.
For example, the ROIs should be uniformly highlighted with well-
defined boundaries to ensure the integrity of ROIs. In addition, the
final object maps should retain full resolution without any loss of
detail to preserve the fineness of remote sensing images. Thus,
there is a difference between our method and standard saliency
methods for objective evaluation, as described in Section 3.2.

In general, standard saliency methods may ignore the fact that
high spatial resolution remote sensing images contain complex
spatial information, clear details, and well-defined geography
objects. Thus, they are likely to extract these complex structure,
edge, and texture features in a coarse manner. For example, the IT
model [17] obtains the saliency map based on the intensity, color,
and orientation channels. In addition, the orientation information
is obtained using oriented Gabor pyramids O(ơ, θ) with θ A{0°,
45°, 90°, 135°}. GB [18] is derived from IT, so it obtains orientation
information in the same manner. However, only four directions are
used, which makes this method less accurate than ours. Moreover,
the saliency map is 1/256 of the original image size, which
inevitably leads to the loss of texture details. The same problem
affects SR [23], which down-samples the input image to 64�64
pixels. Other methods such as FT [14], CA [19], HC [20], and RC [20]
neglect texture features and they focus preferentially on the color
and luminance features during saliency calculations. WT [26]
represents different features that range from edges to textures by
wavelets, but it employs Daubechies wavelets (Daub.5), which are
not suitable for approximating image features with an arbitrary
orientation that is not vertical or horizontal.

In recent years, saliency computational models have also been
introduced into the remote sensing image processing field and
they have become a research hotspot. A saliency computation
approach (RS) was introduced [4] to select perceptually salient and
highly informative regions that represent the main contents of
high-resolution remote sensing images. Zhang et al. [7] used high-
frequency filters for frequency domain analysis (FDA) to detect
ROIs in high spatial resolution remote sensing images, but the
model produces an attenuated interior in ROIs, thereby yielding
incomplete ROI extraction. Zhang et al. [8] then proposed another
model based on multi-scale feature fusion (MFF) of the intensity
saliency result and the orientation saliency result to obtain one
saliency map for ROI extraction, where the orientation saliency is
based on the conventional lifting wavelet transform (LWT). Fur-
thermore, Wang et al. [28] successfully applied the saliency tech-
nique to airport detection. Ding et al. [29] also attempted to
implement ship detection using a saliency technique. Another
efficient ROI extraction method based on spectral analysis was
introduced for saliency testing in remote sensing images [6].

Based on the four characteristics of ROIs mentioned above, we
propose a novel directional wavelet called normal directional LWT
(ND-LWT) to fully exploit the information contained in texture,
shape, and orientation. This method is designed specifically for
high spatial resolution remote sensing images and it also makes
use of spectral information to facilitate accurate extraction. The
proposed method can preserve the local details of features in the
wavelet domain, which is beneficial for generating the edge and
texture saliency map. Our experimental results demonstrate that
the proposed extraction algorithm can eliminate the background
information in an effective manner as well as highlighting the ROIs
with well-defined boundaries and shapes, thereby allowing more
accurate ROI extraction.

The remainder of this paper is organized as follows. The pro-
posed ROI extraction algorithm is introduced in Section 2. Section
3 presents the experimental results and discussion. In Section 4,
we give our conclusions.



Fig. 1. Directions for prediction and updating in the vertical processing.

L. Zhang et al. / Neurocomputing 179 (2016) 186–201188
2. Methodology

In this section, we describe the architecture of our method in
detail. There are three main steps. First, we generate an edge and
texture saliency map based on ND-LWT. In this subsection, we
briefly outline the evolution from LWT to directional LWT (DLWT),
and then to ND-LWT. Next, the spectral saliency map is obtained
through self-information computation. Finally, we produce the
final saliency map by weighted fusion.
2.1. Edge and texture saliency map

2.1.1. Traditional lifting scheme
The traditional lifting scheme [30,31] can be considered as an

alternative implementation of the first generation classical dis-
crete wavelet transform, where it comprises four steps: Split,
Predict, Update, and Normalize. The traditional lifting scheme can
decompose a two-dimensional (2D) lifting wavelet using two one-
dimensional (1D) lifting wavelets. Without any loss of generality,
we assume that it is first decomposed by a 1D lifting transform in
the vertical direction and then by a 1D lifting transform in the
horizontal direction. Let x[m, n] be a 2D signal. The classical lifting
scheme is performed as follows.

2.1.1.1. Split:. The input signal is split into two parts: the even
subset xe[m, n] and the odd subset xo[m, n].

xe½m;n� ¼ x½m;2n�
xo½m;n� ¼ x½m;2nþ1�

(
ð1Þ
2.1.1.2. Predict:. The odd subset xo[m, n] located at an integer
position is predicted from the neighboring even subset xe[m, n].
The resulting prediction residuals or high-frequency subband
coefficients are

d m;n½ � ¼ xo m;n½ ��Pe½m;n�; ð2Þ

where the prediction value Pe[m, n] is a linear combination of the
neighboring even subset:

Pe½m;n� ¼
X
i

αixe½m;nþ i�; ð3Þ

where αi is the high-pass filter coefficient given by the filter taps.

2.1.1.3. Update:. The even subset xe[m, n] is updated with the
neighboring high-frequency subband coefficients d[m, n]. The
coarse approximation values or low-frequency subband coeffi-
cients are

c m;n½ � ¼ xe m;n½ �þUd½m;n�; ð4Þ

where Ud[m, n] is a linear combination of neighboring prediction
residual values d[m, n]:

Ud½m;n� ¼
X
j

βjd m;nþ j½ �; ð5Þ

where βj is the low-pass filter coefficient, which is also given by
the filter taps.

2.1.1.4. Normalize:. The outputs are weighted by Ke and Ko. These
values are used to normalize the energy of the underlying scaling
and the wavelet functions.
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After completing the 1D lifting-based vertical transform, the 1D
lifting-based horizontal transform is performed in the same
manner. Each lifting step is always invertible. If the same pi and ui
are selected in the prediction and updating stages, the lifting
scheme guarantees perfect reconstruction.

2.1.2. Directional lifting wavelet transform
To relax the condition of LWT that the predictor should use

samples from the current row (or column during columnwise
processing) that is being processed (see Fig. 1(a)), Gerek et al. [32]
proposed a 2D orientation-adaptive lifting structure that intro-
duces two more diagonal directions (7 45°) from the upper and
lower rows in the prediction and updating stages of the lifting
structure (see Fig. 1(b)). Instead of always making the predictions
in a horizontal or vertical direction, they proposed a rule that
allows the optimal direction for prediction to be selected, where
the prediction error is minimal in the chosen direction. As a result,
the detailed images obtained by the directionally adaptive 5/3
wavelet generally contain less signal energy at several decom-
position levels. High-band signal energy reduction at the diagonal
edge locations yields better compression, which preserves the
sharp edges in the original image better compared with the
ordinary 5/3 wavelet decomposition. Subsequently, Ding et al. [33]
proposed another 2D wavelet transform scheme for adaptive
directional lifting (ADL) in image coding to further enhance the
spatial resolution with higher accuracy. Instead of only applying
integer pixel positions, as found in the previous method, ADL
achieves high angular resolution in the prediction and update
operations by using fractional pixels, which can be calculated with
any existing interpolation method (see Fig. 1(c)). Therefore, the
multi-orientation attribute of DLWT is highly suitable for captur-
ing the rich texture information found in remote sensing images.
In particular, when the edges are not horizontal or vertical, a
better description can be obtained by aligning the direction of
wavelet transform to the direction of the edges.

2.1.3. Normal direction lifting wavelet transform
We propose ND-LWT to better measure the saliency for ROI

extraction, which differs from the aforementioned DLWT method
in four mainly respects, as follows.

a) The ROIs in remote sensing images are usually texture rich
with complicated structures in the form of edges, so ND-LWT
aims to capture this characteristic. In contrast to the well-
studied directional LWT, which selects the prediction direction
to significantly reduce the signal energy in the high-pass
subbands, ND-LWT uses the normal in the DLWT to highlight
the edges, which obtains large-magnitude high-frequency
coefficients on the edges.

b) As shown in Fig. 1(d), we refine the directional lifting
approaches by improving the choice of directions. In total, 15
discrete directions labeled from –7 to 7, including samples
from both the neighboring and the second most distant odd
rows, are defined as vertical transform direction templates to
achieve higher angular resolution during prediction, which
allows more accurate edge detection and enhancement.

c) Traditional DLWT is used for data compression, which means
that it is necessary to save the optimal transform direction
based on the angle for each pixel in the odd subset to recover
the original data. ND-LWT is used for feature extraction during
saliency analysis, but there is no need to implement an inverse
wavelet transform to reconstruct the original image. There-
fore, the storage requirements can be reduced by abandoning
directional angle saving.

d) We also propose a novel high-pass coefficient filtering process
to reduce the background disturbance when generating the
binary mask. It should be noted that not all of the coefficients
in the high-pass subband correspond to the pixels of ROIs,
such as non-edge coefficients. They are typically smaller than
edge coefficients after the application of ND-LWT. Inspired by
the wavelet threshold denoising scheme, we successfully
eliminate these unwanted non-edge coefficients by setting
an appropriate threshold. Hence, the successfully retained
coefficients are mainly those that preserve the edge and
texture information.

Next, we describe the ND-LWT algorithm explicitly. The pre-
diction of the odd subset xo[m, n] involves a linear combination of
neighboring even coefficients with strong or weak correlations.
The prediction values are shown in Eq. (6), where sign(x) is 1 for
xZ0 but �1 otherwise, and θl is the optimal transform direction.

Pe m;n½ � ¼
P
i

αixe mþ signði�1Þ tan θl ;nþ i½ � lA �6⋯6½ �P
i

αixe mþ signði�1Þsignð tan θlÞ;nþ iþ signði�1Þ½ � lA �7;7½ �

(
ð6Þ

Similar to the prediction stage, during the updating stage for
ND-LWT, the updated value of the even subset xe[m, n] is a linear
combination of the neighboring prediction residual values with
strong or weak correlations, which is computed using the fol-
lowing equation.

Ud m;n½ � ¼

P
j
βjd mþsignðjÞ tan θl;nþ j

� �
lA �6⋯6½ �

P
j
βjd mþsignðjÞsignð tan θlÞ;nþ jþsignðjÞ� �

lA �7;7½ �

8>><
>>:

ð7Þ
To perform the ND-LWT at angle θl, the intensity values are

required at the fractional pixel locations. In other words, tan θl
may not be an integer in Eqs. (6) and (7). The sinc interpolation
technique, which was applied successfully in a previous study [33],
is employed to calculate the fractional pixel values in the proposed
method.

It should be noted that the principle followed for selecting the
optimal transform direction is critical in ND-LWT. After analyzing
the local spatial correlations in all directions, ND-LWT selects a
direction to maximize the high-frequency energy, which is typi-
cally the direction of the edge normal. Hence, ND-LWT can pre-
serve the local detail features in the wavelet domain. An example
using the popular 5/3-tap biorthogonal wavelet filter is shown in
Fig. 2, which indicates that the ND-LWT preserves the local fea-
tures better in the wavelet domain.

The edge and texture saliency map is generated according to
two key concepts. First, the ND-LWT preserves the local features.
Second, self-similarity is exploited across different scales of the
wavelet transform. Fig. 3 shows a three-step frame diagram to
illustrate the edge and texture saliency generation process. The
first step involves performing the ND-LWT, which is followed by
wavelet coefficient integration and high-pass coefficient filtering.
Subsequently, the wavelet coefficients that belong to ROIs are
selected according to their self-similarity across different scales.
Finally, the saliency map is computed in the third step.

2.1.3.1. Step 1:. The input panchromatic remote image X is first
decomposed using an N-level ND-LWT:

AN ;Hs;Vs;Ds½ � ¼NDN Xð Þ; ð8Þ
where NDN(�) denotes the N-level ND-LWT decomposition. The
maximum number of scaling for the ND-LWT decomposition
process is N¼ log 2h=2

� �
, where, h is the shorter border of the

input remote sensing image, the resolution index s A{1, 2, …, N},
and the Nth level corresponds to the coarsest resolution. AN is the
approximation output at the coarsest resolution, and Hs, Vs, and Ds



Fig. 2. Comparison of wavelet transforms: (a) intensity image, (b) conventional LWT, and (c) ND-LWT.

Fig. 3. Visual frame diagram of the edge and texture saliency map generation.
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are the horizontal, vertical, and diagonal details for the given scale
s, respectively.

To perform wavelet coefficient integration and high-pass
coefficient filtering, we implement the following stages to mod-
ify the ND-LWT coefficients.

a) For every scale s, the coefficients in Hs, Vs, and Ds are replaced
by their absolute values, and then normalized to [0, 1].

b) The coefficients in Hs, Vs, and Ds are further integrated using
one pyramid.

Ls ¼HsþVsþDs; sA 1;⋯;Nf g ð9Þ
c) It should be noted that not all of the coefficients in the high-

pass subband correspond to pixels in the ROIs, such as non-
edge coefficients. Thus, a high-pass coefficient filtering process
is necessary to eliminate these unwanted non-edge coeffi-
cients by using an appropriate threshold.

Ls ¼
0 if Lsot

Ls otherwise

(
ð10Þ

Inspired by wavelet shrinkage and the wavelet threshold
denoising theory [34], t is computed as

t ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln z

p
; ð11Þ

ρ¼Median Lsð Þ
0:6745

; ð12Þ

where ρ is the noise variance, z is the size of the input signal, and
Media(Ls) denotes the median value of Ls.
An example showing the results of N-level ND-LWT decom-
position and the Ls coefficients is presented in Step 1 in Fig. 3.

2.1.3.2. Step 2:. In addition to the high-pass small coefficients,
other non-ROIs (e.g., linear road and mountain ridge) are also
undesirable forms of interference during ROI extraction. First, we
select the wavelet coefficients that belong to ROIs at scale N. Next,
the coefficients of the other scales are determined in an efficient
manner based on the self-similarity principle across different
scales [35]. The specific operation is described as follows.
a) Morphological opening is generally used to smooth the con-
tours of an object and to break narrow isthmuses. This method
works well when selecting ROI coefficients at scale N, and thus
the background coefficients are eliminated in an effective
manner:

RN ¼ LN 3 f m; ð13Þ
where ◦ denotes the morphological opening operation and fm
is the m � m 2D unit matrix, where m ¼5 works well in our
method.

b) Filter RN using a 3�3 Gaussian template g:

RN’RN � g; ð14Þ
where * denotes the convolution operation.

c) Determine the root RN as follows.

RN ¼ 1 if RN40
0 otherwise

�
ð15Þ
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As shown in Fig. 4, one parent coefficient corresponds to four
child coefficients. If a parent coefficient belongs to the ROIs, its
child coefficients also belong to the ROIs.

Rs ¼
1 if Rsþ1 ¼ 1
0 otherwise

(
ð16Þ

An example showing the results for LN , RN , and Rs is presented
in Fig. 3, Step 2.

2.1.3.3. Step 3:. The edge and texture saliency map is created by
linearly fusing the feature maps at each scale without any nor-
malization operation [16]:

I ¼ �N
s ¼ 1 Ls � g

� 	
URs


 �
; ð17Þ

where ∙ is the dot multiplication operation between two matrices,
and � denotes interpolation of the map to level 1 and point-to-
point addition.

Fig. 5 shows some examples of the edge and texture saliency
maps produced by the proposed algorithm.

2.2. Spectral saliency map

Self-information is a valid method for measuring saliency based
on the probability of occurrence. First, a 1D intensity histogram is
constructed for different channels. Spectral feature maps are then
produced by calculating the amount of self-information in the
spectra. Finally, we construct the spectral saliency map by fusing
these spectral feature maps.

Let Xl denote the multi-spectral channel images for the remote
sensing image, where l is the label number for each spectral
channel. Then, Xl (i, j) represents the intensity value of Xl located at
Fig. 4. Schematic diagram of the self-similarity across different scales.

Fig. 5. Top: original remote sensing images. B
(i, j). The 1D intensity histogram for the range [0, 255] is first
constructed according to Eq. (18), where k is the kth intensity
value and nk is the pixel count for the intensity k in the image.

h kð Þ ¼ nk; k¼ 0;1;⋯;255 ð18Þ

The normalized histogram is given by (19), where p(k) is an
estimate of the probability of occurrence for intensity k in Xl and Xl

measures M�N.

p kð Þ ¼ nk= M � Nð Þ; k¼ 0;1;⋯;255 ð19Þ

The amount of self-information at each intensity level is com-
puted as,

L kð Þ ¼ � log p kð Þð Þ: ð20Þ

Next, we substitute k with Xl (i, j) to generate the spectral
feature map El of channel l,

El i; jð Þ ¼ L Xl i; jð Þð Þ: ð21Þ

The final spectral conspicuity map ~E is

~E ¼
X4
l ¼ 1

wlEl; ð22Þ

where the weight wl is obtained by

wl ¼ � log
hl

h1þh2þh3þh4

� 
; ð23Þ

hl ¼

P
i

P
j
Xl i; jð Þ

P4
l ¼ 1

P
i

P
j
Xl i; jð Þ:

ð24Þ

Fig. 6 shows a visual frame diagram to illustrate the spectral
information content analysis in spectral saliency map computing.

2.3. Final saliency map

We enhance the final saliency maps by combining the edge and
texture saliency maps with spectral saliency maps. We propose a
weighted fusion method, which is denoted as W(∙) and it includes
the following steps.

a) Normalize the maps to [0, 255].
b) Compute the average intensity mof each map.
c) Multiply the map by 255�mð Þ2.
ottom: edge and texture saliency maps.



Fig. 6. Spectral self-information analysis for spectral saliency map computation.
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Fig. 7. Visual comparison of saliency maps on the satellite set (column 1–3: SPOT5, column 4–6: GeoEye-1). From top to bottom are (a) original images, saliency maps
obtained by (b) IT, (c) GB, (d) SR, (e) FT, (f) CA, (g) HC, (h) RC, (i) WT, (j) RS, (k) FDA, (l)MFF, and (m) ours.

L. Zhang et al. / Neurocomputing 179 (2016) 186–201 193



Fig. 7. (continued)
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Using the weighted operator W(∙), the final saliency map is
calculated as follows.

S¼N WðIÞþWð ~EÞ
� �

ð25Þ

After generating the final saliency map, an optimal threshold is
computed as described by Otsu [36] to transform the saliency map
into a binary image. Finally, we multiply the binary image by the
original remote sensing image for ROI extraction.
3. Experiments and discussion

To evaluate the model performance in both qualitative and
quantitative terms, we compared our ROI extraction model with 11
other state-of-the-art methods, i.e., IT [17], GB [18], SR [23], FT
[14], CA [19], HC [20], RC [20], WT [26], RS [4], FDA [7], and MFF
[8]. These models were selected for the following reasons: IT is
biologically motivated; FT is a purely computational model in the
frequency domain; SR estimates saliency in the Fourier transform
domain; GB is a combination approach; CA, HC, and RC are all
implemented in the spatial domain; WT estimates saliency in the
Wavelet Transform domain; RS, FDA, and MFF were all developed
for remote sensing images, and they are implemented in the
spatial, frequency, and wavelet domains, respectively.
We applied our model to 80 high spatial resolution remote
sensing images from two sets. The images in the first set were
acquired by two satellites: the SPOT5 satellite with a resolution of
2.5 m and the GeoEye-1 satellite with a resolution of 1 m. The
images in the other set were obtained from Google Earth with a
resolution of 0.5 m and 1.0 m. However, to keep this study rea-
sonably concise, we only present the visual results for 12 images in
the qualitative comparison. The objective quality evaluation
described in Section 3.2 was actually based on the whole set of 80
images. In addition, the same computer configuration was used for
all of the experiments: a Windows platform with an Intel
(R) Pentium(R) G630 (2.70 GHz) CPU and 4 GB RAM.

3.1. Qualitative experiment

Visual comparisons of the saliency maps and the ROI results are
shown in Figs. 7–10. The resolution of the saliency maps produced
by the IT, GB, and SR models was low. Thus, when these down-
sampled saliency maps were used to extract ROIs, interpolation
was required to enlarge the maps to full resolution. Therefore,
these models sacrificed some precisionwhen detecting the general
outline of the ROIs, and thus many background regions were fal-
sely recognized and some ROIs were lost. The remaining models
produced saliency maps at full resolution, where more details and
well-defined borders were visible, although they still had their
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own limitations. FT failed to highlight the entire salient area,
which resulted in incomplete descriptions of the salient area
interior and the common occurrence of scattered background
Fig. 8. Visual comparison of ROIs on the satellite set (columns 1–3: SPOT5, columns 4–6
(c) GB, (d) SR, (e) FT, (f) CA, (g) HC, (h) RC, (i) WT, (j) RS, (k) FDA, (l) MFF, and (m) ours
noise, such as green space and shadows, in the corresponding
ROIs. CA, as indicated by its full name of “context-aware,” aims to
find the ROI and its near ambience. However, the implicated
: GeoEye-1). From top to bottom are (a) groundtruth masks, ROIs obtained by (b) IT,
.
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background was not applicable to our goal of identifying resi-
dential regions as ROIs with high precision. The HC and RC models
obtained some better results, but they still failed to eliminate non-
ROIs such as isolated linear roads and mountain ridges. The results
obtained by the RC models included some fragmented background
regions inside the ROIs. The WT model yielded well-defined
boundaries, but the high-frequency details extracted using the
wavelet transform contained some redundant background areas in
the ROIs. Furthermore, the last three methods used in the com-
parison were specifically designed for ROI extraction in remote
sensing images, where RS is a modified version of GB and the ROIs
could be detected effectively, but the detected regions contained
some background information. FDA could segment the images
precisely but incompletely, especially within the interior of the
residential area, which contained some undesirable holes. The MFF
model also obtained good performance with remote sensing
images, but it still failed to eliminate the interruption by non-ROIs.
By contrast, in the saliency maps produced by our model, the most
salient areas were clear and they could be separated easily from
the surroundings. Therefore, our method is advantageous com-
pared with other methods for ROI extraction because it highlights
the ROIs with well-defined boundaries as well as effectively
eliminating the non-ROIs.
3.2. Quantitative experiment

We used three different evaluation methods in this experiment,
i.e., the precision, recall, and F-measure values, as well as the
receiver operator characteristic (ROC) curve/area and a set of
geometric error indices to ensure a relatively comprehensive
comparison.

3.2.1. Precision (P), recall (R), and F-measure (F) values
The quantitative performance evaluation metrics in terms of

the overall precision (P), recall (R), and F-measure (F) are defined
as follows [26,37],

P ¼

P
i

P
j
gði; jÞ � sði; jÞð Þ

P
i

P
j
sði; jÞ; ð26Þ

R¼

P
i

P
j
gði; jÞ � sði; jÞð Þ

P
i

P
j
gði; jÞ; ð27Þ

F ¼ 1þαð Þ P � R
α� PþR

; ð28Þ

where g is the ground truth, s denotes the binary mask obtained



Fig. 9. Visual comparison of saliency maps on the Google Earth set. From top to bottom are (a) original images, saliency maps obtained by (b) IT, (c) GB, (d) SR, (e) FT, (f) CA,
(g) HC, (h) RC, (i) WT, (j) RS, (k) FDA, (l)MFF, and (m) ours.
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by segmenting the saliency map, and α is a positive parameter
used to determine the relative importance of the precision com-
pared with the recall when evaluating the F value. In our experi-
ment, α was set to 0.3, as suggested previously [26].

Fig. 11 compares the performance of the existing models and
the proposed method based on the Otsu automatic threshold
segmentation method. The proposed method obtained the highest
P, R, and F values, thereby providing a quantitative demonstration
of its reliability.

3.2.2. ROC curve/area
We also objectively evaluated the extraction quality by using

the ROC curves. The ordinate and abscissa of a ROC curve represent
the true positive rate (TPR) and the false positive rate (FPR), which
are defined as below,

T 0 ¼ R; ð29Þ

F 0 ¼

P
i

P
j

1�gði; jÞ½ � � sði; jÞð Þ
P
i

P
j

1�gði; jÞ½ �; ð30Þ

where R is defined by Eq. (27), T 0 is the TPR value, and F 0 is the
TPR value.

At the same FPR value, a higher TPR value indicates better
performance. By contrast, at the same TPR value, a smaller FPR
value indicates better performance. The first column in Table 1
lists the ROC areas for the different saliency detection models,
where a larger ROC area indicates better performance. As shown in
Table 1 and Fig. 12, the proposed model achieved the best per-
formance among all of the approaches.
3.2.3. Geometric error indices
To quantify the geometric accuracy of the ROIs, we employed a

set of object-based indices [38,39] to evaluate different geometric
properties of the ROIs represented in a saliency map compared
with the ground truth. In particular, the edge location, fragmen-
tation, and shape errors are shown in Table 1. Overall, our method
obtained the minimum values for the edge location, fragmenta-
tion, and shape errors, which suggests that it performed better in
terms of these geometric properties.

In summary, in the subjective quality comparison, we first
evaluated the proposed method based on the saliency maps and
the extracted ROIs. Next, we conducted an objective evaluation
based on the precision, recall, F-measure values, ROC curve/area,
and a set of geometric error indices for the quantitative experi-
ment. According to these comparisons, the proposed model con-
sistently yielded the most reliable ROI extraction results for high
spatial resolution remote sensing images.



Fig. 10. Visual comparison of ROIs on the Google Earth set. From top to bottom are (a) groundtruth masks, ROIs obtained by (b) IT, (c) GB, (d) SR, (e) FT, (f) CA, (g) HC, (h) RC,
(i) WT, (j) RS, (k) FDA, (l)MFF, and (m) ours.
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Fig. 11. Precision, recall, and F-measure.

Table 1
ROC area results and geometric error indices for different ROI extraction models.

Method ROC
area (%)

Edge-location
error (ED) (%)

Fragmentation error
(FG) (%)

Shape error
(SH) (%)

IT 93.21 100 0 38.05
GB 89.53 100 0 37.44
SR 98.62 100 0 38.01
FT 95.75 92.28 0 28.99
CA 98.11 100 0 38.05
HC 98.28 99.16 0 28.99
RC 98.81 99.31 0 35.53
WT 98.54 100 0 38.05
RS 97.45 100 0 38.05
FDA 98.32 100 0 38.05
MFF 99.11 100 0 38.05
Ours 99.67 89.66 0 19.79

L. Zhang et al. / Neurocomputing 179 (2016) 186–201200
4. Conclusion

In this study, we introduced a novel ROI extraction method for
high spatial resolution remote sensing images, which employs the
ND-LWT and spectral self-information. The proposed method
achieves automatic ROI extraction with high accuracy. High spatial
resolution remote sensing images contain complex spatial infor-
mation, clear details, and well-defined geographic objects, where
the structure, edge, and texture information have significant
importance. Hence, to make full use of these features, we
proposed the novel ND-LWT method to preserve local detail fea-
tures in the wavelet domain, which is beneficial for generating the
edge and texture saliency map. In addition, we utilize the spectral
information found in high spatial resolution remote sensing ima-
ges to improve ROI extraction. Compared with 11 other state-of-
the-art models, the proposed extraction algorithm performed
better at effectively eliminating the background information and
highlighting the ROIs with well-defined boundaries and shapes,
thus achieving more accurate ROI extraction.



Fig. 12. ROC curves of the proposed model and eleven competing models.
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