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Predictive Lossless Compression of Regions of
Interest in Hyperspectral Images With No-Data

Regions
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Abstract—This paper addresses the problem of efficient pre-
dictive lossless compression on the regions of interest (ROIs) in
the hyperspectral images with no-data regions. We propose a
two-stage prediction scheme, where a context-similarity based
weighted average prediction is followed by recursive least-square
filtering to de-correlate the hyperspectral images for compression.
We then propose to apply separate Golomb-Rice codes for
coding the prediction residuals of the full context pixels and
boundary pixels, respectively. To study the coding gains of
this separate coding scheme, we introduce a mixture geomet-
ric model to represent the residuals associated with various
combinations of the full context pixels and boundary pixels.
Both information-theoretic analysis and simulations on synthetic
data confirms the advantage of the separate coding scheme over
the conventional coding method based on a single underlying
geometric distribution. We apply the above prediction and coding
methods to four publicly available hyperspectral image datasets,
attaining significant improvements over several other state-of-the-
art methods including the shape-adaptive JPEG 2000 method.

Index Terms—Region of interest, lossless compression, hyper-
spectral images, no-data regions, predictive coding.

I. INTRODUCTION

Hyperspectral imaging technique has been widely used in
many applications of remote sensing (RS) nowadays owing to
its high spatial and spectral resolutions [1]. Hyperspectral data
sets are normally of very large size which makes data acquisi-
tion, storage and transmission tasks very difficult and even
problematic when network downlink bandwidth is limited.
Also, as the number of hyperspectral imaging sensors grows, it
is clear that data compression technique will play a crucial role
in the development of hyperspectral imaging technique [2].
Lossy compression has been an effective technology because
it significantly improves the compression efficiency at the
cost of selective information loss. The fact that human visual
and hearing system are not sensitive to certain types and
levels of distortion caused by information loss enables the
lossy compression. While lossy compression methods typically
provide much larger data reduction than lossless methods,
they might not be suitable for hyperspectral images used in
many accuracy demanding applications, where the images are
intended to be analyzed automatically by computers. For these
applications, lossless compression methods can guarantee no
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loss in the reconstructed data. Thus lossless compression is
more suitable choice for accuracy demanding RS applications
than lossy compression [1].

(a) Spectral band 30. (b) ROI map.

Fig. 1: Sample dataset (“indian pines corrected”) and ROI
map.

Hyperspectral images generated by the hyperspectral imag-
ing sensors have multiple components. For a specific applica-
tion, it is very likely that only some regions of the entire image
carry information of interest. We call these important parts of
image, regions of interest (ROIs). Rather than compressing
the entire image, sometimes we need to compress only ROIs
in the image. Recently, a new concept known as “remote
sensing image with no-data regions compression” has been
proposed for the first time in [3]. The regions of an image
where the data are considered of less interest are defined as
no-data regions. Fig. 1 shows a hyperspectral image with
numerous ROIs identified (Fig. 1a) and the map of these
different ROIs (Fig. 1b). For each ROI, it is marked with a
different color in Fig. 1b. If we focus our attention of a single
ROI, then all the other ROIs can be considered as no-data
regions. Three main situations where no-data regions arise in
remote sensing applications have also been listed in [3]: 1)
geometric and radiometric correction; 2) atmospheric events
cover; and 3) ROIs are determined by the user/application. In
remote sensing, it is very common that only certain image
regions are important and informative rather than the entire
images, especially for those object tracking or surveillance
applications. Since the no-data regions do not provide useful
information to some applications, compression methods will
benefit significantly from simply not compressing those no-
data regions for the sake of a higher compression ratio.

Many methods have been proposed to locate the ROIs
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in the hyperspectral images. ROI classifiers are trained by
applying supervised learning methods, such as support vector
machine (SVM) [4] and deep belief network [5], to the labeled
hyperspectral images first. Then we can predict if one pixel
belongs to the predefined ROI or not. Moreover, human factors
also play an important role in identifying the ROI. Experienced
and trained specialists can manually select the ROI. However,
different from the ROI of fixed size or regular shape, flexibility
is usually required in the ROI identification of the real-world
applications. Thus, ROIs of arbitrary shape and size are most
likely to be expected for most of the RS applications. It is
fairly easy to see those ROIs of arbitrary shape or size because
of the existence of no-data regions in Fig. 1b: almost all of
those ROIs have irregular shapes while some of ROIs even
have dots and holes. In fact, the shape and size of ROIs vary
a lot with different applications or environment.

Different from traditional ROI compression, all the non-
ROI pixels are assumed not available in the ROIs with no-
data regions compression situation. In other words, traditional
solutions to ROI compression like JPEG 2000 with Maxshift
are no longer applicable to this problem. Shape-adaptive (SA)
[6][7] coding technique was designed to handle regions of
arbitrary shape within the image, which makes itself a good
tool to deal with no-data regions. A hyperspectral image can
be viewed as a three-dimensional dataset with two spatial
dimensions and one spectral dimension [1]. ROIs within the
hyperspectral image have arbitrary shape and size only in the
2-D spatial configuration rather than the spectral dimension.
Thus, SA 2-D methods can be extended easily to ROI with
no-data region in the hyperspectral image by applying 2-
D SA methods for each spectral band separately. Currently,
most of the proposed SA ROI compression methods [3][8][9]
for hyperspectral images can be generalized into a two-stage
framework: 1) apply 2-D SA transform like SA-DWT to the
ROIs of each spectral band, and then apply 1-D ordinary
transform (DWT or PCA) along the spectral dimension for
each pixel in the ROI; 2) bitplane encoding appproaches are
applied to encode the transform coefficients obtained from the
previous stage for only ROI pixels, while non-ROI pixels are
ignored. As reported in the paper [3], three different 3-D SA
coding have been designed: 3-D-Object Based-Set Partitioning
in Hierachical Tress (OB-SPHIT) [10], 3-D-Object Based-Set
Partitioned Embedded Block Coder (OB-SPECK)[8], and 3-
D-Binary Set Splitting with K-D Tress (BISK) [9]. Also, as it
is pointed out in the paper [3], TARP [11] and WDR [12] can
be generalized to a 3-D SA version. JPEG 2000, a well-known
compression standard based on wavelet transforms, provides
the capability of encoding ROIs in an image by using the
Maxshift technique [13]. A 3-D SA encoding scheme has been
developed in [3] specifically for multispectral images contain-
ing no-data regions through the JPEG 2000 framework with
delicate modifications. In [3], experimental results showed this
scheme can yield better coding performance than SA-SPHIT
and BISK in a lossy way.

These aforementioned SA ROI compression methods are
all transform-based methods. While transform-based schemes
can generally yield excellent lossy coding performance, their
lossless coding performance is not as good as those specialized

prediction-based methods [2]. Given the fact that lossless com-
pression is required for those important ROIs, how to adapt
the prediction-based compression methods to ROIs with no-
data regions becomes a more crucial problem. To achieve high
compression ratio without information loss, the prediction-
based methods need be modified to be “shape-adaptive” to
ROIs of arbitrary shape or size.

Prediction-based lossless compression approaches take ad-
vantage of the strong correlation of image signals. The in-
tensity value of pixel of interest is estimated based on its
context and the prediction error (residual) is encoded by an
entropy coder. Since this prediction scheme decorrelates the
image signal, the entropy of the residual is reduced, leading
to smaller bit-rate. Given the fact that spectral bands in the
hyperspectral image are highly correlated, linear model is
usually utilized to decorrelate the colocated pixels in different
spectral bands [14]. [15] presents an optimal linear predictor
in the minimum mean-square sense followed by an entropy
code on the residual signals. A linear predictor named as
Spectral-oriented Least SQuares (SLSQ) is proposed in the
paper [16] to exploit the spectral correlation of the hyper-
spectral image. Wiener filtering has also been adopted to
hyperspectral image lossless compression [17]. [18] proposed
to use two predictors: one interband linear predictor, and
the other is interband least square predictor. With the usage
of more memory, the compression ratio of this method is
optimized. Recently, adaptive filtering techniques such as
least mean square (LMS) [19] and Kalman filtering [14]
have been used as predictors in a online learning fashion
for lossless compression of the hyperspectral image, yielding
good compression performance. It is worth mentioning that
LMS method [19] developed by the NASA Jet Propulsion
Lab (JPL) has been optimized and renamed as “Fast Lossless
(FL)” algorithm and was selected as the core predictor in
the CCSDS new standard for Multispectral and Hyperspectral
Data Compression [20]. As well as linear prediction, nonlinear
predictors have gained some success. [21] proposed a 3-D
CALIC (M-CALIC) for lossless and near-lossless compression
of the hyperspectral image, by extending classical 2-D CALIC
to 3-D scenarios. In [2], a new non-linear predictor known as
Context-based Conditional Average (CCAP) was proposed for
the spatial decorrelation of hyperspectral image. In addition,
some researchers intend to cluster pixels with similar statistics
together and apply prediction within each cluster. For example,
[22], [23] applied K-means to pre-process the hyperspectral
image and achieve the best compression performance by far.
Fuzzy K-means has also been used as a switch among a set
of linear regression predictors in [24]. Although clustering
techniques help improve the prediction accuracy, it relies on
the availability of data information from all the spectral bands,
while are normally not available or only partially available
in many real-world or real-time applications. Thus, clustering
techniques has its limit for the lossless compression of the
hyperspectral image.

Fig. 2 gives an example of ROI with no-data region in
one hyperspectral image. Non-ROI pixels in this hyperspectral
image are all shown in white whereas these colored pixels
are all from one ROI. While the ROI has an arbitrary shape
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Fig. 2: A sample ROI with no-data region in an hyperspectral
image. Boundary pixels are colored in dark green while full-
context pixels are colored in light green. The red pixel is a
randomly selected ROI pixel at the current band with two co-
located pixels from previous bands colored in blue.

spatially (x and y dimensions), it has the same shape in each
spectral band (the z dimension). Among those ROI pixels,
some of them have non-ROI pixels in their causal context.
We call these pixels boundary pixels (colored in dark green in
Fig. 2). Note that, for any ROI pixel, its co-located pixels from
previous bands are always considered available at predictor
because they will be decoded prior to the current pixel at
decoder side. In contrast, those ROI pixels whose causal
context pixels belong to the ROI are called full-context pixels
(colored in light green). The existence of ROIs in the hyper-
spectral images creates the boundaries separating the ROI and
non-ROI pixels in the spatial dimension. This issue is often
addressed by extending this boundary [3][6] in SA transform-
based methods. Furthermore, non-ROI pixels can be skipped
during the bitplane coding in those transform-based methods.
In contrast to transform-based methods, boundary pixel issue is
not trivial for prediction-based methods because of lack of full
context support, which makes prediction accuracy inconsistent
for boundary pixels. The prediction becomes less accurate for
those cases in which a ROI pixel has only one ROI pixel
in its context. The simplest solution to this problem is to
pad certain preselected constants to those boundary pixels’
contexts to make up for those missing context pixels [1].
But this substitution could cause a new problem: it may
degrade the prediction performance and produce relatively

larger residuals since the padded constants do not reflect
the actual statistics of the local image signal. As a result,
the overall compression ratio may suffer from this potential
degradation. It is worth noting that some ROI identification
methods may create some random dots-or-holes type ROI
pixels out of false detection. Thus, those dots-or-holes like ROI
pixel do not have any ROI pixel in their context. Naturally, it
is impossible to apply any existing prediction scheme for this
special ROIs of arbitrary shape and size in the hyperspectral
image. Hence, adaptive modifications to those aforementioned
prediction-based methods are required in order to apply to
ROIs with no-data regions. In order to losslessly compress
the ROIs with no-data regions in the hyperspectral image, we
propose a new method based on a complete analysis of this
special problem in this paper.

Our contributions are: 1) we first conducted an information-
theoretic analysis to justify the proposed scheme of separating
boundary pixels from full context pixels in prediction and
coding; 2) we then proposed a two-stage predictor, including a
2-D spatial predictor based on context similarities, and a 1-D
spectral predictor using recursive least square (RLS) filtering
to achieve good lossless compression performance on ROIs
with no-data regions in hyperspectral images. The prediction
residuals of boundary and full-context pixels are encoded by
two Golomb-Rice (GR) encoders separately. Golomb Codes
were first introduced in [25]. In the Golomb Coder family, the
Golomb-Rice code is widely used for lossless compression of
non-negative integers thanks to its easy implementation and
low-complexity. GR coding can be considered as a special case
of the general Golomb coding with parameters being limited to
powers of two. In contrast to the Huffman coding, GR coding
has the advantage of not having to transmit the Huffman table.
Hence, two GR coders with different parameters are applied
to encode residuals of boundary pixels and full-context pixels
independently in this implementation of MGD golomb coding
designed for ROIs of arbitrary shape and size.

The paper is organized as follows. In Section II, we for-
malize the problems generated from lossless compression for
ROIs of arbitrary shape and size and provide a thorough
information-theorectic analysis of this special problem. In
Section III, we discuss the proposed algorithm in details. In
Section IV, we provide the results on lossless compression
performance for ROIs of arbitrary shape and size in four hyper-
spectral image datasets, and compare the proposed algorithm
with other state-or-the-art methods. Finally, the conclusions
are drawn in the Section V.

II. PROBLEM ANALYSIS

In each hyperspectral image, some regions convey very
crucial information to a specific RS application while other
regions do not. We call the former Regions of Interest (ROIs)
and the latter No-Data Regions. ROIs can be identified by
some machine learning algorithms as discussed in Section I
or manually selected by a human viewer. Once the ROIs have
been identified, a binary ROI map which shows the locations
of ROI pixels is also generated. Generally, prediction-based
lossless compression utilizes the causal context pixels to
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estimate the value for each one of the pixels in the 2-D
image. The values of those context pixels will be available
at the decoder during the decoding to allow for lossless
reconstruction. However, for some of ROI pixels, part of its
causal context belong to no-data regions and are not available
to the predictor. As a result, prediction scheme yields much
more inaccurate performance.

As discussed in Section I, boundary pixels inevitably exist in
each band of one hyperspectral image, especially when ROIs
are of irregular shape and large size. Fortunately, there is no
such problem along the spectral dimension of the hyperspectral
image, given the fact that membership to ROI or no-data
regions only affect pixels in the 2-D spatial scenario. Naturally,
it is reasonable to separate prediction scheme into two stages
and apply different predictors accordingly.

A. Prediction Scheme

We evaluate the potential compression gain that can be
achieved using an information-theoretic analysis similar to
that in [14]. We investigate how the general information
change with different prediction schemes for boundary and
full-context pixels and estimate the potential improvement.

1) 2-D Spatial Prediction: We consider each band of one
hyperspectral image as a 2-D image. In other words, the
entire hyperspectral image can be treated as a pile of such
2-D images. So each band of the hyperspectral image will
be analyzed independently from the other bands. Moreover,
we only work on one band at a time so that only spatial
correlation will be exploited. We treat a 2-D image as a
random variable X so that the average amount of information
contained in this image is given as the entropy H(X). Thus,
X takes on the values in the set A = {0, 1, ..., 2NB − 1}
whose cardinality equals 2NB where NB is the bpp data
format for this hyperspectral image. So the entropy H(X)
can be further computed as H(X) = −

∑
i∈A pi log2 pi where

pi = P (X = i), i = 0, 1, ..., 2NB − 1.
As we have already discussed, causal context pixels shown

in the Fig. 2 are commonly used as inputs to the predictor
to make the estimation. Therefore, the prediction scheme
can be mathematically modelled by the conditional entropy
because conditional entropy quantifies the uncertainty asso-
ciated with random variable when conditional random vari-
ables are known. We denote the context of each pixel as
Cj and the conditional probability is actually a contextual
probability, pi|Cj

. The conditional entropy can be redefined as
H(X|Cj) = −

∑
i∈A pi|Cj

log2 pi|Cj
. Then the conditional

entropy of the entire image can be computed as: H(X|C) =∑
j p(Cj)H(X|Cj), where p(Cj) represents the probability

of jth causal context. Boundary pixels, as we defined earlier,
only have part of their full causal contexts so the context Cb of
each boundary pixel is just a subset of the full context C, i.e.,
Cb ⊂ C. It follows H(X|Cb) ≥ H(X|C) by the convexity
of H , which indicates that the minimum achievable bit rate
for boundary pixels is usually larger than that of full-context
pixels. So we propose to apply different 2-D spatial predictors
to boundary pixels and full-context pixels, respectively, in
order to minimize H(X|Cb) and H(X|C) at the same time

to eventually reduce the conditional entropy of each spectral
band.

2) 1-D Spectral Prediction: Spectral prediction is relatively
easy because for each ROI pixel in each band, the previous
multiple bands of co-located pixel can be used as its context
for prediction. In other words, each ROI pixel has a full sup-
port from its context in spectral dimension so that the boundary
pixel problem in the 2-D spatial domain does not exist in
the spectral dimension. Moreover, [14] proved mathematically
the effectiveness of decorrelating the dependency between the
current band and previous band using a similar conditional
entropy analysis model. Here only ROI pixels will be consid-
ered instead of the entire hyperspectral image given the fact
that no-data regions do not carry any useful information and
their intensity values are not accessible either. Thus, a linear
multiband prediction scheme can be easily applied to those
ROI pixels with minimal modification regardless of boundary
or full-context pixels. For example, in Fig. 2, an arbitrary ROI
pixel (colored in red) can be estimated by a linear combination
of its colocated pixels from previous bands (colored in blue).

B. Entropy Coding

It has been widely accepted that the global statistics of
residuals from a predictor in one image can be well-modelled
by a Geometric Distribution (GD) starting from zero [26].
Therefore, in this section, we analyze the residuals of ROIs
and propose a new model based on GD to analyze the statistics
of residuals of ROIs in the hyperspectral image.

After the aforementioned two-stage prediction, two different
prediction methods are applied to boundary and full-context
pixels separately. Residuals produced for boundary and full-
context pixels tend to have different statistics as pointed out:
the conditional entropy for boundary pixels are usually larger
than full-context pixels. Therefore, we propose that GD with
different parameters, named as Mixture Geometric Model
(MGD), depicts the statistical characteristics of the residual
data for boundary and full-context pixels more accurately.
Before we present the details of this MGD model, we define
two ratios for each band:

ROI Ratio:

R1 =
# of ROI pixels

Total # of pixels
, (1)

Boundary Ratio:

R2 =
# of Boundary pixels

# of ROI pixels
, (2)

According to our assumption, the distribution of residuals
of boundary pixels is modelled by one GD:

Pb(i) = (1− θb)θbi, i ∈ Z+, θb ∈ (0, 1). (3)

While the distribution of residuals of full-context pixels is
similarly modelled by another GD:

Pf (i) = (1− θf )θf
i, i ∈ Z+, θf ∈ (0, 1). (4)

To our best knowledge, all the existing ROI lossless com-
pression methods apply only a single coder to the entire ROI.
Thus, a single estimated GD will be computed to model the
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Fig. 3: Simulation results.

residuals of entire ROI. We call this single geometric model
(SGD) in order to differentiate it from our proposed MGD.
Let’s denote this estimated GD as:

Pe(i) = (1− θe)θei, i ∈ Z+, θe ∈ (0, 1). (5)

where parameter θe can be estimated from the sample residuals
of all the ROI pixels including boundary pixels and full-
context pixels. Hence, the total bit rate saving by encoding
all the pixels using MGD based separate coding can be
computed as the weighted KL distances where the weights
are determined by the ratio R2:

∆H = R2 ·KL(Pb||Pe) + (1−R2) ·KL(Pf ||Pe) (6)

Our goal is to evaluate the potential gain that can be
achieved if MGD-based coding is employed. To make a fair
comparison, we use this ∆H as a cost function. So the optimal
estimated Pe can be obtained by minimizing this cost function.
After solving d∆H/dθe = 0, we have

1

1− θe
=

1

θe

[
R2 · θb
1− θb

+
(1−R2)θf

1− θf

]
. (7)

Let K = R2·θb
1−θb +

(1−R2)θf
1−θf , then the optimal θe is computed

as:
θopte =

K

K + 1
. (8)

Furthermore, we can rewrite the equations above in terms of
sample mean µb, µf and µe for each geometric distribution,
Pb, Pf and Pe given the fact that µ = θ/(1 − θ) for the
geometric distributions. It can be further shown from Eq. (8),
we can further derive that µopte = R2×µb+(1−R2)µf , which
is exactly the sample mean of this MGD. So this µopte can be
replaced with µb and µf to express ∆H as a lower bound
of performance gain using MGD, since this optimal estimated
Pe is already the solution to the minimizer of ∆H . One of
those important properties of the KL distance, KL(P ||Q) ≥ 0,
known as Gibbs’ inequality, guarantees that ∆H , the total
saved bit rate, is always non-negative. In other words, we can
always benefit from using MGD under our assumption.

To show the effectiveness of this MGD model numerically,
a simple simulation has been conducted: a total number of
5× 105 data points are first generated using a mixture of two
geometric distributions R2×Geom(θb)+(1−R2)×Geom(θf )

where R2, the boundary pixel ratio, determines which GD
source is the dominant one. We define ∆θ = θb − θf as a
measurement of the deviation of θf from θb and we fix θb at
{0.7, 0.8, 0.9}. Owing to a large pixel intensity range of the
hyperspectral images, it is very likely the prediction residu-
als are still considerably large. And prediction of boundary
pixels in the ROI suffers insufficient context, which produces
typically larger residuals compared to the full-context pixels
as shown in our prior analysis. So it is reasonable to assume
θb is relatively larger than θf in this experiment for a better
approximation of the real case. Therefore, ∆θ is set to vary
from 0 to 0.1 at step size of 0.01 in our simulation. For
each pair of R2 and ∆θ, the corresponding ∆H values were
computed using Eq. (6) and reported in the Fig. 3. It can be
seen that ∆H increases with ∆θ generally. This means that
the advantage of the MGD model becomes most pronounced
when θb and θf deviates the most from each other. Also, we
can see that the ∆H tends to maximize as R2 approaches 50%.
As mentioned earlier, R2 determines which GD dominates
this simulated data from two mixed sources. In the case of
R2 = 50%, two GDs play an equal role in this mixed data,
therefore the separate coding based on the MGD model is
expected to provide the largest possible coding gain than the
SGD model. In addition, the range of each colorbar in Fig. 3
shows the theoretical performance gain of the MGD model
over SGD model corresponding to different θb. Obviously, this
gain increases as θb goes higher. As we have explained, high
θb value can actually better approximate the real case.

The analysis and simulation show that our separate coding
based on the MGD model can reduce the entropy of the
residuals of ROI pixels to achieve better compression perfor-
mance compared to the SGD model. We have also conducted
an experiment on real hyperspectral image data with results
provided in Section IV.

III. THE PROPOSED ALGORITHM

Fig. 4 shows the whole procedure of our proposed method,
with a two-stage prediction followed by a MGD Golomb-Rice
encoder.

A. Two-stage Prediction
1) Context-Similarity based Conditional Average Predic-

tion: At the first stage, a Context-Similarity based Weighted
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Average Prediction (CSWA) approach is presented to remove
the redundancy for ROIs of the 2-D spatial image of each band.
More specifically, this approach is designed to reduce the 1st-
order entropy of the residuals. Within the each band, boundary
pixels and full-context pixels are processed differently due to
their inherent different statistical characteristics.

N N+1

N
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Search 
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Fig. 5: 2-D CSWA.

Context-based Conditional Average (CCAP) was proposed
in [2] to work as 2-D spatial predictor for hyperspectral image.
Also, Median Edge Detector (MED) proposed in JPEG-LS
[26] was initially designed as a 2-D natural image predictor
and has been proved effective as 2-D spatial predictor for
hyperspectral image in [19]. However, CCAP method neglects
strong nonlinearity in the common structured regions in the
hyperspectral image. As a remedy to this nonlinearity prob-
lem, we propose a 2-D spatial predictor based on context-
similarity between the current context and the contexts of
ROI pixels in the support of current pixel. In contrast to
CCAP, instead of simple average, we take into account the
context distance/similarity needs to be taken into account
to make more accurate prediction. This was motivated by
an image denoising method, non-local mean (NLM) filtering
[27], which is essentially a weighted average filter with high
weights assigned to highly similar sample context and low
weights assigned to less similar sample context. Specifically,
we modify the CCAP method by assigning large weights to
those ROI pixels whose causal contexts are similar to the
current context and vice versa. In our CSWA method, multiple
distances metrics can be used to measure the context similarity,
sum of absolute difference (SAD), sum of L2 norm or context
correlation. In our work, SAD is selected for its computational

simplicity.
Fig. 5 illustrates this CSWA method by showing a small

patch of pixels of one arbitrary band. Given a full-context ROI
pixel of one band in the hyperspectral image xi,j (colored in
red in Fig. 5, its causal context is denoted as Ci,j (colored
in blue in Fig. 5) which represents all the ROI pixels in its
context. Besides, the search window of current ROI pixel is
denoted as S(i, j) (dashlined region in Fig. 5 and its size
equals N(N + 1)), which only includes all the available full-
context pixels in the causal neighborhood for local estimation
whereas boundary pixels are excluded. Therefore, our CSWA
method can be described by the following equation:

yi,j =

∑
(m,n)∈S(i,j) wm,nI(m,n)xm,n∑

(m,n)∈S(i,j) wm,nI(m,n)
(9)

where yi,j is the estimate of xi,j at the location (i, j) using
its support S(i, j) and the weight of each ROI pixel in the
S(i, j) can be computed by:

wm,n =
1

D(m,n, i, j)
(10)

where D(m,n, i, j) is the distance measure between the Cm,n
and Ci,j . And the selection factor I(m,n) is defined as:

I(m,n) =

{
1 if wm,n > T,
0 if else. (11)

where T is a empirically chosen threshold to filter out those
small weights which normally mean high dissimilarity. It is
worth noting that using this selection factor will eliminate
certain amount of pixels from contributing to the prediction.
So when the number of pixels after the thresholding selection
is not sufficient to make a good estimate, a simple arithmetic
average will be used to replace this CSWA. Given the fact
that boundary pixels do not have a complete context, it is not
practical to find pixels with similar context. Hence, similarly,
simple arithmetic average of available ROI pixels in the
context will replace this CSWA for those boundary pixels.

CSWA predicts the ROI pixel values according to the
similarities between its context and the contexts of pixels
in the support. Those pixels with highly similar contexts
will contribute more to the prediction than those with less
similarity. This approach works very well in those common
structured regions because of the fact that pixels with similar
contexts almost always exist in those structured regions of
image.

2) Recursive Least Square Filtering: Linear adaptive fil-
tering techniques, such as Least Mean Square (LMS) [19],
Least Square (LS) [16], [17] and Kalman Filtering (KF)
[14], have been proposed to decorrelate the hyperspectral
image for further compression. With some modifications, these
adaptive filtering approaches can be used for hyperspectral
image ROIs as well [1]. But LMS suffers greatly from its
slow convergence speed, which makes the prediction much less
accurate especially when the data size is not large enough to
guarantee convergence, which is often the case for ROIs within
an image. LS and KF perform better than LMS regarding
the convergence speed. But they both require matrix inversion
operations which normally cost too much computation. Given
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the fact that most RS applications are time-sensitive, LS and
KF may not be the best choice for lossless compression
of the hyperspectral image. Recursive Least Square (RLS)
[28] filtering is known for its fast convergence speed and its
relatively higher but tolerable computational complexity. Thus,
we choose RLS over other linear optimization methods for
spectral prediction.

For each data point in the training sequence, RLS fil-
tering recursively finds the optimal weights that minimize
the weighted linear least squares cost function defined as
|d− uTw|2, where d, u and w are the desired data, filtering
input vector and weight vector respectively. So the input vector
uM×1 of each pixel is defined, in this application, as the
previous M bands at the same spatial location and d is the
pixel value at the current band. A brief description of this
adapted RLS applied in our ROI spectral prediction is given
as follows:

1) Initialize w(0) = 0 and the auxiliary matrix P(0) = εI
where I is the identity matrix of size M ×M and ε is a small
constant; The ROI pixel index i = 1.

2) For ROI pixel i compute

r(i) = 1 + u(i)
TP(i− 1)u(i), (12)

k(i) = P(i− 1)u(i)/r(i), (13)

e(i) = d(i)− u(i)
Tw(i− 1), (14)

w(i) = w(i− 1) + k(i)e(i), (15)

P(i) = P(i− 1)− k(i)kT r(i). (16)

3) Update ROI pixel index to the next ROI pixel i = i+ 1
and repeat 2) till i reaches NROI , where NROI represent the
total number of ROI pixels for each band.

4) Reset w(0), P(0) and i for each band.
Apparently, this RLS filtering for spectral prediction is one

online learning optimization method, which is very suitbale for
this on-the-fly application. Instead of using only instantaneous
values as in LMS, RLS filtering uses M most recent input
vectors and desired data. With better appoximation, it is
reasonable for RLS to converge faster than LMS. This feature
facilitates RLS to be a better tool for spectral prediction when
the number of ROI pixels are insufficent. Note that RLS
distributes the computation load into each iteration as pointed
out in [28]. Thus, though RLS converges faster than LMS, its
complexity is typically higher than LMS and actual run-time
cost increases with the number of pixels involved. However,
for the ROI lossless compression, the number of pixels in each
ROI is generally much less than the number of pixels in the
entire image. So RLS seems to be a good fit for ROI spectral
prediction.

B. MGD Golomb Coding Implementation

In Section II, we have already analyzed the statistical
characteristics of ROI pixels and proposed a MGD model to
guide the coding: apply two different GR coders on prediction
residuals of boundary pixels and full-context pixels respec-
tively. It is well-known that GR Coder are usually applied to
encode data whose distribution is GD. Given a nonnegative

integer y, mth order GR scheme encodes it in two steps: a
unary representation of by/mc, and a binary representation of
y mod m using m bits.

After two-stage prediction, residuals of the all the pixels
including boundary and full-context pixels are obtained and
mapped to non-negative numbers for GR coding as follows:

f(n) =

{
2n if n ≥ 0,

−2n− 1 if n < 0.
(17)

where n refers to the residual of ROI pixels. Note that it is
necessary to round all the residuals to the nearest integer be-
fore this mapping and the decoder will duplicate this operation
to ensure lossless decoding and reconstruction.

Since the actual bitsream length is controlled directly by
the GR coder parameter, we implement these two GR coders
by following the entropy coding configuration specified in
CCSDS 123 standard [20] for our MGD model. With the
assistance of this MGD model and two GR coders, all the
residuals of ROI pixels of each band will be encoded into two
separate bitstreams for further processing.

IV. TEST RESULTS

A total of four hyperspectral image datasets were tested:
Indian Pines, Kennedy Space Center (KSC), Salinas and
Pavia University as listed in Table I. Detailed information of
these datasets can be found in [29]. Based on their classi-
fication ground truth maps provided in [29], Support Vector
Machine (SVM) based classification method proposed in [4]
has been implemented to produce their ROI maps with high
accuracy. Due to the limited space, we show the ROI map of
only one dataset, Indian Pines, in Fig. 6.

TABLE I: DATASETS USED

Dataset Size # of ROIs Sensor
Indian Pines 145× 145× 200 17 AVIRIS

Pavia University 610× 340× 103 10 ROSIS
Salinas 512× 217× 204 17 AVIRIS

Kennedy Space Center 462× 464× 176 14 AVIRIS

As we introduced in Section I, much effort has been made
to compress the hyperspectral image losslessly. However,to
our best knowledge, there is not much work focusing on
ROIs in the hyperspectral image so far. Most of the existing
hyperspectral image lossless compression approaches require
various types of modifications at different levels to adapt to
ROI compression. So we only select to modify two most rep-
resentative methods: 1) FL method from CCSDS standard 2)
shape-adaptive JPEG 2000 method. Combining the approach
[1] particularly designed for this problem for the first time, we
use these three state-of-the-art methods as a benchmark set to
evaluate our algorithm:
1) The ROI-LMS method was proposed to target this loss-

less compression of ROIs in the hyperspectral image [1].
A simple arithmetic average filtering is applied to the
boundary pixels while conventional LMS is applied on
full-context pixels followed by a separate GR coding
scheme. However, LMS suffers from slow convergence
on ROIs of small size. In addition, even though separate
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(a) ROI 0 (Background).

(b) ROI 1. (c) ROI 2. (d) ROI 3. (e) ROI 4.

(f) ROI 5. (g) ROI 6. (h) ROI 7. (i) ROI 8.

(j) ROI 9. (k) ROI 10. (l) ROI 11. (m) ROI 12.

(n) ROI 13. (o) ROI 14. (p) ROI 15. (q) ROI 16.

Fig. 6: Individual ROI maps (ROI pixels are shown in white while non-ROI pixels in black). Note: ROI 0 (Fig. 6a) can be
viewed as the background, which contains all the pixels outside the other 16 ROI’s.

coding was utilized in that work, a thorough mathematical
analysis was missing. The new method we present in this
paper aims to address these issues.

2) In CCSDS standard, a variable learning rate for LMS
was proposed for the entire hyperspectral image [19].
However, it is almost impossible to directly apply this
FL method to ROIs becuase of the typically irregular
shape given the fact its variable learning rate is designed

and optimized based on the entire hyperspectral image
rather than ROIs. Hence, we modified this method by
applying an arithmetic averaging operation on boundary
pixels, while LMS with fixed learning rate will be ap-
plied to full-context pixels only. It is worth noting that
separate (boundary/full-context pixels) coding scheme is
not applied in this method. This method is denoted as
ROI-FL.
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TABLE II: COMPARISON OF BIT RATES (BITS/PIXEL)
WITH OTHER SCHEMES ON “INDIAN PINES”

ROI# NEW ROI-LMS ROI-FL SA-JP2K R1 R2

0 6.68 7.76 8.46 9.03 51.25 21.27
1 8.68 7.05 10.02 11.29 0.22 56.52
2 6.59 7.35 10.62 9.87 6.84 36.09
3 6.74 7.62 10.38 10.04 3.76 38.81
4 7.26 7.83 8.56 9.91 1.13 23.21
5 6.73 6.87 9.81 9.26 2.30 26.65
6 6.60 7.04 9.21 9.22 3.55 27.75
7 9.25 6.93 9.75 11.35 0.13 57.14
8 6.72 6.84 9.00 9.08 2.28 15.42
9 10.62 7.26 10.16 11.46 0.10 100

10 6.52 7.10 10.56 9.96 4.59 36.75
11 6.44 7.20 10.24 9.57 11.73 28.83
12 6.88 7.46 10.52 9.84 2.87 32.28
13 6.73 6.80 9.56 9.21 0.98 20.98
14 6.48 6.98 7.94 8.91 5.99 14.14
15 7.01 7.61 8.93 9.72 1.84 21.50
16 7.77 7.98 10.47 10.88 0.44 39.78

Total 6.67 7.49 9.12 9.30 100 24.96
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(d) Kennedy Space Center
Fig. 7: Compression bit rates on four datasets.

3) SA JPEG 2000 (SA-JP2K) was proposed in [3] to han-
dle ROIs of hyperspectral image and achieved excellent
lossy compression performance over other transform-
based methods. We removed the truncation and quantiza-
tion process so that it supports lossless compression.

Table II shows the bit rates achieved by four different
lossless compression methods on each ROI of the test dataset,
Indian Pines, shown in Fig. 6. As shown, it is obvious that
our proposed new method outperforms the ROI-FL and SA-
JP2K [3] in all 17 ROIs. Furthermore, this proposed method
yields lower bit rate than ROI-LMS method except for some
small ROIs (ROI 1, 7 and 9 in Fig. 7a). ROIs of extreme
small size (low R1 ratio) can not provide sufficient pixels for
adaptive online learning algorithm to converge though RLS is
known for its fast convergence speed. Thus, the multi-band
prediction using RLS produces less accurate estimate, which
increases the bit rate of the compressed bitstream.

Boundary ratio (R2) indicates the shape information of ROI:
more boundary pixels in one ROI, more irregular shape this
ROI has in general. Table II shows that our method performs
the best when R1 and R2 are both relatively high. Fig. 7 shows
the bit rates comparisons for all four datasets. Apparently,
our proposed method (red curves) generally performs better
than the other three methods. Note that all methods do not
do well on ROI 0 of dataset KSC. It turned out that there
is a large amount of impulsive noises in the last 100 bands
of this dataset. Given the fact that linear prediction technique
cannot handle impulsive noise well and ROI 0 takes about over
97% pixels of this dataset, we believe adaptive learning based
method needs some restraints on sudden change of weights in
the learning algorithm for this special case. But our method
still outperforms all other three methods on this impulsive
noise corrupted dataset.

Similar to our simulation in Section II, we compared the
MGD model and estimated SGD model on the residuals of
real hyperspectral image produced by our proposed method.
Their bit rates are shown in the third and fourth column
of the Table III respectively. Empirical shannon entropy of
residuals of the MGD model, H , estimates the information
lower bound of bit rate conveyed in each ROI of the test
dataset. As we can see, the MGD model has significantly lower
bit rate than the estimated single GD model for each ROI in
the dataset. Note that those ROIs of extreme small size do not
provide sufficient pixels to produce statistically meaningful
estimates of probabilities, thereby making H less useful. All
these results verify our information-theoretic analysis of MGD
model. Particularly, for those ROIs whose R2 values are close
to 50%, the corresponding performance gain of MGD against
SGD are significantly higher than other ROIs. In the case
where the true underlying distributions of either the boundary
pixels or the full-context pixels are not exactly following the
geometric distributions, the MGD model can provide a better
approximate to the underlying distribution, thereby leading to
higher compression ratios than the SGD model. Furthermore,
implementation of separate coding of boundary pixels and full-
context pixels are expected to produce shorter bitstreams.

TABLE III: BIT RATE GAIN ACHIEVED BY MGD.

ROI# H MGD SGD R1 R2

0 5.0543 6.6862 6.6889 51.25 21.27
1 4.5285 8.6804 9.2471 0.22 56.52
2 4.9763 6.5908 6.5964 6.84 36.09
3 5.0034 6.7403 6.7571 3.76 38.81
4 5.1309 7.1684 7.4701 1.13 23.21
5 4.8514 6.7348 6.7413 2.30 26.65
6 4.8986 6.6037 6.6048 3.55 27.75
7 3.8963 9.2579 9.9911 0.13 57.14
8 4.7801 6.7241 6.7878 2.28 15.42
9 3.9219 10.6273 10.6273 0.10 100

10 5.0189 6.5256 6.6345 4.59 36.75
11 5.0128 6.4491 6.4552 11.73 28.83
12 5.0296 6.8869 6.8869 2.87 32.28
13 4.7900 6.8338 7.1186 0.98 20.98
14 4.7307 6.4883 6.4949 5.99 14.14
15 4.9384 7.0157 7.0484 1.84 21.50
16 4.9362 8.0427 8.4159 0.44 39.78

To further validate our algorithm lossless compression per-
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TABLE IV: BIT RATES IN BITS PER PIXEL FOR LOSS-
LESS COMPRESSION OF FOUR TEST DATASETS

Dataset FL The proposed Algorithm
Indian Pines 6.60 6.54

Pavia University 4.89 4.85
Salinas 6.54 6.52

Kennedy Space Center 4.97 5.21

formance, we have conducted another experiment, where we
treated the entire image as on single ROI and applied the
proposed method on this ROI. We used the C implementation
of the FL method in [20], which was downloaded online [30].
We set all the parameters in FL method by following the
work [31]. The results are summarized in Table IV. It can
be seen that our algorithm slightly outperforms FL method
on all test datasets except for Kenneday Space Center.
This dataset contains substantial impulse noise, which might
be better handled by an optimized implementation of the FL
method with a restraint on sudden change of weights in LMS
learning. Although the proposed method performs very closely
to the standard approach on lossless compression of the entire
hyperspectral image, it was designed for lossless compression
of ROIs with no-data regions.

V. CONCLUSION

We have proposed a new lossless compression algorithm
on arbitrarily shaped ROIs in hyperspectral images. The al-
gorithm has several innovations: First, a two-stage prediction
was introduced to effectively de-correlate the hyperspectral
image spatially and spectrally. Then, based on the assumption
that the prediction residuals would be better modeled by a
mixed geometric distribution rather than a single geometric
distribution, a separate Golomb-Rice coding method was em-
ployed to encode the prediction residuals. Simulation results
on the four hyperspectral image datasets with predefined ROIs
with no data regions showed that the proposed algorithm
provided much higher compression ratios than several other
methods, including the state-of-the-art shape-adaptive JPEG
2000 method.
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