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Abstract— Positron emission tomography (PET) images are
widely used in many clinical applications, such as tumor detection
and brain disorder diagnosis. To obtain PET images of diagnostic
quality, a sufficient amount of radioactive tracer has to be
injected into a living body, which will inevitably increase the
risk of radiation exposure. On the other hand, if the tracer
dose is considerably reduced, the quality of the resulting images
would be significantly degraded. It is of great interest to estimate
a standard-dose PET (S-PET) image from a low-dose one in
order to reduce the risk of radiation exposure and preserve
image quality. This may be achieved through mapping both
S-PET and low-dose PET data into a common space and then
performing patch-based sparse representation. However, a one-
size-fits-all common space built from all training patches is
unlikely to be optimal for each target S-PET patch, which
limits the estimation accuracy. In this paper, we propose a
data-driven multi-level canonical correlation analysis scheme to
solve this problem. In particular, a subset of training data
that is most useful in estimating a target S-PET patch is
identified in each level, and then used in the next level to update
common space and improve estimation. In addition, we also
use multi-modal magnetic resonance images to help improve
the estimation with complementary information. Validations
on phantom and real human brain data sets show that our
method effectively estimates S-PET images and well preserves
critical clinical quantification measures, such as standard uptake
value.

Index Terms— PET estimation, multi-level CCA, sparse
representation, locality-constrained linear coding, multi-
modal MRI.
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I. INTRODUCTION

POSITRON emission tomography (PET) is a functional
imaging technique that is often used to reveal metabolic

information for detecting tumors, searching for metastases and
diagnosing certain brain diseases [1], [2]. By detecting pairs of
gamma rays emitted from the radioactive tracer injected into
a living body, the PET scanner generates an image, based on
the map of radioactivity of the tracer at each voxel location.

To obtain PET images of diagnostic quality, a standard-dose
tracer is often used. However, this raises the risk of radioactive
exposure, which can be potentially detrimental to one’s health.
Recently, researchers have tried to lower the dose during PET
scanning, e.g., using half of the standard dose [3]. Although
it is desirable to reduce the dose during the imaging process,
reducing the dose will inevitably degrade the overall quality
of the PET image. As shown in Fig. 1(a) and (b), the low-dose
PET (L-PET) image and the standard-dose (S-PET) image
differ significantly in image quality, though both images are
of the same subject. Our method aims to estimate the S-PET
image in a data-driven manner to produce a result (Fig. 1(c))
that is very close to the original S-PET image. Also, since
the modern PET scanner is often combined with other
imaging modalities (e.g., magnetic resonance imaging (MRI))
to provide both metabolic and anatomical details [4], such
information could be leveraged for better estimation of
S-PET images.

Since PET images often have poor signal-to-noise
ratio (SNR) due to the high level of noise and low spatial
resolution, there are a lot of works that have been proposed
to improve the PET image quality during the reconstruc-
tion or the post-reconstruction process. For example, during
the reconstruction process, anatomical information from MRI
prior [5]–[7] has been utilized. In [8], a nonlocal regularizer
is developed, which can selectively consider the anatomical
information only when it is reliable, and this information can
come from MRI or CT. In the post-reconstruction process,
CT [9], [10] or MRI [11] information can be incorporated.
In [12], both CT and MRI are combined in the post-
reconstruction process. These methods can suppress noise and
improve image quality. Some works have specifically focused
on reducing the noise in PET images, including the use of
the singular value thresholding concept and Stein’s unbiased
risk estimate [13], the use of spatiotemporal patches in a non-
local means framework [14], the joint use of wavelet and
curvelet transforms [15], and simultaneous delineation and
denoising [16].
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Fig. 1. (a) Low-dose PET image of a subject. (b) Standard-dose PET image
of the same subject. (c) Estimated standard-dose PET image by our method.

The aforementioned methods are mainly developed to
improve the PET image quality during the reconstruction or
the post-reconstruction process. On the contrary, in this work,
we study the possibility of generating S-PET alike image with
diagnostic quality from L-PET image and MRI image, and
investigate how well the image quantification can be preserved
in the estimated S-PET images. Our method is essentially a
learning-based mapping approach to infer unknown data from
known data in different modalities, in contrast to conventional
image enhancement methods.

For practical nuclear medicine, it is desirable to reduce
the dose of radioactive tracer. However, lowering radiation
dose changes the underlying biological or metabolic process.
Therefore, the low-dose and standard-dose PET images can
be different in terms of activity. This actually brings the
motivation of our method, in which we aim to estimate
standard-dose alike PET images from L-PET images, which
cannot be achieved by simple post-processing operations
such as denoising. To our best knowledge, very few meth-
ods attempt to directly estimate the S-PET image from an
L-PET image, for example, using regression forest [17], [18].
Specifically, in [17] and [18], a regression forest can be trained
to estimate a voxel value in an S-PET image, with L-PET
voxel values in the neighborhood as input to the RF. The
quality of the estimated S-PET images can be further improved
by incremental refinement. In the CT imaging domain, to
obtain a CT image of diagnostic quality with a lesser dose,
Fang et al. [19] proposed a low-dose CT perfusion deconvo-
lution method using tensor total-variation regularization.

Recently there have been rapid development in sparse repre-
sentation (SR) and dictionary learning for medical images [20].
For example, estimating S-PET image from L-PET image can
be achieved in patch-based SR by learning a pair of coupled
dictionaries from L-PET and S-PET training patches. It is
assumed that both L-PET and S-PET patches lie in the low
dimensional manifolds with similar geometry. To estimate a
target S-PET patch, its corresponding L-PET patch is first
sparsely represented by the L-PET dictionary, which includes
a set of training L-PET patches. The resulting reconstruction
coefficients are then directly applied to the S-PET dictionary
for estimation of S-PET image, where the S-PET dictionary
is composed of a set of S-PET patches, each corresponding to
an L-PET patch in the L-PET dictionary.

Usually, the patches in the two dictionaries have different
distributions (i.e., neighborhood geometry) due to changes in
imaging condition. Hence, it is inappropriate to directly apply

the learned coefficients from the L-PET dictionary to the
S-PET dictionary for estimation. A solution to this problem
is to map those patches into a common space before
applying sparse coefficients for minimizing their distribution
discrepancy. Common space, or sometimes referred to as
coherent space, is a feature space where the coherence between
the topological structures of data from different modalities
(i.e., L-PET and S-PET patches in our case) is established.
In this common space, the L-PET and S-PET features share a
common topological structure, and thus an S-PET patch can be
estimated more accurately by exploiting the geometric struc-
ture of the L-PET patches. One popular technique to learn such
common space is Canonical Correlation Analysis (CCA) [21],
which has been widely applied in various tasks, such as
disease classification [22], [23], population studies [24], image
registration [25], and medical data fusion [26]. CCA can be
used to learn global mapping with the original coupled L-PET
and S-PET dictionaries and then map both kinds of data into
their common space. However, global common space mapping
does not necessarily unify neighborhood structures in the cou-
pled dictionaries that are involved in reconstructing a specific
L-PET patch. Hence, it is sub-optimal to estimate its
corresponding S-PET patch using the same reconstruction
coefficients.

To accurately learn the common space for S-PET estimation,
we propose a multi-level CCA (mCCA) framework. Fig. 2
illustrates a two-level scheme. In the first level (top part
of Fig. 2), after mapping both L-PET and S-PET data into their
common space, a test L-PET patch can be reconstructed by
the L-PET dictionary. Rather than immediately estimating the
target S-PET patch in this level, a subset of the L-PET dictio-
nary atoms (patches with non-zero coefficients) that are most
useful for reconstructing the test L-PET patch are selected and
passed on together to the next level with the corresponding
S-PET dictionary subset (lower part of Fig. 2). With this data-
driven dictionary refinement, the subsequent common space
learning and estimation will be improved in the next level.
We observe that repeating this process leads to a better final
estimation. In addition to the L-PET based estimation, we also
leverage multi-modal MRI (i.e., T1-weighted and diffusion
tensor imaging (DTI)) to generate an MRI based estimation
in a similar way, which can be used to improve the simple
L-PET based estimation in a fusion process. This is depicted
in Fig. 3. As can be seen, given a test L-PET patch, the training
patches are adaptively selected and then used to learn multiple
levels of CCA-based common space, with the goal of better
representing this test L-PET patch in each level. Similarly,
estimation can be made from a test MRI patch (bottom part)
by selecting one MRI modality that has the highest correlation
with the test L-PET patch. Finally, a fusion strategy generates
the final estimated S-PET patch, and all the estimated S-PET
patches are aggregated to form the output S-PET image.

We note that in a recent work [27], qualitative visual
inspections were performed by physicians on whole-body
PET images, and no significant difference between PET
images with different doses was found. However, it was
observed that the standard uptake values (SUVs) have
changed when using different doses. In our work, we test our
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Fig. 2. Illustration of the multi-level CCA scheme (with two levels shown as example). Filled patterns denote L-PET patches and unfilled patterns denote
S-PET patches. A pair of L-PET and S-PET patches are indicated by the same color. A coarse reconstruction in the first level (top) is used to select the
refined subsets of dictionaries. At this stage, the dictionary atoms that contribute more in reconstructing the test patch are selected. The estimation in the
second level (bottom) is more accurate thanks to the improved mapping and reconstruction using the refined dictionaries. Best viewed in color.

Fig. 3. Our framework for estimating S-PET image from L-PET and MR images. The top part illustrates the proposed multi-level CCA-based estimation
from L-PET patches, and the bottom part depicts the same strategy for estimation using MRI as input. In each level, for a particular test patch, a subset
of dictionary atoms are adaptively selected and then the refined dictionaries in the original image space are provided to the next level for common space
learning and reconstruction. In the final stage, a fusion strategy is adopted to generate the final estimated S-PET patch using both the MRI- and L-PET-based
estimations. Best viewed in color.

method on both brain phantom data with abnormality (i.e.,
lesion) and real brain data. Different from [27], we provide
quantitative evaluations in terms of both image quality and
clinical quantification measures. The results suggest that our
estimated standard-dose alike PET images are more similar
to the ground-truth standard-dose images, while the low-dose
PET images are significantly deviated from standard-dose
PET images in various measures.

Compared to [17] and [18], in which the PET estimation is
formulated as a regression problem, our approach tackles it as
a sparse representation problem. The sparse representation is

computed in an iteratively-refined common space for L-PET
and S-PET images. Because the intra-data relationships in the
L-PET and S-PET data spaces are different, a direct coding
and estimation step in the original image space would not
be optimal. In our approach, the estimation uses the sparse
coefficients learned in the common space, which has shown
to be more effective through experiments using both image
quality and clinical quantification measures. Compared to the
results in [18], with the same data and experimental settings,
superior performance is achieved by our method. Furthermore,
only T1-weighted MRI was used in [18], while in our method,
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multi-modal MRI can be adaptively selected and utilized for
improved estimation as compared to using only T1.

In summary, the contributions of this work are two-fold:
1) An mCCA based data-driven scheme is developed to

estimate an S-PET image from an L-PET counterpart,
such that its quality is iteratively refined;

2) Our framework combines both L-PET and multi-modal
MRI for better estimation. To the best of our knowledge,
this is the first work that estimates an S-PET image by
fusing the information from its low-dose counterpart and
multi-modal MR images.

The effectiveness of our proposed method was evaluated
on a real human brain image dataset. Extensive experiments
were conducted using both image quality metrics and clinical
quantification measures. The results demonstrate that the esti-
mated S-PET images well preserve critical measurements such
as standard uptake value (SUV) and show the improved image
quality in terms of quantitative measures such as peak signal-
to-noise ratio (PSNR), as compared to the L-PET images and
also the estimations by those baseline methods.

Below we first describe the proposed method in detail in
Section II. Then, we show extensive experimental results,
evaluated with different metrics, on both phantom brain dataset
and real human brain dataset in Section III. Finally, we
conclude the paper in Section IV.

II. METHODOLOGY

Suppose we have a group of N training image pairs,
with each composed of an L-PET image and an S-PET
image. Given a target L-PET image, we seek to estimate
its S-PET counterpart using the training set in a patch-wise
manner. Specifically, we first break down each pair of the
training images into a number of patches at corresponding
voxels, thus leading to sets of L-PET and associated S-PET
training patches. Given a target S-PET patch to be estimated,
the training patches within the corresponding neighborhood
are extracted and preselected. After learning and refining a
common space in multiple levels, an estimate of the target
S-PET patch from its L-PET counterpart is obtained by patch
based SR with the selected training patches. By replacing
L-PET with multi-modal MRI and repeating the above process,
we can obtain the estimates of the target S-PET patch from
multiple modalities. We then fuse those estimates together
to obtain the final estimate. Below we elaborate mCCA
for L-PET and multi-modal MR based estimation in detail.
We use bold lowercase letters (e.g., w) to denote vectors and
bold uppercase letters (e.g., W) for matrices. Before diving
into details, we first briefly review CCA.

A. Canonical Correlation Analysis (CCA)

First introduced in [21], CCA is a multivariate statistical
analysis tool. CCA aims at projecting two sets of multivariate
data into a common space such that the correlation between
the projected data is maximized.

In our problem, given two data matrices X = {Xi ∈ R
d ,

i = 1, 2, ..., K } and Y = {Yi ∈ R
d , i = 1, 2, ..., K }

containing K pairs of data from two modalities, the goal

of CCA is to find pairs of column projection vectors
wX ∈ R

d and wY ∈ R
d such that the correlation between

wT
X X and wT

Y Y is maximized. Specifically, the objective
function to be maximized is

arg max
wL ,wS

w�
X CXY wY√

w�
X CX X wX

√
w�

Y CY Y wY

, (1)

where the data covariance matrices are computed by
CX X = E[XX�], CY Y = E[YY�], and CXY = E[XY�],
in which E[·] calculates the expectation. Eq. (1) can be
reformulated as a constrained optimization problem as follows:

maximize wT
X CXY wY

subject to wT
X CX X wX = 1,

wT
Y CY Y wY = 1. (2)

Eq. (2) can be solved through the following generalized
eigenvalue problem

[
0 CXY

CY X 0

] [
wX

wY

]
= λ

[
CX X 0

0 CY Y

] [
wX

wY

]
. (3)

wX is an eigenvector of C−1
X X CXY C−1

Y Y CY X , and wY is an

eigenvector of C−1
Y Y CY X C−1

X X CXY . The projection matrices
WX and WY are obtained by stacking wX and wY as column
vectors, corresponding to different eigenvalues of the above
generalized eigenvalue problem.

B. Patch Preselection and Common Space Learning

Let yL ,p be a column vector representing a vectorized target
L-PET patch of size m × m × m extracted at voxel p. To esti-
mate its S-PET counterpart, we first construct an L-PET dictio-
nary by extracting patches across the N training L-PET images
within a neighborhood of size t×t×t centered at p. Repeating
this process for each of the N training S-PET images, we har-
vest an S-PET dictionary coupled with L-PET dictionary, and
there are a total of t3 × N patches (atoms) in each dictionary.

As the size of the dictionary is proportional to t and N ,
out of all t3 × N patches, we preselect a subset of K L-PET
patches that are the most similar to yL ,p, for computational
efficiency in the subsequent learning process. The similarity
between patches yi and y j are defined using structural simi-
larity (SSIM) [28]

SSIM(yi , y j ) = 2μiμ j

μ2
i + μ2

j

× 2σiσ j

σ 2
i + σ 2

j

, (4)

where μ and σ are the patch mean and standard deviation,
respectively. This preselection strategy has been adopted with
success in medical image analysis [29]. Note that for this patch
selection, we are computing a metric of structural similarity
between patches based on the observed statistics of the voxel
intensities in each patch. This method defines similarity on the
basis of the observed first- and second-order statistics within
each patch and does not make any particular assumption about
the noise structure of the images, either Gaussian or not. Other
similarity metrics could also be applied here if suitable for
PET images.
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Let DL = {dLi ∈ R
d , i = 1, 2, ..., K } be the L-PET dictio-

nary after preselection and DS = {dSi ∈ R
d , i = 1, 2, ..., K }

be the corresponding S-PET dictionary, where d = m3,
dLi and dSi are a pair of L-PET patch and its corresponding
S-PET patch. To improve the correlation between DL and DS ,
we use CCA to learn mappings wL , wS ∈ R

d , such that after
mapping the correlation coefficient between DL and DS is
maximized. The mappings are obtained substituting X with
DL and Y with DS in Eq. (3). The projection matrices
WL and WS are composed of wL and wS corresponding to
different eigenvalues. In this step, a subset of the training
L-PET patches that are most similar to the given L-PET patch
is selected. Also, a CCA mapping is performed to transform
the L-PET dictionary and S-PET dictionary into a common
space where they have a maximized correlation.

C. S-PET Estimation by mCCA

In our multi-level scheme, we learn CCA mapping for
each level and reconstruct the target L-PET patch yL ,p in
the common space at all times. Specifically, let D1

L and D1
S

be the L-PET and S-PET dictionaries in the first level, and
W1

L and W1
S be the learned mappings. The reconstruction

coefficients ααα1 for yL ,p in this level are determined by

arg min
ααα1

‖W1
L

�
(yL ,p − D1

Lααα1)‖2
2 + λ‖δδδ � ααα1‖2

2,

s.t. 1�ααα1 = 1, (5)

where � is element-wise multiplication. The computation
of δδδ is defined as

δδδ = exp(
dist(W1

L
�

yL ,p, W1
L

�
D1

L)

σ
), (6)

such that each element in δδδ is computed from the Euclidean
distance between projected patch W1

L
�yL ,p and each projected

dictionary atom in W1
L

�
D1

L . σ is a parameter to adjust the
weight decay based on the locality. For example, the elements
in D1

L , which are far away from yL ,p, will have larger penalty,
resulting in smaller reconstruction coefficients in ααα1. On the
other hand, the neighbors of yL ,p in D1

L will be less penalized,
thus allowing higher weights for reconstruction. Eq. (5) is
referred to as locality-constrained linear coding (LLC), which
has an analytical solution [30], given by

α̂αα1 = (C + λdiag(δδδ))1,

ααα1 = α̂αα1/1�α̂αα1, (7)

where C = (DL − 1ŷ�)(DL − 1ŷ�)
�

and ŷ = W1
L

�
yL ,p.

It has been shown that the locality constraint can be more
effective than sparsity [31]. Instead of using ααα1 to estimate
the S-PET patch as output in this level, the dictionary atoms
in D1

L with significant coefficients (e.g., larger than a prede-
fined threshold) in ααα1 are selected to build a refined L-PET
dictionary. The refined L-PET dictionary and corresponding
S-PET dictionary are used for both common space learning
and reconstruction in the next level.

In the lth level where l ≥ 2, the reconstruction coeffi-
cients αααl are calculated by

arg min
αααl

‖Wl
L

�
(yL ,p − Dl

Lαααl)‖2
2 + λ‖δδδ � αααl‖2

2

+ γ ‖Wl
S
�
(yl

S,p − yl−1
S,p)‖2

2, s.t. 1�αααl = 1, (8)

where Wl
L and Wl

S are the CCA mapping for Dl
L and Dl

S at
the current lth level, yl−1

S,p = Dl−1
S αααl−1 is the estimated S-PET

patch from the previous (l − 1)th level and yl
S,p = Dl

Sααα
l is the

estimation in the lth level. The third term of Eq. (8) enforces
that the estimation in the lth level does not significantly deviate
from the estimation in the (l − 1)th level, ensuring a gradual
and smooth refinement in each level.

By repeating the process above, the dictionary atoms that
are most important in reconstructing a target L-PET patch are
selected. Therefore, the mapping and reconstruction in the
subsequent level can be more effective towards the goal of
estimating a particular target S-PET patch. In the final level,
we obtain the L-PET based estimation, denoted by ŷS,p.

D. MRI Based Estimation and Fusion

As MRI can reveal anatomical details, we would like to
take this advantage for S-PET estimation. For a given L-PET
patch yL ,p, we select one MR modality from T1 and DTI
(i.e., fractional anisotropy (FA) and mean diffusivity (MD))
images such that the correlation (i.e., cosine similarity in our
case) between the selected MRI patch yM,p and yL ,p is the
highest, though other advanced methods, such as combining
all MR modalities, can be used. To compute the correlation,
the patches are first normalized to have a zero mean and unit
variance, as it helps to eliminate the influence of different
intensity scales across different image modalities. The MRI
based estimation y̌S,p is computed similarly to the L-PET
based estimation, ŷS,p, by using the dictionary pair from the
MR images of selected modality and the S-PET images in the
training set. The final fused estimation is obtained by

yS,p = ω1ŷS,p + ω2y̌S,p. (9)

The fusion weights ω1 and ω2 are learned adaptively for
each target S-PET patch by minimizing the following function

arg min
ω1,ω2

‖W�
L yL ,p − W�

S yS,p‖2
2 + ‖P�

M yM,p − P�
S yS,p‖2

2,

s.t. yS,p = ω1ŷS,p + ω2y̌S,p, ω1 + ω2 = 1,

ω1 ≥ 0, ω2 ≥ 0, (10)

where WL and WS are the mapping in the final level for the
L-PET based estimation, while PM and PS are the mapping
in the final level for MRI based estimation. This objective
function ensures that in their corresponding common spaces,
the final output is close to both the input L-PET patch and the
input MRI patch. Note that the L-PET based estimation and
the MRI based estimation can both be obtained with different
number of levels for common space learning. The optimal
values for ω1 and ω2 can be efficiently computed using a
recently proposed active-set algorithm [32].
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Fig. 4. Sample images from brain phantom data. Bounding boxes enclose
the lesion regions. (a) L-PET. (b) S-PET.

III. EXPERIMENTS

For the proof of concept, we first evaluate our method on a
simulated phantom brain dataset with 20 subjects. Then, a real
brain dataset from 11 subjects are introduced and evaluated in
detail. The description for the datasets and the experimental
results are presented in the following.

On both phantom and real brain datasets, a leave-one-out
cross-validation (LOOCV) strategy was employed, i.e., each
time one subject is used as the target subject and the rest
are used for training. The patch size is set to 5 × 5 × 5
and the neighborhood size for dictionary patch extraction is
15 × 15 × 15. The patches are extracted with a stride of one
voxel and the overlapping regions are averaged to generate
the final estimation. During preselection, K = 1200 patches
are selected. The regularization parameter λ in Eq. (5) and
Eq. (8) is set to 0.01 and γ in Eq. (8) was set to 0.1.
We use two-level CCA for both L-PET and MRI based
estimation in the experiments, as we observe that the use
of more levels does not bring significant improvement while
increasing the computational time. In the first level, the dic-
tionary atoms with coefficients larger than 0.001 in ααα1 were
selected for learning both the common space mapping and the
reconstruction coefficients ααα2 in the second level.

A. Phantom Brain Dataset

1) Data Description: The phantom brain dataset is con-
structed from 20 anatomical normal brain models [33], [34].
Within each model, a 3D “fuzzy” tissue membership volume
is available for each tissue class, including background,
cerebrospinal fluid, gray matter, white matter, fat, muscle,
muscle/skin, skull, blood vessels, connective region around
fat, dura matter and bone marrow. To examine the estimation
quality especially in abnormal regions, we randomly place
a lesion for each brain in the middle temporal gyrus. Fig. 4
shows examples of an L-PET image and the corresponding
S-PET image. Besides simulated PET images, each model
has a T1-weighted MRI.

For the proof of concept, we want to answer the following
questions:

• Are the estimated S-PET alike images better than the
original L-PET images?

• Is performing the estimation in common space better than
in the original image space?

• Is multi-level CCA mapping more effective than a single-
level CCA mapping?

Fig. 5. Average PSNR scores on the phantom brain dataset. Error bars
indicate standard deviation. L means using L-PET as the only estimation
source, and L+M means using both L-PET and MRI for estimation. Higher
score is better. † indicates p < 0.01 in the t-test as compared to our method.

• Is MRI useful as additional estimation source?
• Can comparable results be achieved by a denoising filter?

These questions are answered by evaluations using both image
quality and clinical measures, as defined in the following.

2) Image Quality Evaluation: For quantitative evaluation,
we first compute Peak Signal-to-Noise Ratio (PSNR) between
an estimated S-PET image and the ground-truth S-PET image.
PSNR is defined as

PSNR = 10log10(
DR2

MSE
), (11)

where DR denotes the dynamic range of the image, and the
mean square error (MSE) between the estimation y and the
ground-truth s with an image of size n × o × p is given by

MSE = 1

nop

n∑

i=1

o∑

j=1

p∑

k=1

(|y(i, j, k) − s(i, j, k)|2). (12)

A larger value of PSNR indicates more similarities between
the estimated S-PET image and the ground-truth S-PET
images. Fig. 5 shows the average PSNR scores for the 20 sub-
jects. Baseline comparisons include sparse representation in
the original image space (SR), CCA, and multi-level CCA
using L-PET as the only estimation source, while both multi-
level CCA and multi-modal MRI are used in our method.

The results show that the estimation in the common space
learned by CCA is more accurate than the estimation in
the original image space. In addition, using more levels of
common space learning leads to better results, which are
further improved by leveraging MRI data. To validate the
statistical significance of our method, we perform paired-
sample t-test to compare the baseline methods against ours.
As indicated in Fig. 5, p < 0.01 is observed for all the baseline
methods under comparison. This provides further evidence
about the advantage of our method, i.e., mCCA (L+M).

Furthermore, the Signal-to-Noise Ratio (SNR) is computed
on the estimated images. SNR is defined as

SNR = 20log10
mROI

σROI
, (13)

where mROI and σROI are the mean and standard deviation
in the region of interest (ROI). In this case, the ROI is the
lesion region. The average SNR values are shown in Fig. 6.
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Fig. 6. Average SNR scores on the phantom brain dataset. The ROI for
computing SNR is the lesion region. Error bars indicate standard deviation.
L means using L-PET as the only estimation source, and L+M means using
both L-PET and MRI for estimation. Higher score is better. † indicates
p < 0.01 in the t-test as compared to our method, and ∗ means p < 0.05.

Higher value of SNR indicates better quality. Compared to the
other baseline methods, the highest SNR is achieved by the
proposed method with statistical significance of p < 0.05.
The superior performance in SNR measure is congruent with
the observation of the comparison of PSNR values.

3) Clinical Measure Evaluation: Besides image quality
measure, it is also important that the ROI in an estimated
S-PET image is well preserved in terms of clinical quan-
tification, as compared to the ground-truth S-PET images.
To examine this aspect, we evaluate two measures in the lesion
region as the ROI. The first measure is Contrast-to-Noise
Ratio (CNR), which is important in clinical applications to
detect the potentially low remnant activity after therapy [14].
CNR is computed between ROI and the background (cerebel-
lum in this paper). We use the definition of CNR in [35], i.e.,

CNR = (mROI − mBG)/mBG√
σ 2

ROI + σ 2
BG

, (14)

where mROI and mBG are the mean intensities, σROI and σBG
are the standard deviations of the ROI and the background,
respectively.

As the goal is to estimate S-PET images that are similar to
the ground-truth S-PET images, we report the CNR difference
between the estimated S-PET images and the ground-truth
S-PET images. Smaller difference indicates less deviation from
the ground-truth. Fig. 7 shows the average CNR difference.
We can see that the CNR difference is significant in the orig-
inal L-PET images as well as the estimated S-PET images by
patch-based SR. This difference is reduced by estimating the
S-PET image in the common space learned by CCA, and the
proposed mCCA scheme further bridges this difference.
The small p-values, i.e., p < 0.05, demonstrate the statistical
importance of the CNR results obtained by our method.

Apart from CNR, SUV calculated from the PET images
is also critical for diagnostic evaluation and treatment plan-
ning [36]. The use of SUV can remove variability among
patients, which is caused by the differences in body size and
the amount of injected tracer dose. Particularly, the changes
in SUV are important in clinical applications. For example, the
SUV changes can be used to classify patients into different
PET based treatment response categories, so such response

Fig. 7. Average CNR difference on the phantom brain dataset. The ROI
for computing CNR is the lesion region. L means using L-PET as the only
estimation source, and L+M means using both L-PET and MRI for estimation.
Error bars indicate standard deviation. Lower score is better. † indicates
p < 0.01 in the t-test as compared to our method, and ∗ means p < 0.05.

Fig. 8. Average SUV difference on the phantom brain dataset. The ROI
for computing SUV is the lesion region. L means using L-PET as the only
estimation source, and L+M means using both L-PET and MRI for estimation.
Error bars indicate standard deviation. Lower score is better. † indicates
p < 0.01 in the t-test as compared to our method.

classification can guide subsequent treatment decisions [37].
The SUV can be calculated on a per voxel basis, in which the
value for a voxel at location (i, j, k) is defined by

SUV = c(i, j, k)

(a/w)
, (15)

where c(i, j, k) is the radioactivity concentration in that voxel
(in kBq/ml) and w is the body weight of the subject (in g).
a is the decay-corrected amount of injected dose (in kBq).
As suggested in [13], smaller changes in SUV are highly
desirable, meaning that the estimation does not significantly
change the quantitative markers of the PET image. Thus, we
report the SUV difference in the lesion region in both L-PET
images and the estimated S-PET images, in order to examine
how the SUV in these images deviates from the SUV in the
ground-truth S-PET images.

Fig. 8 shows the SUV difference in the same ROI by
different methods. Compared to the baseline methods, the
SUV difference by the proposed method is the smallest.
This shows that the estimated S-PET images by our method
can better preserve the SUV, indicating an improved clinical
usability as compared to the L-PET images or the outputs
by the baseline methods. This improvement is statistically
important as suggested by the small p-values in comparison
with other baseline methods.

Since image denoising can also improve the image
quality, we compare our method with the following state-
of-the-art denoising methods: 1) BM3D [38], which is
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TABLE I

COMPARISON WITH DIFFERENT DENOISING METHODS. FOR
PSNR AND SNR, HIGHER SCORE IS BETTER. FOR

CNR AND SUV DIFFERENCE, LOWER SCORE IS

BETTER. † INDICATES p < 0.01 IN THE

t -TEST AS COMPARED TO OUR METHOD

a denoising method based on an enhanced sparse
representation in transform-domain, and it has also shown
favorable performance in PET sinogram denoising [39];
2) Optimized Blockwise Nonlocal Means (OBNM) [40],
which is originally developed for 3D MR images and can also
be applied to PET images. The denoising directly operates
on the L-PET input. The comparison results, in terms of
different measures, are listed in Table I. Note that, for fair
comparison, only L-PET is used as the estimation source in
our method in this comparison.

We observe from the results in Table I that our estimated
S-PET images are notably better than the denoised L-PET
images. In other words, a simple denoising process cannot
produce S-PET alike images that are close to the ground-
truth S-PET images, and the clinical quantification cannot be
well preserved. To verify the statistical significance, we also
perform t-test to compare the results by the two denoising
methods against the proposed method, and in all different
measures, a small p-value, i.e., p < 0.01, is observed.

The evaluations on the phantom brain dataset with abnor-
mal structures (i.e., lesion), using both image quality and
clinical quantification measures, with comparisons to baseline
methods, suggest that: 1) the estimated S-PET images are
more similar to the ground-truth S-PET images, compared
to the L-PET images and outputs by other baseline methods,
2) estimation in common space is more effective than that in
the original image space, 3) multi-level CCA common space
learning leads to improved results, 4) MRI can help further
improve the estimation accuracy, and 5) performing simple
denoising is not adequate to produce S-PET alike images that
are close to the ground-truth S-PET images.

B. Real Brain Dataset

1) Data Description: We further evaluate the performance
of our method on a real brain dataset. This dataset consists
of PET and MR brain images from 11 subjects (6 females
and 5 males). Based on clinical examination, all subjects were
encouraged to have PET scans. Table II summarizes their
demographic information. Among these subjects, subject 9-11
were diagnosed with Mild Cognitive Impairment (MCI).
All scans were acquired on a Siemens Biograph mMR MR-
PET system. This study was approved by the University of
North Carolina at Chapel Hill Institutional Review Board.

The standard-dose and low-dose correspond to standard
activity administered (averaging 203 MBq and effective dose
of 3.86 mSv) and low activity administered (approximately
51 MBq and effective dose of 0.97 mSv), respectively.

TABLE II

DEMOGRAPHIC INFORMATION OF THE SUBJECTS IN THE EXPERIMENTS

In general, the effective dose can be regarded as proportional
to the administered activity [41]. In our case, the standard-
dose activity level is at the low end of the recommended
range (185 to 740 MBq) by the Society of Nuclear Medicine
and Molecular Imaging (SNMMI) [41]. During PET scanning,
the standard-dose scan was performed for a full 12 minutes
within 60 minutes of injection of 18F-FDG radioactive tracer,
based on standard protocols. A second PET scan was acquired
immediately after the first scan in list-mode for 12 minutes.
The second scan was then broken up into four separate
3-minute sets, each of which is considered as a low-dose
scan. As a result, the activity level in the 3-minute scan is
significantly lower than the recommended range.

In other words, the L-PET images are completely separate
from the S-PET images in the acquisition process in this
setting. On the contrary, if only the first scan was obtained
and the low-dose scans were acquired by breaking the first
scan into four sets, the L-PET images and the S-PET images
would actually come from the same set of data, despite of
the dose difference. It is worthwhile to note that reducing
acquisition time at standard-dose is considered as a surrogate
for standard acquisition time at a reduced dose. Regarding
reconstruction, all PET scans were reconstructed using
standard methods from the vendor. Attenuation correction
using the Dixon sequence and corrections for scatters were
applied to PET images. The reconstruction was performed
iteratively using the OS-EM algorithm [42] with three
iterations, 21 subsets, and post-reconstruction filtered with a
3D Gaussian with sigma of 2 mm. Each PET image has a
voxel size of 2.09 × 2.09 × 2.03mm3.

Besides PET images, structural MR images were acquired
with a 1 × 1 × 1mm3 resolution, and diffusion images were
also acquired with a resolution of 2 × 2 × 2mm3. Then we
compute FA and MD images from the diffusion images. For
each subject, the MR images were linearly aligned to the
corresponding PET image, and then all of the images were
aligned to the first subject using FLIRT [43]. Non-brain tissues
were then removed from the aligned images using a skull
stripping method [44]. In summary, each subject has an L-PET
image, an S-PET image, and three MR images (T1-weighted
MRI, FA and MD). Fig. 9 shows examples of PET and MR
images from one subject.



AN et al.: mCCA FOR S-PET IMAGE ESTIMATION 3311

Fig. 9. Sample PET and MR images of one subject from real brain data.
(a) L-PET. (b) S-PET. (c) T1. (d) DTI-FA. (e) DTI-MD.

Fig. 10. Average PSNR on the real brain dataset. L means using L-PET as
the only estimation source, and L+M means using both L-PET and MRI for
estimation. Error bars indicate standard deviation. Number below each method
name is the max deviation. † indicates p < 0.01 in the t-test as compared to
our method, and ∗ means p < 0.05.

2) Image Quality Evaluation: For comparison, the bench-
mark methods include SR, coupled dictionary learn-
ing (CDL) [20], regression forest (RF) [18]. Fig. 10 shows
the PSNR results. We note that by using L-PET as the only
estimation source, the proposed method achieves the highest
PSNR scores. With additional MRI data, further improvement
is obtained with a PSNR of 23.9 by our method. In addition,
the small p-values from the t-test verify the statistical signif-
icance of our method.

To more thoroughly examine the performance of our
method, for each subject, eight ROIs were segmented based
on the T1-weighted MR image, and the estimation perfor-
mance within each ROI is evaluated separately. Specifically,
on each hemisphere of the brain (i.e., left or right), four
ROIs, including frontal lobe, parietal lobe, occipital lobe, and
temporal lobe, were separated. We use Automated Anatomical
Labeling (AAL) template [45] and merge related regions to
cover these ROIs. Table III shows the SNR results for each
ROI. Higher value of SNR indicates better quality. Compared
to other methods, the highest SNR is achieved by the proposed
multi-level CCA with all estimation sources. This observation
is unanimous for all ROIs. The t-test also yields p-values
lower than 0.05 when comparing our method with the others.

TABLE III

SIGNAL-TO-NOISE RATIO (SNR) IN DIFFERENT ROIs ON THE REAL
BRAIN DATASET. HIGHER SCORE IS BETTER. SD IS STANDARD

DEVIATION AND MD IS MAX DEVIATION. † INDICATES

p < 0.01 IN THE t -TEST AS COMPARED TO

OUR METHOD, AND ∗ MEANS p < 0.05

TABLE IV

CONTRAST-TO-NOISE RATIO (CNR) DIFFERENCE IN DIFFERENT

ROIs ON THE REAL BRAIN DATASET. LOWER SCORE IS BETTER.
SD IS STANDARD DEVIATION AND MD IS MAX

DEVIATION. † INDICATES p < 0.01 IN THE

t -TEST AS COMPARED TO OUR METHOD,
AND ∗ MEANS p < 0.05

3) Clinical Measure Evaluation: We further evaluate the
proposed method in terms of clinical usability. Specifically,
CNR is first calculated in each of the eight ROIs, and the
cerebellum is used as the background region. The CNR dif-
ference, which measures how close the CNR in our estimated
S-PET images deviates from that in the ground-truth, is
reported in Table IV.

Compared to the other methods, the CNR difference by the
proposed method is the smallest for different ROIs. Also, the
superior performance is further corroborated by the p-values
which are all smaller than 0.05. This shows that the estimated
S-PET images by our method are most similar to the ground-
truth S-PET images, indicating an improved clinical usability
as compared to the L-PET images or the outputs by the other
methods.

Furthermore, since three subjects in this dataset
(Subject 9-11) are diagnosed with MCI, it is particularly
important that the estimated S-PET images by our method
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Fig. 11. Visual comparisons of L-PET images (top), ground-truth S-PET images (middle), and the estimated S-PET images by our method (bottom).

TABLE V

STANDARD UPTAKE VALUE (SUV) DIFFERENCE FOR THE MCI
SUBJECTS. LOWER SCORE IS BETTER. SD IS STANDARD

DEVIATION AND MD IS MAX DEVIATION

can well preserve the SUV in the hippocampal regions.
Therefore, we calculate the SUV difference on these regions
for the MCI subjects. The results are listed in Table V.
As observed, the SUV is well maintained by our method with
minimum deviation from the true SUV in the ground-truth
S-PET images. This suggest that not only our method can
well preserve the measures in the normal brain parts, but
also in abnormal regions the clinical quantification is well
retained.

For qualitative results, some samples of the estimated S-PET
images by our method are shown in Fig. 11. For comparison,
the corresponding L-PET images and the ground-truth S-PET
images are also provided. As observed, the estimated S-PET
images are very close to the ground-truth. Compared to the
L-PET images, better visual quality is observed in both the
ground-truth S-PET images and the estimated S-PET images.
The estimated images are smoother than the ground-truth due
to the averaging of patches in the final construction of the
output images. This process also helps reduce noise level as
evidenced by the improved SNR in Table III. In summary,

both quantitative and visual results suggest that the S-PET
images can be well estimated by our method, in terms of image
quality and clinical quantification measures that are critical in
diagnosis.

C. Computational Cost

We implemented our algorithm in Matlab on a PC with Intel
2.4GHz CPU and 8GB memory. The main computation is on
the LLC part as in Eq. (5), with the complexity of O(K 2),
where K is the dictionary size. Regarding the computational
cost, it takes about 120 seconds to estimate one slice of a 3D
PET image in our data. Since our approach is data-driven,
meaning that at each voxel location, training patches have
to be selected and mappings have to be learned. Therefore,
computation is not quite efficient in our current implemen-
tation. However, further speedup of our method is possible.
For example, the estimation of each slice can be performed
independently, thus a parallel computing scheme for each slice
can significantly improve the efficiency.

D. Discussion

The evaluation performed here compares S-PET to L-PET
in the context of using the same PET-MR scanner for the same
acquisition time. This approach makes the comparison fair
and leaves other variables out of the analysis. Nevertheless,
other approaches to improve PET image quality under low-
dose conditions also exist, including increasing the scan time
or taking advantage of other features, such as time-of-flight,
although it is currently not available on the Biograph mMR.
It is recommended that future studies will consider these other
methods along with our technique in determining the best
approach for a specific clinical or research protocol.

The proposed method can be generalized to other PET
targets, applications, and scanning protocols; but, in order to
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maintain a controlled experiment, we did the evaluation in the
context of FDG brain PET with a specific dose reduction on
the same scanner controlled for the same scan time. Thus,
the conclusions regarding performance should be limited at
this time to these specific conditions. Future studies will con-
sider how performance changes under different dose-reduction
ratios, with different PET tracers, and in different anatomical
targets.

Regarding the radiation, although a single PET scan has low
radiation, multiple scans may accumulate the radiation. Based
on the report from Biological Effects of Ionizing Radiation
(BEIR VII),1 the increased risk of incidence of cancer is 10.8%
per Sv. In other words, one brain PET scan increases the risk
of lifetime cancer by 0.04%. The International Commission on
Radiation Protection considers the increased risk of death by
cancer to be about 4% per Sv, meaning that one brain PET scan
increases the risk of death from cancer by 0.015%. Although
these numbers are small, but the risks are accumulated for
patients who undergo multiple PET scans as part of their
treatment plan. In addition, pediatric patients have increased
risks. Therefore, the long-term focus of this work is to reduce
the total dose for the non-standard population with increased
risk from PET radiation.

IV. CONCLUSIONS

A multi-level CCA scheme has been proposed for estimating
S-PET images from L-PET and multi-modal MR images.
On both phantom and real brain datasets, extensive evaluations
using both image quality and clinical measures have demon-
strated the effectiveness of the proposed method. Notably,
in the estimated S-PET images, the desired quantification
measures such as SUV were faithfully preserved as compared
to the ground-truth S-PET images. As compared to other rival
methods, our approach achieved superior performance.

In this work, we have demonstrated that high quality
S-PET alike images can be estimated offline in a learning
based framework from low-dose PET and MR images. This
potentially meets an important clinical demand to significantly
reduce the radioactive tracer injection during PET scanning.
In the future, more effective estimation and fusion techniques
will be studied to improve the estimation quality.

We have drawn our conclusions based on quantitative mea-
sures on two datasets. In future, we plan to enroll more sub-
jects in our dataset to more rigorously evaluate the proposed
method. To further validate the effectiveness of our method
in clinical tasks, larger scale experiments and evaluations by
physicians should be conducted, which is our ongoing work.
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