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Abstract—Detection of moving objects in a video captured by
a freely moving camera is a challenging problem in computer
vision. Most existing methods often assume that the background
can be approximated by dominant single plane/multiple planes,
or impose significant geometric constraints on background,
or utilize complex background/foreground probabilistic model.
Instead, we propose a computationally efficient algorithm which
is able to detect moving objects accurately and robustly in
a general 3D scene. This problem is formulated as a coarse-
to-fine thresholding scheme on the particle trajectories in the
video sequence. First, coarse foreground region is extracted
by performing reduced singular value decomposition (RSVD)
on multiple matrices which are built from bundles of particle
trajectories. Next, the background motion of pixels in coarse
foreground region are reconstructed by a fast inpainting method.
After subtracting the background motion, the fine foreground
is segmented out by an adaptive thresholding method which is
capable of solving multiple moving objects scenarios. Finally,
the detected foreground is further refined by the mean-shift
segmentation method. Extensive simulations and comparison to
state-of-the-art methods verify the effectiveness of the proposed
method.

Index Terms—moving object detection, moving camera, parti-
cle trajectories, thresholding

I. INTRODUCTION

MOVING objects often convey the essential meaningful
information in videos. Automatic detection of moving

objects in videos is the first crucial stage for various potential
applications, such as pedestrian and vehicle tracking, action
and event recognition, annotation of video archives, etc. Sev-
eral sophisticated works for detecting moving objects have
been presented for stationary camera. The frame difference
scheme to detect the foreground objects is a general method
first proposed by Jain and Nagel in 1979 [1]. Another group of
effective methods is background subtraction by using different
background models, e.g. pixel-wise Gaussian model proposed
by Wren et al. in [2], Gaussian mixture model presented by
Stauffer et al. in [3], and kernel density estimation used by
Elgammal et al. in [4]. However, the assumption of stationary
camera limits the application of computer vision algorithms, in
particular, for dealing with videos from aerial vehicle, motor
vehicle, mobile robot, pan-tilt-zoom (PTZ) camera, hand-
held camera, and even wearable camera. Together with the

This work was supported in part by the NSAF under Grant No. 11176018,
the NSFC under Grant No. 61471248, Fund of Robot Technology Used for
Special Environment Key Laboratory of Sichuan Province under Grant No.
14zxtk03 and China Scholarship Council.

Y. Wu and X. He are with the college of Electronics and Informa-
tion Engineering, Sichuan University, Chengdu 610064, P.R. China (e-mail:
yuanyuanwu29@163.com; hxh@scu.edu.cn)

T.Q. Nguyen is with the Department of Electrical and Computer En-
gineering, University of California, San Diego, CA 92093 USA (e-mail:
nguyent@ece.ucsd.edu)

continuous growth of videos captured by moving cameras, the
issue of detecting moving objects attracted sustained attention
from researchers in recent years.

Moving camera brings new challenges to moving objects
detection issue. First, camera-induced motion and object mo-
tion are mixed together in the view, where background is
moving due to the moving camera and foreground is moving
caused by a confluence of camera-induced motion and object
motion. Second, following the perspective projection principle
of pinhole camera model, the background motion is not only
induced by camera translation but is also affected by 3D
scenes with a significant depth variations (i.e. 3D parallax).
The differences in the induced 2D motion of areas within
the 3D scene at various depth are called 3D parallax motion
[5]–[7]. Third, many complex scenarios such as fast moving
camera, multiple moving objects with various size and speeds
are much more complex comparing to scenes with stationary
camera system.

In recent works, employing particle trajectories has shown
its advantages for detecting moving objects in moving camera
system. The definition of “particle trajectory” is the moving
path of a particle across a video clip, where the particle
could be feature points, corners, mesh grid pixels in one
frame and each particle is tracked through consecutive frames
to get its trajectory. Sheikh et al. [8] proposed a rank con-
straint trajectory pruning method. They estimated a compact
trajectory basis from trajectories of salient features, and the
background is subtracted by removing trajectories that lie
within the space spanned by the basis. Then, an optimal pixel-
wise foreground/background labeling is obtained by using
probabilistic graphical model. Dey et al. [9] extracted dense
particle trajectories by optical flow for each mesh grid pixel
in the first frame of a video clip. They proposed a multi-
frame epipolar constraint of monocular moving camera for
detecting the moving objects, that is, finding the trajectories
of points that are outliers to the constraint. Wu et al. [10]
also built dense particle trajectories, but detected moving
object by motion decomposition and simple thresholding. They
constructed a 2T×P measurement matrix M (P is the number
of particles, T is the number of frames in the video clip) and
decomposed M into two components: a low-rank matrix A
and the sparse error matrix E. Sparse error matrix E was
used to capture the articulated motion of moving object. They
further decomposed low-rank matrix A into camera motion
Ac and rigid motion of moving objects A−Ac. Therefore,
the total object trajectories which include rigid body motion
and articulated motion was given by Et = A−Ac + E. In
their case, they used a simple threshold to detect the moving
human, that is, using the squared value of articulated motion
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component E and determining those larger than 10% of the
maximum value. They performed intensive experiments and
obtained promising results on multiple benchmark datasets and
on two new aerial datasets called ARG and APHill.

Our work is most relevant to the approach in [10], since
both methods use the same idea that ensemble motion under
moving camera can be decomposed into two components, and
foreground is able to be extracted from one component by
thresholding. In this paper, we decompose ensemble motion
into background motion and object motion. Background mo-
tion corresponds to the motion induced by the moving camera
which is reconstructed by an efficient inpainting method.
Then foreground is extracted by employing the proposed
adaptive thresholding method on object motion component.
We denote this scheme as “background motion subtraction”
(BMS). Comparing with [10], our BMS method has achieved
significant progress. First, Wu’s method is mainly applicable to
scenarios with roughly planar background with single moving
object. From simulation results for video with prominent 3D
background, it tends to extract background parts with apparent
ensemble motion as foreground. Besides, for multiple moving
objects scenarios, [10] mixes moving objects at low speeds
with background, and a simple fixed ratio of threshold is not
possible to meet all of the needs. In contrast, we apply a block
processing strategy to handle the influence of 3D background
and the proposed adaptive thresholding method is suitable for
both multiple and single moving object scenarios. A post-
processing step to optimize the detected foreground by mean-
shift segmentation is also added in our method.

The framework of the proposed method is shown in Figure
1, which utilizes a coarse-to-fine thresholding strategy on the
accumulated motion of particles from multiple frames. In the
process of block RSVD based thresholding, we divide the
image into a series of blocks, where the local 3D parallax
motions are smaller than the global 3D parallax motion. The
core principle of our method relies on the assumption that
the moving object moves differently from its surrounding
background, and the difference in the induced 2D motion is
required to be more distinct than the local 3D parallax motions.
Despite this assumption, we still evaluate our method for a
variety of videos captured from aerial camera, hand holding
camera and PTZ camera. The recorded scenarios include
rigid and non-rigid object motion, large range of foreground
objects’ size, multiple moving objects with various speeds and
prominent 3D structure in background.

II. RELATED WORK

Conventional background subtraction method for stationary
camera can be extended to the moving camera case by im-
plementing frame alignment in a preprocessing step. Because
of the complexity and uncertainty of camera motion, many
research adopt 2D transformation models to approximate 3D
perspective projection model [11]–[16]. In [13], an affine
transformation was used by Mittal and Huttenlocher to rectify
the current frame to the panoramic background image that
has been derived and updated from a mixture model. Simi-
larly, Amri et al. [14] adopted homography to initialize the

panoramic background and further refine it based on joint
background-foreground model. Furthermore, a novel multi-
layer homography algorithm was proposed by Jin et al. [15]
to cluster background pixels into several planes. However,
as observed from the simulation results, the detected fore-
ground is not compact, and has false detection, especially for
scenes containing significant parallax. Overall, the application
of these methods is restricted to the assumption of planar
background, or background composed with several planes.

Different from above methods which need to reconstruct
the panoramic background image, a group of successful
methods based on probabilistic graphical models have been
proposed in recent years, formulating the problem as a pixel-
wise background/ foreground labeling problem. In particular,
Bayesian networks, Markov Random Field (MRF) and Con-
ditional Random Field (CRF) as most popular probabilistic
graphical models have been utilized by researchers. The work
by Sheikh et al. [8] leveraged the fact that a static area can be
represented by a 3-dimensional subspace under orthographic
projection. Trajectories for sparse points are generated and
three trajectories are selected as basis of background subspace,
in order to label them to foreground/background area. Once
classified, the sparse labeling points along with their location
cues and color cues were applied into the Bayesian networks
for pixel-wise labeling work. The work has limited success due
to the assumption of affine camera model instead of the more
accurate perspective camera model. Similarly, affine model
was also adopted by Bugeau and Pérez in [17], pixel-wise la-
beling was achieved by using MAP-MRF model. In [18], Kang
et al. chose homography to approximate the camera transform
and applied CRF model to obtain the moving foreground mask.
Specifically, a novel camera projection model combining an
ellipsoid shape was utilized by Lin and Wolf in [19], where
camera motion parameters (3 rotational, 3 translational, focal
length and 3 parameters from ellipsoid model) were estimated
by genetic algorithm and non-linear least square. A pixel level
classification rule was then developed using Bayesian decision
rule. Nevertheless, the detected moving object mask was not
compact enough. The scope of this novel camera projection
model is more suitable for those videos captured by a camera
in a forward-moving vehicle. Furthermore, Yin and Collins
[20] extended the 2D CRF into a 3D CRF by adding the
temporal coherent link and combined a suit of feature cues,
such as motion, center surround saliency, local color contrast,
spatial color variance, and figure-ground color likelihood ratio.
In order to improve the result from the 3D CRF, they obtained
a more accurate figureground segmentation boundary based on
the salient edge pixels classification. The authors pointed out
some of the misclassified edge pixels as well as static objects
with changing color detected as foreground.

Also treating the issue of detecting moving object as
a background/foreground labeling problem, there is another
group of methods [6], [9], [21]–[23] which draws more
attention on strict geometric constraints than other cues. In
[21], Kumar et al. made the point that if the motion of
points on a parametric surface is compensated, the residual
parallax displacement field on the reference image is an
epipolar field. More precisely, Yuan et al. [6] proposed a
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Fig. 1. The framework of the proposed background motion subtraction method.

new “Plane+Parallax” framework by sequentially applying 2D
planar homographies, the epipolar constraint, and a novel
structure consistency constraint. While the framework is more
general than those planar scene assumption, it still suffers from
some degenerate cases such that no dominant plane in the
scene which prevents the correct estimation of homography
at the first step. It is also worth pointing out that the method
is very complicated and time consuming. In [23], Zhang et
al. recovered the camera motion parameters by the structure
from motion (SFM) method, and also estimated the sparse 3D
points and depth map. By using the proposed appearance and
structure consistency constraint in 3D warping, they achieved
accurate foreground mask with precise object boundary. How-
ever, the scope of this method was restricted to the scenes
where large depth difference existed between foreground and
background, which is valid in some videos captured by hand-
held camera. However, the algorithm was also very compli-
cated and time consuming. Recently, multi-frame monocular
epipolar constraint was proposed by Dey et al. [9] for a general
3D scene, which provided a consistent separation between
moving and static objects, but the boundaries of moving object
were not accurate since some neighboring background pixels
were labeled as foreground.

Motion-layer or motion segmentation based methods [24]–
[27] model the scene as multiple layers of similar motion. In
[27], Patwardhan et al. proposed a robust foreground detection
method for videos with dynamic background (e.g. running
water, waving leaves etc.) and nominal camera motion (eg.
camera shake). The number of layers was determined by
learning from the first few frames in an offline step, however,
the number was not suitable for a whole video sequence
if the background changed significantly due to the camera
movement. Extending to videos with significant changing
background, a series of open issues should be considered
under this framework, such as how to determine the number
of layers, how to cluster pixels into different layers, and how
to decide which layers belong to foreground area.

Foreground/background video segmentation techniques
achieve similar goal comparing to moving object detection
methods with moving camera [7], [28]. However, these works

are not strictly comparable due to the differences in objective
and solution. The work of video segmentation performs in
an offline fashion, which is more beneficial for some post-
processing applications, such as action recognition and video
summarization and video retrieval. This work utilizes full
information through the whole video, for example, all video
frames are partitioned into many regions (called superpixels in
their implementation), and then uses a non-local voting scheme
[7] or an inside-outside map [28] to determine the consistency
of foreground regions, in order to separate the foreground.
By contrast, moving object detection methods perform in an
online fashion, which is beneficial for real-time processing
applications such as pedestrian and vehicle tracking, action and
event recognition in intelligent surveillance system. This work
usually uses limited information from neighboring multiple
frames (e.g. 2-5 frames are used in our experiments).

The contributions of the proposed method are as follows: (1)
to determine the moving objects (foreground) in videos, a com-
putationally efficient coarse-to-fine thresholding framework
is proposed, which neither recovers explicit 3D background
scene, nor requires complicated geometric constraints and
probabilistic graphical model for background/foreground. (2)
the proposed block RSVD based thresholding on particle
trajectories allows us to extract the coarse foreground effi-
ciently in a general 3D scene; and (3) an adaptive thresholding
method is presented to handle the miss detection problem in
videos which contain multiple moving objects in large range
of motion. The experiments verify that our approach produces
excellent detection of moving objects on a large variety of
datasets.

III. PARTICLE TRAJECTORIES EXTRACTION

In our work, we adopt a sliding windows process through
the whole video, obtaining a T -frame video clip for each
frame. Following [10], we extract particle trajectories to
represent the motion variation of a scene, where particle is
chosen as mesh grid pixels in the first frame of a video clip.
The main extraction process is summarized as follows: the
video clip is represented by a matrix of size W × H × T ,
where W ×H denotes the frame resolution (width by height)
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and T is the temporal window size. For dense motion field
computation, we use Liu’s optical flow method [29] since
it achieves high-quality estimation performance with running
speed improvement using successive over-relaxation in solving
large linear system. Therefore, we utilize Liu’s optical flow
method to estimate the dense motion field between neighbor-
ing two frames in the T -frame clip. Dense motion field is
denoted by

(utw, v
t
h)| w ∈ [1,W ], h ∈ [1, H], t ∈ [1, T − 1] (1)

Next, following [30], a so-called particle advection proce-
dure is performed to extract dense particle trajectories, which
is also a sub-pixel level optical flow interpolation process. The
position vector and the velocity vector of a particle at grid
point (w, h) at time t are denoted as (Xt

w, Y
t
h) and (U t

w, V
t
h).

Numerically solving the evolution equations using

dXt
w

dt
= U t

w (2)

dY t
h

dt
= V t

h (3)

where equations (2) and (3) are initialized by(
X1

w, Y
1
h

)
= (w, h) | w ∈ [1,W ] , h ∈ [1, H] (4)(

U1
w, V

1
h

)
=
(
u1w, v

1
h

)
| w ∈ [1,W ] , h ∈ [1, H] (5)

Once a particle leaves the scene in the T -frame clip, i.e.
its position (Xt

w, Y
t
h) is out of range ([1,W ], [1, H]), the

particle is excluded from analysis. Finally, P particles are
tracked from the video clip, where P ≤ W × H . Specif-
ically, a tracked particle trajectory can be represented by
position vectors {(Xt

w, Y
t
h)|t ∈ [1, T ]} and velocity vectors

{(U t
w, V

t
h)|t ∈ [1, T − 1]}.

IV. BACKGROUND MOTION SUBTRACTION

A. Coarse foreground extraction

Employing velocity vectors of particle trajectories, we or-
ganize a 2(T − 1) × P measurement matrix M for RSVD
analysis in this paper. Each column of M is a certain particle
trajectory, defined as m(w, h). For conveniently describing, it
is also defined as mi corresponding to its index number of P
particles. Accordingly, the matrix M is described as

M =
[
m1 · · · mP

]
=


U1
1 · · · U1

P

V 1
1 · · · V 1

P
...

...
UT−1
1 · · · UT−1

P

V T−1
1 · · · V T−1

P

 (6)

Here, we build measure matrix M from velocity vectors
instead of position vectors as in [10]. The main reason is
that each dimension of velocity vectors is independent in
physical meaning and takes consistent range of value, while
each dimension of position vectors is an accumulation of
velocity over time and starts with different initial position.

(a) (b)

(c) (d)

Fig. 2. One example from experimental video illustrating the coarse fore-
ground extraction. (a) Particle trajectories and sample zones. (b) Enlarged
images of particle trajectories in sample zones. (c) Divided image blocks. (d)
The separated coarse foreground.

In our RSVD analysis, measuring matrix M from velocity
vectors is more effective than from position vectors.

As observed in Figure 2a and the enlarge images in 2b,
particle trajectories in different part of background differ from
each other in direction and amplitude. In order to reduce the
effect from 3D structure of background, we divide the frame
image into a series of blocks at maximum size B×B, shown in
Figure 2c. Those particle trajectories in same block compose
a subset, thus, matrix M consists of a series of submatrices
which is denoted as

M =
[
M1 M2 · · · Mn

]
(7)

where n is the number of blocks, and the size of submatrix
Mi is 2 (T − 1)×pi . In specific, pi is the number of particles

in the i-th block, and is constrained by
n∑

i=1

pi = P .

RSVD [31] as a useful mathematical technique on matrix
is used to estimate the dominant motion component from
the obtained particle trajectories in this paper. The insight
underlying the use of RSVD is that it is an efficient and unique
decomposition method, which can partition the correlated data
into a set of independent components and order the dimensions
along which component exhibits the most variation. RSVD
is used on each submatrix Mi to estimate its dominant
component by restricting S to the first singular value and
setting other singular values to zero. Here U0 and V0 are
orthogonal matrices.

M̂i = U0SV
T
0 (8)

Then the dominant components of all P particle trajectories
are obtained as

M̂ = [ M̂1 · · · M̂n ] = [ m̂1 · · · m̂P ] (9)

Due to moving objects, the inconsistency of motion in
foreground block is higher compared to one in background
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block. Therefore, through eliminating the dominant motion
component, the inconsistency can be represented by the resid-
ual motion component which is defined as M − M̂. It is
easy to pick out the particle in coarse foreground by a simple
thresholding: we compute the squared value of each column of
the residual motion component (e.g. ‖mi − m̂i‖2) and find out
those larger than a threshold. In this paper, the Mean Squared
Error (MSE) is computed as the threshold:

Thresh1 =
1

P

P∑
i=1

‖mi − m̂i‖2 (10)

This threshold is simple and effective, however, few fore-
ground particles of moving object may be labeled as back-
ground, which leads to small holes in bitmask of coarse
foreground. Morphology closing operator is used to fill the
inside hole without changing the area significantly. Finally,
entire moving object region is included in coarse foreground
(CFG), and rest particles are labeled as background (BG),
shown in Figure 2d.

B. Background motion reconstruction

As mentioned, we decompose ensemble motion into two
components: background motion and object motion. Taking
the ensemble motion of a certain particle for example, the
decomposition is described as follows

m(w, h) = mB(w, h) + mO(w, h) (11)

where, m(w, h) is a 2(T − 1) × 1 motion vector built from
the particle trajectory, which is defined in previous subsection.
mB(w, h) denotes the background motion which corresponds
to the motion induced by the camera and mO(w, h) indicates
the object motion. By definition, it is notable that mO(w, h) of
a particle in BG is zero due to the lacking of moving object.
Therefore, the background motion mB(w, h) equals to the
ensemble motion m(w, h) in BG. On the other hand, CFG is
considered as potential moving foreground object, where these
two motion components are supposed to exist and unknown.

Without specific camera model assumption or strong geo-
metric constraints, we would like to reconstruct background
motion mB(w, h) in CFG from neighboring known mB(w, h)
in BG. This procedure can be accomplished by image inpaint-
ing methods [32]–[35]. Generally speaking, image inpainting
methods can be classified into two categories: texture-oriented
methods and geometry-oriented (nontexture) methods. In our
case, the image area of background motion has poor texture
information. Therefore, we employed a geometry-oriented
method [35] to reconstruct the background motion in CFG.
As different from most iterative geometry-oriented methods,
non iterative method [35] yields excellent results quickly.
Specifically, it used nonlinear high-order partial differential
equations (PDE) to restore image geometric structures. It
traversed the inpainting domain by the fast marching method
just once while transporting based on a detailed analysis of the
stationary first-order transport equations. Using their publicly
available code, the background motion of particles in CFG
are obtained. Furthermore, the object motion mO(w, h) of

particles in CFG are computed by deducting the background
motion

mO(w, h) = m(w, h)−mB(w, h)|(w, h) ∈ CFG. (12)

The corresponding object motion trajectories are shown in
Figure 3. As observed, although many background particles
are contained in CFG, the derived object motion trajectories
are extremely short, while the object motion trajectories of
real foreground particles are evident. Therefore, it is feasible
to separate the foreground particles from background particles
by utilizing a thresholding method on the length of object
motion vector ‖mO(w, h)‖.

Fig. 3. Illustration of the object motion trajectories in CFG.

C. Adaptive thresholding

Taking the length of object motion vector in CFG as
input data, i.e. X : {x} = {‖mO(w, h)‖, (w, h) ∈ CFG},
the aim is to find the optimum threshold ε separating the
input data into two classes: background Sb : {x < ε} and
foreground Sf : {x ≥ ε}. In computer vision and image
processing, Otsu’s thresholding method [36] is widely used
because of its simple calculation and stability. The algorithm
assumes that the input data contains two classes following
bi-modal histogram. In our work, videos with single moving
object or multiple moving objects in consistent motion follow
this assumption well, for example, one histogram of video
Cars7 (containing single moving car) is shown in Figure 4a.
However, those videos with multiple moving objects in large
range of motion do not hold this assumption, for example, one
histogram of video Sequence6 (having multiple football play-
ers running at different speeds) is shown in Figure 4c. Through
simulations, Otsu’s thresholding method classified the video
Cars7 correctly, but it mis-classified some football players
running at low speeds as background in video Sequence6.

In this paper, we propose an adaptive thresholding method
to handle this problem. First, we use different normaliza-
tion methods to rectify the histogram of input data to get
better modal shape for thresholding, and then use Otsu’s
thresholding method on new histograms respectively. Last, the
optimal threshold is chosen by evaluating the degree of cluster
(clustered-ness defined in [37]). We summarize the proposed
adaptive thresholding method as follows:
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(a) (b)

(c) (d)

Fig. 4. Illustration of the proposed adaptive thresholding method. (a) His-
togram of original input data and 3 thresholds for video Cars7. (b) His-
tograms of normalized data and corresponding thresholds for video Cars7.
(c) Histogram of original input data and 3 thresholds for video Sequence6.
(d) Histograms of normalized data and corresponding thresholds for video
Sequence6.

Three normalization methods [38]: Min-Max Normal-
ization, Log Normalization and Arctan Normalization are
used in the algorithm to transform input data into the value
range of [0, 1] while the original input data is in the range
of [Xmin, Xmax]. Definitions of these three normalization
methods are as follows

FMM (x) =
x−Xmin

Xmax −Xmin
(13)

FLOG(x) =
log(x−Xmin + 1)

log(Xmax −Xmin + 1)
(14)

FATAN (x) =
arctan(x−Xmin)

arctan(Xmax −Xmin)
(15)

where, Min-Max Normalization performs a linear transfor-
mation on the original data values and preserves the rela-
tionships among the original data values. In contrast, Log
Normalization and Arctan Normalization perform nonlinear
transformation on the original data values and enable to scatter
the small values and cluster the large values. From Figure
4b and 4d, histograms of normalized data support the idea
that Log and Arctan normalization helps in clustering high
variations in the problem at hand. Notably, the degree of
nonlinear transformation of Arctan Normalization is stronger
than Log Normalization.

After employing Otsu’s thresholding method on these three
histograms of normalized data, we obtained three thresholds
ε Arctan, ε Log, ε MM . However, choosing which thresh-
old for the optimum one becomes the core problem. In [37],
Zhang defined a concept of clustered-ness which is the ratio
of inter-cluster variance over within-cluster variance of a given
dataset. They generated 1200 synthetic datasets with varying
clustered-ness and ran various clustering algorithms on those
datasets. By computing the performance function to measure
the quality of the clusters, they found that the quality ratio

grows with increasing clustered-ness. Adapting this idea, we
choose the threshold with highest value of clustered-ness as
the optimum threshold in the proposed adaptive thresholding
method. The proposed adaptive thresholding method is sum-
marized in Algorithm 1. Assuming {xk} are the values at the
center of the histogram bins, and {pk} are the corresponding
probabilities, the definition of clustered-ness C is derived
from [37] as follows

C =

∑
xk∈Sb

pk(x̄b − x̄)
2

+
∑

xk∈Sf

pk(x̄f − x̄)
2

∑
xk∈Sb

pk (xk − x̄b)2 +
∑

xk∈Sf

pk (xk − x̄f )
2 (16)

x̄b =
∑

xk∈Sb

pkxk

/ ∑
xk∈Sb

pk (17)

x̄f =
∑

xk∈Sf

pkxk

/ ∑
xk∈Sf

pk (18)

x̄ =
∑

pkxk (19)

Algorithm 1: Proposed Adaptive Thresholding Method.
Input: dataset

X : {x} = {‖mO (w, h)‖ , (w, h) ∈ CFG.},
normalization methods
F :{Min-Max,Log,Arctan}

Initial: threshold ε = 0, cluster of background
Sb = Null, cluster of foreground Sf = X ,
clustered-ness C0 = 0.

for i = 1 to 3 do
1. normalize the input dataset X by method Fi to get
the normalized dataset X ′;
2. construct a histogram with 100 bins for normalized
dataset X ′, bins=[x′1, x

′
2, ..., x

′
100],

probabilities=[p′1, p
′
2, ..., p

′
100];

3. obtain threshold ε′, S′b : {x′ < ε′} and
S′f : {x′ ≥ ε′} by Otsu’s thresholding method;
4. compute clustered-ness C with ε′, S′b, S′f and X ′

(Equation 16);
if C > C0 then

C0 = C;
ε = F−1i (ε′);
Sb : {x < ε}, Sf : {x ≥ ε}

end
end
Output: Sb : {x < ε}, Sf : {x ≥ ε}

TABLE I. The values of clustered-ness.

Video C MM C Log C Arctan
Cars7 12.6558 9.4826 7.8659
Sequence6 2.1095 2.3700 3.0506

The computed values of clustered-ness and corresponding
thresholds are shown in Table I. Consequently, ε MM is cho-
sen as the optimum threshold for video Cars7 and ε Arctan
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is chosen as the optimum threshold for video Sequence6.
It is easy to find that the simulation results come out as
expected. The efficiency of proposed adaptive thresholding
method comparing to classical Otsu’s thresholding method is
further analyzed in Results section VI-C.

V. OPTIMIZATION BY MEAN-SHIFT SEGMENTATION

Although the detection result from the previous section is
reasonable, some occluded background pixels around moving
objects are falsely labeled as foreground. This is mainly due
to the inaccurate particle trajectories induced by optical flow.
It is challenging to distinguish these background pixels from
moving objects by inaccurate motion information. However,
the color difference is possibly existing between background
and moving objects. Therefore, we partition a video frame
into many image patches by mean-shift segmentation method
[39], which is capable of getting variable-size image patches
with semantic structure information of scenes and object
parts. Consequently, we will refine those patches containing
foreground pixels which are labeled in previous subsection.
If the number of foreground pixels is under 30% of the total
number of pixels in that image patch, we will decide that these
detected foreground pixels belong to background and relabel
them. The optimization step is shown in Figure 5.

Fig. 5. Optimization of the detected moving object region by mean-shift
segmentation. Foreground pixels in blue area are reclassified as background
region and to be removed.

VI. RESULTS

In this section, we performed extensive set of experiments
on a diverse set of video sequences captured from aerial
camera, hand-held camera, PTZ camera, containing multiple
rigid or non-rigid moving objects. We, then, present the quanti-
tative and qualitative simulation results, as well as comparison
to state-of-the-art methods. Further discussion on parameter
selection, runtime and limitation of the proposed method will
be presented.

A. Video Datasets and Measurement Overview

VIVID. The DARPA VIVID dataset 1 contains video clips
collected at Eglin Air Base by aerial camera. A group of cars

1https://www.sdms.afrl.af.mil/index.php

are tracked along a dirt road in a wooded area, and illumination
changes as cars pass in and out of tree shadow. In addition,
a close-up view of a large water tower is appearing over a
period of time. Video clips Sequence1 and Sequence2 are
from this dataset.

JHU155. The Hopkins 155 Dataset2 contains sequences
with several objects in motion. One category consists of out-
door traffic scenes taken by a moving hand-held camera, and
all video clips are captured in close proximity and over a short
recording time. We choose Cars4, Cars5, Cars6, Cars7
from this dataset.

UCF Aerial. The UCF Aerial Action Dataset3 is obtained
using a R/C-controlled blimp equipped with a camera on
a gimbal. Multiple instances of each action were recorded
at different heights and aerial viewpoints. Sequence3 and
Sequence4 are from this dataset, respectively, Sequence3
captures three cars running on the road with extreme shift
of camera viewpoint, Sequence4 records the scene of two
persons running out of a car.

SegTrack. The SegTrack Dataset4 is a video segmentation
dataset with pixel-wise ground truth of multiple objects at
each frame in each video. There are many challenges in
this dataset, including fast camera motion, non-rigid defor-
mation, appearance change, motion blur, occlusion etc. We
choose a subset of 7 sequences (Birdfall, Hummingbird,
Parachute, Soldier, Girl, Cheetah, Monkeydog) which
already cover above challenges. Besides, all sequences have a
low resolution.

Others. Sequence5 and Sequence6 are two sequences
obtained from YouTube videos of live soccer game, both
are recorded by professional PTZ camera. The viewpoint
and focal length of camera changes dramatically with the
process of passing football, and football players run at different
speeds. In particular, football players have very small size in
Sequence5. Sequence7 [40] is often used for evaluation by
many researchers, which records traffic scene in urban area
by a hand-held camera. Sequence8 is induced by the axial
rotation of camera.

Fig. 6. Illustration of the ground truth segmentation of some moving objects.

For quantitative evaluation, we extracted the precise ground
truth segmentation of moving objects for 12 video se-
quences, which can be found in our project website http://
videoprocessing.ucsd.edu/∼yuanyuan/detection.html. For long
video sequences Sequence1 and Sequence2, we uniformly
select frames for evaluation, every 4 frames and every 8 frames
respectively. Specifically, we manually segmented the ground
truth masks along the exact contour of moving objects and

2http://www.vision.jhu.edu/data/hopkins155/
3http://crcv.ucf.edu/data/UCF Aerial Action.php
4http://www.cc.gatech.edu/∼fli/SegTrack2/dataset.html

https://www.sdms.afrl.af.mil/index.php
http://videoprocessing.ucsd.edu/~yuanyuan/detection.html
http://videoprocessing.ucsd.edu/~yuanyuan/detection.html
http://www.vision.jhu.edu/data/hopkins155/
http://crcv.ucf.edu/data/UCF_Aerial_Action.php
http://www.cc.gatech.edu/~fli/SegTrack2/dataset.html
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their shadows, since removing shadow is not the scope of the
proposed method, shadows are thought to be moving object
regions reasonably due to their movement. Figure 6 shows
examples of moving objects and corresponding ground truth
segmentation.

F-measure is used to evaluate the performance of methods,
as it is a compromise between recall and precision. It is high
only when both recall and precision are high. The definition
of F-measure is as follows

Precision =
# of true positives detected

total # of positives detected

Recall =
# of true positives detected

total # of true positives

F -measure =
2× Pr ecision× Recall

(Pr ecision+ Recall)

B. Comparing with state-of-the-art methods

We compared the performance of our background motion
subtraction method (BMS) with the motion decomposition
method (MD) [10], homography-based background subtraction
method (HOMO) [41] and the multi-frame monocular epipolar
constraint method (MFME) [9]. Since the code of MFME
as well as their ground truth segmentation are unavailable,
we only perform the visual comparison with their publicly
available result videos. For methods MD and HOMO, both
qualitative and quantitative evaluations are reported. Moreover,
in order to perform a fair comparison, we perform algorithms
on the same extracted particle trajectories.

For video Sequence1, the parameters T and B are set to
be 5 and 30 in our method. Following MD method [10],
simple thresholding is performed on the total object motion
component Et because of the moving objects undergoing rigid
motion. We tried 20%, 10%, 3%, 0.5% of the maximum
squared value of all columns of Et as the threshold in this
experiment. As shown in Figure 7, MD method only detected
two moving cars when threshold was set to be 20% of the
maximum value. Along with the decrease of threshold, the
region of detected foreground increased. When the threshold
dropped to 0.5% of the maximum value, all moving cars
are detected as foreground, however, lots of background such
as out-of-plane water tower and trees were also detected as
foreground. In contrast, our method detected all moving cars
accurately. This experiment demonstrated that MD method
was incapable of dealing with the video with prominent 3D
background and multiple moving objects scenarios. It tended
to extract background areas with apparent ensemble motion
as foreground and mixed moving objects at low speeds with
background. Manually choosing an appropriate threshold was
also a limitation of MD method.

HOMO method uses a homography model [41] to describe
the background motion of a video sequence with freely moving
camera. The start position and end position of a particle
trajectory are assumed to obey the homography model if it
belongs to background. Therefore, the optimal homography
matrix is computed by RANSAC and the outliers of RANSAC
are labeled as the moving objects. Table II provides the

(a) (b) (c)

(d) (e) (f)

Fig. 7. Comparison with MD [10] on the Sequence1. (a) Original image. (b)
Result of the proposed method at T=5, B=30. (c) Result of MD with threshold
at 20% ratio. (d) Result of MD with threshold at 10% ratio. (e) Result of MD
with threshold at 3% ratio. (f) Result of MD with threshold at 0.5% ratio.

quantitative comparison with specific values for T and B
used in our experiments, the threshold used in MD (δm)
and the threshold of RANSAC used in HOMO (δh). The
optimal threshold δm for each sequence is estimated in the
proper range of 0.001−0.30 and similarly δh in the proper
range of 0.001−0.010. Visual comparison of some video
sequences are illustrated in Figure 8. As observed, moving
objects extracted by our method outperform results of MD
and results of HOMO. From Table II, we obtain a relative
improvement of 43% compared to [10], and 14% compared
to [41]. However, our method does not perform well on
Monkeydog and Cheetah and last few frames of Girl.
The reduced performance is due to fast moving camera that
contributes to the accumulation of motion errors in particle

TABLE II. Performance evaluations on all datasets.

Average Segmen-
tation F-measure Par.(T,B), δm, δh Ours MD

[10]
HOMO
[41]

1.Seq.1 (5,30), 0.06, 0.001 0.83 0.58 0.66
2.Seq.2 (3,60), 0.02, 0.001 0.85 0.74 0.69
3.Seq.3 (3,60), 0.20, 0.005 0.79 0.70 0.73
4.Seq.4 (5,30), 0.15, 0.002 0.71 0.52 0.58
5.Seq.5 (5,30), 0.04, 0.006 0.63 0.40 0.46
6.Seq.6 (3,60), 0.01, 0.004 0.60 0.28 0.49
7.Seq.7 (3,60), 0.01, 0.003 0.90 0.19 0.85
8.Seq.8 (4,60), 0.05, 0.009 0.75 0.67 0.69
9.Cars4 (4,60), 0.03, 0.001 0.87 0.67 0.78
10.Cars5 (4,60), 0.02, 0.001 0.84 0.55 0.80
11.Cars6 (4,60), 0.03, 0.010 0.91 0.44 0.86
12.Cars7 (4,60), 0.06, 0.010 0.91 0.75 0.89
13.Birdfall (3,30), 0.02, 0.002 0.74 0.33 0.65
14.Hummingbird (3,60), 0.002, 0.004 0.67 0.65 0.68
15.Parachute (2,60), 0.10, 0.003 0.91 0.77 0.86
16.Soldier (5,60), 0.02, 0.009 0.73 0.39 0.40
17.Girl (2,60), 0.01, 0.010 0.54 0.43 0.46
18.Cheetah (2,30), 0.04, 0.005 0.47 0.40 0.33
19.Monkeydog (3,30), 0.05, 0.007 0.27 0.24 0.22
Average F-
measure (1-19) 0.73 0.51 0.64
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Fig. 8. Qualitative evaluations of our method and MD [10] and HOMO [41] methods on some video sequences.

Fig. 9. Comparison with MFME [9] on the Sequence1, Sequence2, Cars5, Cars6.

trajectories. Besides, for Sequence4−6 and Birdfall videos,
F-measure is sensitive to false detection due to small size of
ground truth segmentation.

We further compared results to MFME [9]. Since their code
is not publicly available, we could only compare results on a
subset of 4 video sequences (Sequence1, Sequence2, Cars5,
Cars6) which are provided on their website5. We illustrated
the qualitative comparison in Figure 9, in the presence of
whole frame image and the local magnification of detected
moving objects. From the comparison results of these four
sequences, we observed that the MFME method inaccurately
detected background pixels around moving object as fore-
ground pixels, which is especially obvious in Cars5 and
Cars6. In contrast, the detected moving foreground objects
by our method were more accurate and compact. From their

5http://crcv.ucf.edu/projects/MMFM/index.php

result videos, we have further observed that when objects
coming into view or leaving out of view, those objects were
detected incompletely while our method performed better. It is
worth mention that MFME used 15-frame video clips in their
experiments while we used fewer than 5-frame video clips
in our experiments. As seen from the comparison results of
Sequence1 in Figure 9, both methods performed well for the
large out of plane object—the water tower, which caused the
false detection in other detection methods such as [8], [10],
[16], [41]. However, miss detection occasionally happened. By
counting the total miss detected moving cars in result videos,
we found that MFME miss detected 2 cars in successive
8 frames (frames 58-65) and another 2 cars in successive
8 frames (frames 245-251) in Sequence1. By contrast, our
method miss detected one car in frame 274 in Sequence1
and one car in frames 12-17 in Cars5.

http://crcv.ucf.edu/projects/MMFM/index.php
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(a)

(b)

Fig. 10. Evaluation of the proposed adaptive thresholding on a subset of videos (videos from left to right: Sequence5, Sequence6, Sequence7, Cars4,
Cars5, Cars6). (a) Results of our method with Otsu’s thresholding. (b) Results of our method with proposed adaptive thresholding.

C. Performance of the proposed adaptive thresholding

Finally, to evaluate the effectiveness of the proposed adap-
tive thresholding, we replace it with classical Otsu’s threshold-
ing and compared the final detection results, shown in Figure
10. As observed, when multiple objects moved in large range
of motion, Otsu’s thresholding false-classified some moving
objects with less obvious motion as background. Especially, in
some frames of sequence6, Otsu’s thresholding only detected
one or two fast running football players (e.g. only the top
left football player was detected in the displayed frame). In
contrast, our proposed adaptive thresholding was able to detect
almost all moving objects except for very few slowly moving
objects. Table III further provides a quantitative comparison.
We obtain an improvement of F-measure up to 24% by
using proposed adaptive thresholding comparing to Otsu’s
thresholding. For video sequences having consistent range of
motion, e.g. Cars6, Sequence2, both thresholding methods
performed well in the proposed framework.

TABLE III. Performance evaluation of the proposed adaptive thresholding.

Average Segmen-
tation F-measure Seq.5 Seq.6 Seq.7 Cars4 Cars5 Cars6

Ours with Otsu’s
thresholding 0.52 0.36 0.85 0.86 0.79 0.91

Ours with
proposed adaptive
thresholding

0.63 0.60 0.90 0.87 0.84 0.91

D. Discussion

1) Empirical Study on Parameter T: There are two im-
portant parameters in our method, i.e. temporal window size
T and block size B. As illustrated in Table II, we can get
some instructive conclusions that videos with significant object
motion would use a small T , i.e., T =2 or 3 is sufficient for
detecting the moving objects, while videos with less significant
object motion are suggested to use a slightly larger T , e.g.
5. This depends on the specific motion circumstances, but
not a stringent requirement. Take sequence Cars6 as an
example, we fix block size B as 60 and vary window size
T from 2 to 13. Figure 11 shows the segmentation results of
frame 1 by various T , we can see that larger window size
T causes more unexpected background pixels to be detected,
thus the precision is gradually reduced as shown in Figure

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11. Illustration of detection results of frame 1 in sequence Cars6 by
various T , B=60. (a) T=2. (b) T=3. (c) T=4. (d) T=5. (e) T=6. (f) T=7. (g)
T=8. (h) T=9. (i) T=10. (j) T=11. (k) T=12. (l) T=13.

12. It is worth to notice that those false detected background
pixels are mostly occluded by moving object on its motion
path. Since our method works upon the condition of accurate
particle trajectories, thus the inaccurate particle trajectories
will affect the detection validity. Unfortunately, dense optical
flow method can’t solve the occlusion problem, which leads
to inaccurate motion estimation on occlusion region, and this
inaccuracy will be accumulated when the temporal windows
size increases.

Fig. 12. Curves show the change in precision and recall by various T .

However, due to resource constraint in real-world system,
using a shorter length of video clip to detect moving objects
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is preferred if algorithm maintains comparative performance.
Comparing with state-of-the-art methods [8] [9] [6], the
proposed algorithm achieves substantial improvement in this
respect. In the simulation shown in Table II, we used very short
lengths of video clips, 2 to 5 consecutive frames (T = 2 to 5).
In [8], a large number of particle trajectories were obtained in
a 30-frame video clip, in which 3 trajectories were picked
out to represent the basis of background subspace. In [9],
Dey et al. applied derived multi-frame monocular epipolar on
particle trajectories, obtained across 15 frames, to determine
which trajectories violated it, thus segmenting out the moving
object. In [6], Yuan et al. pointed out that their algorithm
worked well for a large number of videos when T = 45, but it
miss detected the moving vehicle when T is reduced to 15. In
summary, the reason why those methods need long trajectories
or long temporal window is to ensure the sufficient translation
of 3D background scene in the temporal window to satisfy
different background geometry constraints. By comparison, the
proposed method does not use severe background geometric
constraint, and thus can handle the detection problem with less
frames.

2) Empirical Study on Parameter B: Block size B is also
an important parameter in our method. The basic selection
criterion in the proposed method is that block size and moving
object size should be comparable, i.e. large moving object
corresponding to large block. In order to investigate the effect
of block size B on the algorithm’s performance, we generate
detection results for B in the range from 30 to 120. Figure
13 shows the performance for 4 block sizes (30, 60, 90,
and 120). Note that even though changing B affects coarse
foreground region, it has minimal effect on the final detection
result. The selection of parameter B is less strict for most
of the sequences, however, there are certain circumstances
that require small block size to avoid false detection, such as
shown in Figure 14. Since a high water tower appears in the
sky region, its trajectories are quite evident and different from
other background trajectories. The detected coarse foreground
region depicts that smaller B yields result with smaller coarse
foreground region and thus does not detect the water tower as
moving object.

3) Runtime: All trajectory-based methods require frame-to-
frame correspondences as input. Liu’s algorithm [29] is used
to compute high-quality optical flow in our method. It takes
0.8−2.8 sec/frame for frames in SegTrack dataset, where
faster alternatives optical flow method based on GPU accel-
erated are available, e.g. GPU-accelerated large displacement
optical flow [42].

Assuming the optical flow is available, we compare the
runtime of the remaining procedures in other methods [10],
[41], as well as the proposed method. Our method takes an
average of 1.03 sec/frame on SegTrack dataset. Extraction of
coarse foreground through block RSVD process takes most of
the time, as well as inpainting of the approximate background
motion in coarse foreground. By contrast, HOMO [41] takes
1.15 sec/frame and MD [10] takes 1.89 sec/frame (the most
time-intensive step is the measurement matrix decomposition).
All timings were measured on a regular PC with Intel i7-3770
CPU (3.4 GHz) with 32 GB memory.

(a) (b) (c) (d)

Fig. 13. Illustration of detection results by different choice of B on Cars6
sequence. First row are coarse foreground results and second row are corre-
sponding final detection results. (a) B=30. (b) B=60. (c) B=90. (d) B=120.

(a) (b) (c) (d)

Fig. 14. Illustration of detection results by different choice of B on
Sequence1. First row are coarse foreground results and second row are
corresponding final detection results. (a) B=30. (b) B=60. (c) B=90. (d)
B=120.

4) Analysis of Hypotheses, Limitations and Performances:
As noted early in this paper, the hypotheses of the proposed
BMS method are that the object moves significantly differently
from its surrounding background, and the motion difference
is stronger than the background motion induced by moving
camera and motion parallax. For example, when a object
moves inconspicuous from its surrounding background, it is
easy to be confused with background while camera is moving
fast, leading to false detection of background as foreground
moving objects. Another example, when an object moves far
away from the camera while a background object stays very
close to the camera, it is easy to detect the close background
object as moving object due to the moving camera and motion
parallax.

As a trajectory-based method, the proposed BMS method
has its limitations: the quality of BMS is affected by the
accuracy of particle trajectories. It is challenging to extract
accurate particle trajectories by dense optical flow for the
occluded background and dynamic background. Fast moving
camera also causes the false estimation of optical flow. Al-
though our optimization step is able to handle the inaccuracy
of occlusion to some extent, most inaccuracy will cause
inaccurate detection of moving objects.

Despite the hypotheses and limitations, the proposed BMS
method achieves many advantages. First, it is simple and fast,
and it does not recover explicit 3D scene structure or build
complicated geometric constants and probabilistic graphical
model for background and foreground. Second, it is efficient to
detect moving objects by using fewer neighboring frames (2-5
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frames in our experiments). Third, unlike other methods that
are adapted to a certain kind of camera, we tested our method
on various datasets captured by different kinds of cameras:
aerial camera, hand-held camera, PTZ camera and stationary
camera (Birdfall, Hummingbird). Experiments on a variety
of datasets demonstrate the effectiveness of proposed method,
including videos with motion parallax (Sequence1, Soldier),
video induced by axial rotation of camera (Sequence8), multi-
ple objects (Seqence1−7, Cars4−5, Cheetal, Monkeydog),
non-rigid deformations (Seqence5 − 6, SegTrack dataset),
objects of different sizes (Sequence7, Cars4−5), and objects
with different degree of motion (Sequence5− 6, Cars4).

VII. CONCLUSION

In this paper, we presented a novel method, that is sig-
nificantly different from previous works, for detecting moving
objects in video sequences captured by freely moving cameras.
A coarse-to-fine strategy is adopted in our work. First, we ap-
ply RSVD decomposition on blocks of particle trajectories to
obtain the coarse foreground region. Excellent detection results
are obtained by subtracting the background motion which is
reconstructed by a fast and effective motion inpainting method
and adaptive thresholding method. Finally, refined detection
results are carried out on mean-shift segmentation in our
optimization step. The qualitative and quantitative evaluations
on a variety of video sequences demonstrate the accuracy and
efficiency of our method. Comparing the results on a diverse
video dataset, the proposed method outperforms other state-
of-the-art detection methods.
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