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Abstract—We propose a novel just noticeable difference (JND)
model for screen content image (SCI). The distinct properties of
SCI result in different behaviors of the human visual system
(HVS) when viewing the textual content, which motivate us
to employ a local parametric edge model with an adaptive
representation of the edge profile in JND modeling. Specifically,
we decompose each edge profile into its luminance, contrast
and structure and then evaluate the visibility threshold in
different ways. The edge luminance adaptation, contrast masking
and structural distortion sensitivity are studied in subjective
experiments and the final JND model is established based on the
edge profile reconstruction with tolerable variations. Extensive
experiments are conducted to verify the proposed JND model,
which confirm that it is accurate in predicting the JND profile,
and outperforms the state-of-the-art schemes in terms of the
distortion masking ability. Furthermore, we explore the applica-
bility of the proposed JND model in the scenario of perceptually
lossless SCI compression, and experimental results show that
the proposed scheme can outperform conventional JND guided
compression schemes by providing better visual quality at the
same coding bits.

Index Terms—Just noticeable difference, screen content image,
parametric edge modeling

I. INTRODUCTION

RECENTLY, we have witnessed the rapid development
services of cloud computing, which enables the thin-

clients such as laptop, tablet, PDA, smart phone, etc to provide
an even further computing experiences by remotely accessing
the computationally intensive and graphically rich resources
from cloud. To achieve this, the remote screen is usually
compressed and transmitted to the local terminals to facilitate
the remote computing process. Typical applications include
remote computing platforms [1], [2], mobile browsers [3] and
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remote desktop sharing systems [4]. In these scenarios, the
time variant interface can be regarded as a kind of screen
content image (SCI), which is a combination of pictorial
regions and computer generated textual content [5]. Therefore,
the quality of SCI can largely influence the user experience of
the remote systems.

The SCIs exhibit different statistical properties compared
with natural images. Typically, the SCIs are rendered with
sharp edges and thin lines [6], while the natural images are
usually featured by continuous-tone content with smooth edges
and thick lines. Moreover, the capturing of natural images will
introduce noise due to the limitations of the image sensors,
while the SCIs are usually noise free as they are purely
generated by computer. In view of these distinct features of
SCIs, it is meaningful to further investigate the perceptual
characteristics, which are critical in guiding and optimizing
the screen content compression and processing systems.

The near-threshold properties of the human visual system
(HVS) indicate that the HVS cannot sense any pixel variations.
The just noticeable difference (JND) characterizes the mini-
mum visibility threshold below which the pixel level variations
cannot be perceived by the HVS. Appropriate JND models
can be efficiently applied on improving the performance of
image/video compression and processing systems [7]–[12].
Generally, JND models can be estimated in pixel domain or
transform domain [13]. Pixel domain JND models are usually
formulated with the consideration of luminance adaptation
(refers to the masking effect of the HVS toward background
luminance) and contrast masking (refers to the visibility reduc-
tion of one visual signal at the presence of another). In [8],
[10], the overlapping effect of luminance adaptation and spatial
contrast masking was investigated to derive the JND model.
In [14], the edge masking and texture masking were further
distinguished due to the entropy masking property. In [15],
the disorderly concealment effect was introduced to model
JND. Transform domain JND models take advantage of human
vision sensitivities of different frequency components, and the
contrast sensitivity function (CSF) is frequently applied in
identifying the base thresholds. In [16], the discrete cosine
transform (DCT) based DCTune JND model was proposed
with the consideration of the masking effect. Hontsch and
Karam [17] further modified the DCTune model by replacing a
single pixel with a foveal region. Recently, a spatial-temporal
JND model for grey scale image/video in DCT domain was
introduced in [18], which incorporated the luminance adap-
tation, contrast masking and Gamma correction to estimate
JND. In [19], adaptive size transform based JND model was
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proposed, which extends the 8 × 8 DCT to 16 × 16 DCT by
including both the spatial and temporal HVS properties.

To adapt the applicability of JND in various scenarios, the
conventional JND models were extended to just noticeable
color difference (JNCD) [20] and foveated JND (FJND) [12]
to exploit more masking effects. Moreover, the concept of just
noticeable blur (JNB) was introduced in [21]. It indicated that
HVS is able to mask blurriness around an edge up to a certain
threshold. In [22], JNB was further extended to deduce a no
reference blur metric with cumulative probability.

To our best knowledge, none of the existing JND models
are developed for SCIs. The distinct properties of SCIs such as
thin edges, limited color representation indicate that specifical-
ly designed JND model for SCIs is highly desirable. Moreover,
in [23] it is observed that the extent of the visual field used to
extract information in SCIs is much smaller than that of natural
images. In view of these distinct features of SCIs, in [24], [25]
a database with subjective quality ranking of distorted SCIs
was created. It demonstrates that the state-of-the-art perceptual
models are still quite limited in predicting the visual quality
of the SCIs, and inspires a series of specifically developed
full-reference SCI quality assessment measures recently [26],
[27].

In this work, we develop a novel pixel domain JND model
for SCIs. A parametric edge model [28] is employed, in which
we represent any edge profile in a unique and adaptive way by
three conceptually independent components: edge luminance,
edge contrast and edge structure. Such edge representation
strategy is adapted to the input signal. Subsequently, the visi-
bility thresholds for these components are studied in different
ways. In particular, the sensitivity of luminance is derived
based on luminance adaptation, the contrast masking effect
is accounted for by the divisive normalization philosophy, and
the tolerable structural distortion is approximated based on the
allowable edge width variation. The final JND model of textual
content is generated by employing the combination of these
masking effects to reconstruct the edge profile. Extensive ex-
perimental results exhibit that the proposed model outperforms
the state-of-the-art schemes in terms of the distortion masking
ability.

Furthermore, inspired by the recent developments of percep-
tual image and video coding [13], [29]–[31], we incorporate
the proposed JND model in perceptually lossless SCI com-
pression. In particular, this is achieved in the framework of
high efficiency video coding (HEVC) screen content coding
extension [32], [33], and the subjective results provide the
meaningful evidence that the proposed JND model is efficient
in reducing the coding bits while maintaining the just notice-
able difference level of visual quality.

The remainder of this paper is organized as follows. In
Section II, we analyze the characteristics of SCIs. Section III
details the parametric edge modeling and the visibility thresh-
olds derived in terms of luminance, contrast and structure. In
Section IV, we propose the JND model for SCI. Section V
shows the experimental results by comparing the proposed
JND model with conventional methods. In Section VI, we
further explore its application on SCI compression. Finally,
the paper is concluded in Section VII.

II. ANALYSES ON CHARACTERISTICS OF SCIS

Rather than providing a naturalness looking, the function-
ality of computer generated SCIs is to convey semantic infor-
mation with high contrast edges. In view of this, we provide
comprehensive analyses on the unique characteristics of SCIs,
including the frequency energy falloff statistics, sharpness of
edges and free-energy principle based image uncertainty.

A. Frequency Energy Falloff Statistics

The natural scene statistics (NSS) is based on the hypothesis
that the HVS is highly adapted to the statistics of the natural
visual environment, such that the departure from such statistics
characterizes image unnaturalness. One typical phenomenon
in NSS is that the amplitude spectrum of natural images falls
with the spatial frequency approximately proportional to 1/fp

law [34], where f is the spatial frequency and p is an image
dependent constant. As SCIs do not have the property of
“naturalness”, we examine this property by decomposing the
images with Fourier transform and computing the frequency
energy. For typical natural image, pure textual image and com-
pound image composed of both textual and natural content, the
frequency energy falloff statistics are demonstrated in Fig. 1.
We can observe that the falloff statistics for natural image
approximately accord with the 1/fp relationship due to the
straight line in log-log scale. However, for SCIs with pure
textual or compound content there are peaks at high frequency.

B. Sharpness of Edges

In contrast with natural images, SCIs are featured with thin
edges. To illustrate this property, the JNB based blur metric
[21] which takes the advantage of edge width is computed for
both SCIs and natural images. Specifically, the blur metric is
defined as follows,

S =
L

Ds
, (1)

where L denotes the total number of processed blocks in the
image and Ds denotes the sharpness measure. For the same
number of processed blocks, a smaller Ds value corresponds
to a sharper image. In particular, it is represented by,

Ds =

(∑
Rb

|DRb |
β

) 1
β

, (2)

where Rb is the edge block and DRb is computed by the width
of edge ei (denoted as Ω(ei)) and the just noticeable width
ΩJNB(ei) in the current block,

DRb =

( ∑
ei∈Rb

∣∣∣∣ Ω(ei)

ΩJNB(ei)

∣∣∣∣β
) 1
β

. (3)

The edge width is measured by the number of pixels with
increasing grayscale values in one direction while decreasing
grayscale values in the other direction. The ΩJNB is derived
from subjective tests and is measured to be 5 for low contrast
and 3 for high contrast edges, respectively. The β value is set
to be 3.6 in this test.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Frequency energy falloffs of the pure textual image, natural image and compound image that is composed of both textual and natural content. (a)
Pure textual image; (b) Natural image; (c) Compound image; (d) Frequency energy falloff of pure textual image; (e) Frequency energy falloff of the natural
image; (f) Frequency energy falloff of the compound image.

TABLE I
SHARPNESS EVALUATIONS OF NATURAL IMAGES AND SCIS.

Natural Images S SCIs S
airplane 4.06 cim1 7.97
baboon 4.85 cim2 7.97
barbara 3.45 cim3 7.98

boat 4.92 cim4 8.96

The design philosophy of the sharpness metric is employing
the width of the edge to represent the probability of blur
detection. In [21], the blur detection probability is modeled
in the form of the exponential function [35],

P (ei) = 1− exp

(
−
∣∣∣∣ Ω(ei)

ΩJNB(ei)

∣∣∣∣β
)
. (4)

This implies that the probability of the detected blur is reflect-
ed by the width of the edge to the just noticeable edge width
ΩJNB . Specifically, when Ω(ei) = ΩJNB(ei), the probability
of blur detection equals to 63%. In this manner, a lower Ω(ei)
indicates a larger value of S, corresponding to a sharper input
image.

The blur metric scores for SCIs and natural images are
shown in Table I. The SCIs are obtained from the database
[25]. It is observed that the SCIs exhibit sharper appearance
because of larger values of S, which verifies that the SCIs
usually contain more thinner edges compared with natural
images.

(a) (b)

Fig. 2. Visualization of the residual map between the original and the AR
predicted images (residuals are enlarged for better visualization, light/dark
regions represent low/high residual values, respectively). (a) Residual map of
SCI in Fig. 1 (a). (b) Residual map of the natural image in Fig. 1 (b).

C. Investigation of “Surprise” based on Free-energy Principle

The basic premise of the free-energy principle based brain
theory [36] is that the cognitive process is manipulated by
an internal generative model (IGM) that can actively infer
the orderly information of input visual signals and avoid the
disorderly content. The free-energy characterizes the upper
bound of the “surprise” for the image data, or equivalently,
measures the discrepancy between the image data and the
best explanation by the brain generative model [37]. In this
subsection, we examine the free-energy of SCI to further
investigate how human brain perceives the screen visuals.

To compute the free-energy, statistical modeling of the
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free-energy should be established. Here we apply the linear
autoregressive (AR) model as follows,

x′n = χk(xn)a+ en, (5)

where x′n is the predicted pixel value of xn and χk(xn) is the
vector of pixels consisting of k neighborhoods. Parameter en
is the zero mean Gaussian noise. The parameters of the AR
model are estimated by [15],

ai =
Hm(xn;xi)∑
j Hm(xn;xj)

, (6)

where Hm(xn;xj) denotes the mutual information between
xn and xj .

In [37], it is shown that the free-energy can be characterized
by the the total description length of the image by adding the
entropy of the prediction residuals with the model cost. As
the model cost can be regarded as a constant over the entire
image, here only the local prediction residuals are evaluated.
The residual maps that represent the local free-energy of SCI
and natural image in Fig. 1 (a)&(b) are shown in Fig. 2, which
illustrate that the free-energy exhibits much stronger in textual
content. This further demonstrates that the textual content is
more informative and contains more “surprise”.

According to the free-energy principle based brain theory,
to maintain a low free energy, the system can automatically
change the way that the environment is sampled to minimize
it. As the acquired information or “surprise” is directly de-
termined by how large the visual field is, and to lower the
uncertainties in the representation of the natural scene, the
HVS therefore tries to adaptively select smaller visual field
when perceiving the textual content [23]. Moreover, the above
analyses indicate that the SCIs contain less homogeneous
content and the JND thresholds for neighbouring pixels may
vary significantly. These distinct properties imply that the
traditional patch based JND models that predict the masking
amplitudes relying on the background luminance/activities
may not be appropriate for SCIs. Instead, we model the textual
content in SCIs with the local edge profile. This gives rise
to the motivation of the proposed JND estimation method
that adopts the parametric model to depict the edge in terms
of three conceptually independent components: luminance,
contrast and structure.

III. VISIBILITY THRESHOLD IN PARAMETRIC EDGE
MODELING

It is generally believed that the HVS understands an image
mainly based on its low-level features, such as edges and zero-
crossings [38], [39]. In particular, the edges in an SCI carry
important information for human perception. To explore the
edge construction, here we adopt a parametric model [28],
[40], [41] to depict edges in SCI. In this section, we will
detail this model and derive the visibility thresholds of each
modeling portions.

A. Parametric Edge Modeling

We adopt the one-dimensional notation to describe the edge
model. In general, a step edge x0 can be characterized by a

unit step function with the edge basis as

u(x; b, c, x0) = c · U(x− x0) + b, (7)

where U(·) denotes the unit step function, b denotes the
edge basis and c represents the edge contrast. However, such
infinitely sharp edges or step edges do not exist in practical
images. Even for the textual blocks in a typical SCI, the
number of major colors is usually more than three [42]. This
implies that there are usually smooth transitions in the edge
construction. Therefore, following [28], [41], a typical edge is
treated as the distorted version of the isolated ideal step edge
with a point spread function,

s(x; b, c, w, x0) = u(x; b, c, x0) ∗ psf(x;w). (8)

The Gaussian function which is usually used as an ap-
proximation to the point spread function of an optical sys-
tem is employed to model psf(x;w). Therefore, the real
edge in SCI can be regarded as a smooth version of the
unit step edge, which can be characterized by convolving
the step edge u(x; b, c, x0) with Gaussian filter g(x;w) =
(1/
√

(2πw2)) exp((−x2/2w2)),

s(x; b, c, w, x0) = b+
c

2

(
1 + erf

(
x− x0
w
√

2

))
. (9)

Here erf(·) denotes the error function and w is the standard
deviation of the Gaussian function g(x;w) that controls the
edge structure. As the edge structure is actually determined by
the edge width, the parameter w can also be regarded as the
parameter that reflects the edge width. Such a representation is
adaptive, which allows us to decompose any edge profile into
luminance, contrast and structure controlled by parameters b,
c and w, respectively. As shown in Fig. 3 (a), the parameter
b determines the base intensity of an edge. In Fig. 3 (b),
one can discern that the parameter c reflects the strength of
the edge, such that higher c corresponds to a stronger edge.
Fig. 3 (c) exhibits that the edge structure is controlled by w,
which corresponds to a specific shape, and the edge profile
will become sharper as w becomes smaller.

These parameters are derived by fitting the function (9)
with the local pixel information. To this end, edge detection
should be firstly performed. The edge detection shares the
similar procedures as Canny edge detection [43]. In particular,
it consists of Gaussian smoothing and differentiation, which
filters the signal by convolving the s(x; b, c, w, x0) with the
derivative of the Gaussian filter, leading to

d(x; c, w, σd) =
c√

2π(w2 + d2)
exp

(
−(x− x0)2

2(w2 + σ2
d)

)
. (10)

After filtering the edge with the derivative of Gaussian, it can
be detected by finding the local maxima in the filtered output.
Subsequently, these parameters are estimated by sampling
the response at three locations x = (0, a,−a). Let d1 =
d(0; c, w, σd), d2 = d(a; c, w, σd) and d3 = d(−a; c, w, σd),
we have

w =
√
a2/ln(l1)− σ2

d

c = d1 ·
√

2πa2/ln(l1) · l
1
4a
2

b = s(x0)− c/2,

(11)
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(a) (b) (c)

Fig. 3. Illustration of one-dimensional edge model with different settings of b, c and w.

(a) (b) (c)

Fig. 4. Illustration of edge contrast and width map (unified background color for better visualization). (a) SCI. (b) Edge contrast map. (c) Edge width map.

where l1 = d21/d2d3 and l2 = d2/d3. Generally, small
sampling distance a may not well reflect the whole edge
structure, and large sampling distance may exceed the range
of the edge profile. Following the work in [41], here we set
a = 1.

In Fig. 4, we demonstrate the edge contrast and width map
of a typical SCI, and one can discern that the edges in textual
content have higher contrast but thinner width than those in
pictorial content. This is in line with our observation in Section
II. The parametric model further supports the reconstruction
of edge luminance, contrast and structure by modifying b, c
and w. This enables us to analyze and derive the visibility
thresholds from these three aspects, as demonstrated in Fig. 5.
As such, the JND of the pixels along the edge profile can
be derived based on the edge profile reconstruction with the
tolerable luminance, contrast and structure variations.

B. Luminance Adaptation

In the literature, conventional luminance adaptation models
usually rely on the background luminance from an N × N
patch to derive the visibility sensitivity. In [7], [44], it is
observed that the approximated slope of the line that relates
the visibility threshold tends to increase slightly as the back-
ground luminance increases, which is qualitatively consistent
with Weber’s law. The reason for adopting such methods to
compute the background luminance is that the natural images
are usually composed of regions with homogeneous texture.
However, this property does not always hold for the textual
content of SCIs, which motivates us to further investigate its

Fig. 5. Luminance adaptation, contrast masking and structural distortion
sensitivity in an edge profile.

distinct luminance adaptation effect.
Compared with natural images, the pictorial regions in SCIs

may usually contain more large uniformly flat areas, while the
non-pictorial regions are composed of strong and thin edges.
Therefore, it is desirable to separate edge pixels from the pixels
in pictorial regions in determining the background luminance.
With edge detection in (10), pixels in each SCI can be divided
into two sets: edge and pictorial. This allows us to measure
the luminance masking in different ways.

Following the one dimensional notation, we assume the
position of a pixel is p. For pictorial pixel, the background
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Fig. 6. The weighted low-pass filter for calculating average background
luminance (the edge pixels are excluded).

pixel I(p) is computed within a 5 × 5 window [45], as
illustrated in Fig. 6. It is worth noting that the edge pixels are
excluded in the calculation of background luminance, as they
usually do not belong to the homogeneous regions. In contrast,
when p belongs to the edge pixel set, the mean luminance
along the edge profile is I(p) = b + c/2, as illustrated in
Fig. 5.

The luminance masking effect in [44] is formulated as
follows,

Tl(p) =

α1 ·
(

1−
√

I(p)
127

)
+ β if I(p) ≤ 127

α2 ·
(
I(p)− 127

)
+ β otherwise,

(12)

where the parameters are set as α1=17, α2 = 3/128 and β =
3.

To further investigate the luminance adaptation effect in
SCI, a subjective test was conducted to study the relationship
between I(p) and the visibility threshold that is controlled
by three parameters α1, α2 and β. Specifically, 20 subjects
(12 males, 8 females, aging from 18 to 28) participated in
this study. As illustrated in Fig. 7, 10 sample SCIs from
database [25] are used in the testing. The screen resolution
is 1920x1080 and the viewing distance is about two times
of the screen height. Each image was altered by ten sets of
parameters as follows,

ψ1 = {8, 1, 1/128}, ψ2 = {10, 1, 1/128}
ψ3 = {13, 2, 2/128}, ψ4 = {15, 2, 2/128}
ψ5 = {17, 2, 2/128}, ψ6 = {19, 3, 3/128}
ψ7 = {21, 3, 3/128}, ψ8 = {23, 3, 3/128}
ψ9 = {25, 4, 4/128}, ψ10 = {27, 4, 4/128},

(13)

where each set corresponds to the parameter vector ψ =
{α1, β, α2}. Given the parameter set ψ and the original image
I , the luminance masking threshold can be obtained via (12),
and finally the pixel p in the altered image from luminance
adaptation is generated by,

Īl(p) = I(p) + r · Tl(p), (14)

Fig. 7. Demonstration of the SCIs used in the subjective tests to obtain the
optimal parameters.

Fig. 8. The relationship between the parameter set index in (13) and the
percentage of the preference on original SCIs.

where r is randomly set as +1 or -1.
The subjective test is based on a two-alternative-forced-

choice (2AFC) method. This method is widely used in psy-
chophysical studies [46], where in each trial, a subject is
shown two images of the same scene (i.e., the original image
and its noise-contaminated version) and is asked (forced) to
choose the one he/she thinks to have better quality. At each
level, the percentage by which the subjects are in favor of
original image is recorded, and the parameters corresponding
to a probability of 75% in favor of the original SCIs is adopted
in the final JND modeling [47]. Finally, as observed in Fig. 8,
the parameter set ψ5 is finally chosen. It is interesting to find
that the curve generated by the derived parameters indicates
a lower tolerance than the results derived in [7]. This can
be explained by the reason that most areas of the SCIs are
occupied by sharp, thin edges and noise-free pictorial regions,
both of which have lower tolerance on the luminance change.

C. Edge Contrast Masking

It is generally believed that HVS perceives contrast rather
than absolute level of light. This trend is more obvious for
SCIs as the relative changes in luminance convey important
information to HVS. In this work, we aim to derive the
visibility threshold on the noticeable edge contrast variation
by incorporating the divisive normalization framework, which
has shown to be a useful model that accounts for the masking
effect in the HVS [48], [49]. In divisive normalization, it
is assumed that the contrast change is dependent on the
difference of the normalized contrast but not adaptive to the



1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2016.2573597, IEEE
Transactions on Image Processing

7

Fig. 9. The relationship between f and the percentage of the preference on
original SCIs.

absolute values themselves. Assume c(p) and c′(p) are the
original and changed contrast of the edge profile that pixel p
belongs to, this process can be represented as,

f =
|c(p)− c′(p)|
c(p) + c′(p)

, (15)

where the parameter f indicates the perceived contrast change.
This implies that visibility threshold of contrast variation
can be gauged by the determination of the threshold on f .
To explore this, a similar subjective test as in Section III-
B was conducted, where the distorted type is replaced with
contrast changed. The contrast changed SCIs are generated by
reconstructing the edge profile using the alternated contrast
with (9). The testing conditions are the same as those in
Section III-B and a set of f values between [0.02 0.3] with
an interval 0.04 are examined. The plot between f and the
percentage in favor of the original image is demonstrated in
Fig. 9, indicating that the visibility threshold fth = 0.14 is an
appropriate value.

Given fth, the tolerable changed contrast is computed as,

Tc+(p) =
1 + fth
1− fth

· c(p)

Tc−(p) =
1− fth
1 + fth

· c(p),
(16)

where Tc+(p) and Tc−(p) indicate the thresholds correspond-
ing to the increased and decreased contrast.

Moreover, (16) implies that people are more tolerating to
the contrast increase because of the following relationship

Tc+(p)− c(p) > c(p)− Tc−(p). (17)

This is in accordance with a general rule in image quality
assessment (IQA) and psychology studies that humans are
more likely to remember unpleasant experiences (e.g. con-
trast decrease) compared to pleasant moment (e.g. contrast
increase) [50], [51].

D. Edge Structural Distortion Sensitivity

As demonstrated in Fig. 3 (c), the edge width is a determin-
istic factor that reflects the structure of the edge profile and
furthermore the sharpness/blurriness of the image [40]. In (4),

Fig. 10. The relationship between ∆w and the percentage of the preference
on original SCIs.

the probability of detecting the blur distortion is determined
by the edge width and the threshold up to which HVS can
mask the blurriness. However, setting a constant threshold on
the width of the edge may not be appropriate for SCI, as two
high contrast edge profiles within the same SCI may have
apparently different widths. Instead, here we investigate the
visibility threshold on the relative change of w,

∆w = wt − w, (18)

where wt is calculated via parameter estimation based on the
distorted SCI. To generate these distorted versions, Gaussian
smoothing is performed by 2-D convolution on the original
SCIs with different kernels. As such, the widths of edges are
increased, and the average ∆w across each image is computed.
A subjective experiment is subsequently conducted to study
the visibility threshold on ∆w, where the testing conditions
follow the descriptions in Section III-B as well. Specifically,
each SCI is alternated by six levels of distortions with the
convolution kernels as follows,

σ = [0.3, 0.5, 0.65, 0.8, 1, 1.2], (19)

where σ is the standard deviation in the Gaussian function.
The plot between ∆w and the percentage in favor of the
original image is demonstrated in Fig. 10. One can discern
that when ∆w is set around 0.1 (corresponding to σ = 0.65),
the probability of 75% in favor of the original SCIs can be
achieved.

IV. PROPOSED JND MODEL FOR SCI

In this section, we discuss how to incorporate the three
masking effects that co-exist in SCIs into a unified JND model.
We firstly study the JND for edge profile. Following the
description of Section III-A that adopts the one-dimensional
notation, the visibility threshold on luminance adaptation for
pixel p can be calculated as,

Tel(p) = s(p;Tl(p) + b, c, w, x0)− s(p; b, c, w, x0). (20)

In other words, the luminance adaptation effect of the pixels
on the edge profile is determined by the Tl(p).
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Fig. 11. The proposed JND estimation process.

In a similar fashion, contrast masking effect is accounted
for by the reconstruction of edge profiles with the visibility
threshold on contrast,

Tec(p) = min{|s(p; b, Tc+, w, x0)− s(p; b, c, w, x0)|,
|s(p; b, Tc−, w, x0)− s(p; b, c, w, x0)|},

(21)

where the min operation ensures that the lower value is chosen
as the just noticeable threshold.

Given Tel(p) and Tec(p), the nonlinear additivity model for
masking (NAMM) serves as an effective approach to account
for the overlapping effect by adding two masking effects [13],
[14], [45],

Tns(p) = Tel(p) + Tec(p)−Cns ·min{Tel(p), Tec(p)}, (22)

where Cns (0 < Cns < 1) is a constant that deduces the
overlapping between Tel(p) and Tec(p).

Regarding the visibility threshold of the structural distortion,
it is computed as

Ts(p) = |s(p; b, c, w + ∆w, x0)− s(p; b, c, w, x0)|. (23)

In this manner, pixels in different positions from the same edge
profile correspond to different non-structural and structural
visibility thresholds. The combination of structural and non-
structural masking effects leads to the overall edge profile JND
model,

Te(p) = Ts(p) + Tns(p)− C ·min{Ts(p), Tns(p)}. (24)

Again, the parameter C (0 < C < 1) is a constant that deduces
the overlapping between Ts(p) and Tns(p). In this work, we
set both C and Cns to be 0.2. It is also worth mentioning that
the edge profile JND model accounts for the strong and thin
edges in textual regions, as well as the edges in natural images.
This originates from the design philosophy of the visibility
threshold derivation, where both strong and weak, thick and
thin edges are considered.

The JND derivation process of SCI is summarized in
Fig. 11. In this framework, the SCI content is firstly distin-
guished based on edge detection in (10) to obtain the edge
pixel set SE , which is composed of pixels locating along
the edge profile. Subsequently, the parameters of each edge
profile are derived, and the tolerable thresholds of luminance
adaptation, contrast masking and structural sensitivity are
obtained. Finally, the edge and pictorial JND profiles are

established and merged together,

T (p) =

{
Te(p) p ∈ SE
Tl(p) otherwise.

(25)

A distinct property of the proposed JND model is that it
estimates the JND value for textual content at a finer scale by
distinguishing the pixels on and near the sharp transitions in
an edge profile. As illustrated in Fig. 12, the on edge pixel
p1 and near edge pixel p2 share similar background as they
are close to each other, resulting in similar JND values when
applying the traditional JND models, which estimate the JND
profile relying on the background luminance and activities.
However, in the proposed model they are distinguished by
the detected edge, implying that p1 ∈ SE while p2 /∈ SE .
Therefore, different models are applied to derive the JND, such
that T (p1) = Te(p1) and T (p2) = Tl(p2). The JND for pixels
on edge profile is derived from the nonlinear additivity model
by incorporating the masking effects of luminance, contrast
and structure, which possibly leads to T (p1) > T (p2). This
is conceptually consistent with the characteristics of HVS,
as when much noise is injected into the edge boundary, the
spurious signals near sharp transitions may easily get noticed.
Therefore, the near-threshold tolerable distortion for p2 should
be smaller than p1, benefiting from contrast masking effect by
the strong edges.

Fig. 12. Illustration of on edge and near edge pixels.

V. EXPERIMENTAL RESULTS

In this section, extensive experiments are carried out to
evaluate the performance of the proposed JND model. As
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TABLE II
JND ENERGY COMPARISONS OF DIFFERENT MODELS.

Image Num Yang Zhang Liu Wu Proposed
1 33.417 9.425 57.052 111.031 65.274
2 20.730 10.869 53.387 104.190 57.671
3 47.522 10.495 78.857 122.625 92.575
4 19.173 10.934 45.357 142.733 61.904
5 33.040 11.716 63.143 145.686 74.146
6 24.700 11.454 77.270 286.680 90.632
7 48.232 9.535 69.897 146.915 81.837
8 42.640 10.256 63.059 381.513 68.348
9 37.958 9.375 67.321 185.263 91.568
10 35.363 11.908 83.878 245.212 97.727
11 89.165 13.182 102.063 171.899 97.359
12 65.978 13.259 81.417 112.085 83.734
13 82.964 16.032 103.745 194.717 99.412
14 27.805 8.456 36.328 55.330 34.042
15 19.647 12.773 74.775 270.849 83.148

Average 41.889 11.311 70.503 178.449 78.625

TABLE III
RATING CRITERIONS FOR SUBJECTIVE EVALUATION.

Description Score
The right one is much worse than the left one -3

The right one is worse than the left one -2
The right one is slightly worse than the left one -1

The right one has the same quality as the left one 0
The right one is slightly better than the left one 1

The right one is better than the left one 2
The right one is much better than the left one 3

TABLE IV
SUBJECTIVE EVALUATION SCORES (ORIGINAL VS. JND NOISE

CONTAMINATED SCIS).

Image Num Yang Zhang Liu Wu Proposed
1 0.15 0.15 0.65 1.45 0.35
2 0.35 0.05 0.45 1.65 0.20
3 0.20 0.15 0.75 1.10 0.55
4 0.75 0.15 0.45 2.60 0.25
5 0.65 0.40 0.50 1.05 0.50
6 0.40 0.30 0.70 2.00 0.40
7 0.80 0.35 0.55 1.35 0.50
8 0.25 0.15 0.35 1.80 0.25
9 0.35 0.45 0.50 2.05 0.45
10 0.45 0.25 0.95 1.05 0.30
11 0.30 0.10 0.40 1.70 0.25
12 0.50 0.20 0.50 1.85 0.50
13 0.20 0.15 0.55 2.50 0.05
14 0.15 0.05 0.60 1.60 0.40
15 0.25 0.20 0.70 2.65 0.25

Average 0.38 0.21 0.57 1.76 0.35

Fig. 13. Demonstration of SCIs used in the validation. (The first 10 SCIs
are from database [25] and the last 5 SCIs are from HEVC range extension
test sequences.)

shown in Fig. 13, fifteen SCIs from both the screen content
quality assessment database [25] and HEVC range extension
test sequences are used for testing. It is noted that to achieve
cross-validation, the SCIs in this experiments are different
from the SCIs used in the subjective testing of Section III.
Application scenarios of these test SCIs include web browsing,
cloud CAD and word editing, etc. The JND noise is injected
into SCIs and the performance is compared with four existing
JND models, including Yang et al.’s [45], Liu et al.’s [14],
Zhang et al.’s [52] and Wu et al.’s methods [15].

A. Comparisons on Distortion Masking Ability

In the first experiment, the noise is injected into the SCI to
evaluate the HVS error tolerance ability. The distorted image
is generated by adding the JND profile to the original image
in pixel domain,

Ī(p) = I(p) + r · T (p), (26)

where r is randomly set as +1 or -1.
We evaluate the performance of the proposed JND model

from two perspectives. Firstly, the error tolerance ability
is evaluated in terms of the energy of the JND signal by
averaging the T (p)2 over the whole SCI. In other words, the
mean square error (MSE) between Ī(p) and I(p) is used to
measure the tolerated error. For the proposed and state-of-the-
art methods, the JND energy comparisons are demonstrated
in Table II. It is observed that except Wu et al.’s method, the
proposed scheme yields higher JND energy, implying stronger
ability in error tolerance. Secondly, a subjective study is further
conducted to assess the quality of the noise-contaminated
SCIs, in which 20 subjects (13 males, 7 females) were invited.
It is noted that these 20 subjects are different from those
subjects invited in Section III. The testing conditions are
identical as described in Section III. The guidelines in the
subjective experiments are shown in Table III, and the subjects
were asked to offer their opinions on the subjective quality of
the images following the rating criterions. Specifically, two
images were randomly juxtaposed on the same screen. The
subjective scores are finally converted with the unified order
that the right is the original image as the reference and the left
is the JND-injected version. Specific instructions and training
sessions were given before the test. The average subjective
values are calculated to demonstrate the image visual quality,
which is illustrated in Table IV. It is observed that the proposed
method has lower mean value than Yang et al.’s and Liu
et al.’s methods, demonstrating that it has better distortion
masking ability. Though Zhang et al.’s method achieves the
best visual quality, the average JND energy of Zhang et al.’s
method is much lower than the proposed method. Moreover,
the subjective quality of Wu et al.’s model is lowest, as the AR
model cannot achieve accurate prediction on textual content,
making it difficult to estimate the visibility thresholds. These
results demonstrate the superior performance of the proposed
model in terms of distortion masking ability.

Furthermore, we examine the JND thresholds derived for
edge pixel set SE and non-edge pixel set SNE . In particular,
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TABLE V
SUBJECTIVE EVALUATION SCORES (THE PROPOSED MODEL VS. FOUR

CONVENTIONAL JND MODELS).

hhhhhhhhhhhImage Num
Proposed vs. Yang Zhang Liu Wu

1 0.95 1.05 0.40 0.45
2 0.45 0.70 0.45 -0.20
3 -0.15 0.65 0.25 0.25
4 0.95 0.70 0.70 1.20
5 0.10 0.85 -0.35 -0.10
6 0.20 1.20 0.00 1.55
7 0.45 0.55 -0.55 -0.20
8 0.60 0.30 0.80 0.30
9 0.95 0.15 0.50 1.30

10 0.70 0.90 0.75 0.75
11 0.35 -0.10 0.20 1.90
12 0.00 0.05 0.15 1.65
13 -0.30 0.30 0.55 2.10
14 0.75 0.85 1.10 1.15
15 1.20 1.20 0.65 0.90

Average 0.48 0.62 0.37 0.87

(a) (b)

Fig. 14. The relative strength of JND for non-edge pixels using different
JND models. (a) The first SCI in Fig. 13; (b) The second SCI in Fig. 13.

given the JND map, the relative strength of JND for the non-
edge pixels is defined as

φs =

∑
p∈SNE T (p)/|SNE |∑

p∈SE T (p)/|SE |+
∑
p∈SNE T (p)/|SNE |

, (27)

where | · | indicates the number of elements in a set. Therefore,
φs evaluates the percentage of noise injected to the non-edge
regions, and higher φs corresponds to higher noise for non-
edge pixels given the same level of JND thresholds. In Fig. 14,
the φs values for the first and second SCIs in Fig. 13 are
presented, and the results show that the proposed scheme has
lower φs compared to the state-of-the-art methods. This is
also conceptually consistent with the discussions in Section
IV that the JND thresholds for edge pixels are higher than the
surrounding non-edge pixels for better distortion masking.

B. Comparisons on Distortion Shaping Accuracy

In the second experiment, we aim to examine whether
the proposed JND model is better at guiding the shaping of
the noise distribution. Specifically, identical amounts of JND
energy are maintained for different models by injecting the
noise with JND profile regulation,

Ĩ(p) = I(p) + β · r · T (p), (28)

where Ĩ(p) denotes the noise-contaminated pixel with β
ensuring that each distorted SCI shares the same JND energy.

A subjective test was further conducted to compare the
quality of SCIs contaminated by the proposed and conven-
tional JND models. Again, the scores are converted with the
unified order that the right is the SCI produced by the proposed
method and the left is the SCI generated with one conventional
JND model. The comparison results of the subjective viewing
test are shown in Table V. One can discern that the proposed
model outperforms the other four models in most of the
cases. The results demonstrate that the proposed model is
effective in guiding the shaping of noise, such that more
noise can be injected into the insensitive pixels, leading to
better visual quality. It is also observed that occasionally for
some comparisons the proposed scheme has lower quality. One
reason may be attributed to the proposed distortion shaping
strategy that may not always follow the saliency of the human
viewers.

Moreover, the noise injected SCIs that are generated by
different JND models with identical JND energy are demon-
strated in Figs. 15&16. Scrupulous observes may find that
the proposed method is better at preserving the edge structure
and shaping the noise, such that the distortions get less
noticeable compared with the conventional approaches. These
results further confirm that the proposed JND model is more
appropriate for SCI content.

VI. JND BASED PERCEPTUALLY LOSSLESS SCI
COMPRESSION

In this section, we incorporate the proposed JND profile
into the screen content coding (SCC) extensions of HEVC
[32], targeting at perceptually lossless SCI compression. In
the SCC extension of HEVC, many advanced coding tools
have been proposed to improve the coding performance [33].
For example, inspired by the fact that SCIs contain limited
number of colors rather than the continuous color tone in
natural content, the base color and index map representation
for SCIs has been intensively studied in the literature [53]–
[56]. Moreover, to account for the repeated patterns occurred
in the SCI, the intra motion compensation approach was
developed for screen content coding [57]. To further reduce the
redundancy among the color components, the adaptive color-
space transform was incorporated into the coding loop in [58].

Perceptually lossless refers that no discernable visual dif-
ference compared with the original SCIs is incurred during
the compression process [13]. Specifically, with the proposed
JND modeling, perceptually lossless implies that,

D =
∑

D(p) = 0, (29)

where

D(p) =

{
0 |Io(p)− Id(p)| ≤ T (p)

(Io(p)− Id(p))2 otherwise.
(30)

Here Io(p) and Id(p) indicate the original and compressed
pixel values for p. As such, all the irreversible information
loss lies within the range of JND threshold.

To achieve lossless SCI compression, the lossy modules
such as transform and quantization are bypassed in HEVC
SCC extension. Following this framework, the prediction
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Visual quality comparison of the distorted SCIs generated by different JND models for webpage textual content (cropped for better visualization).
(a) Original. (b) Yang et al.’s method. (c) Zhang et al.’s method. (d) Liu et al.’s method. (e) Wu et al.’s method. (f) Proposed method.

(a) (b) (c)

(d) (e) (f)

Fig. 16. Visual quality comparison of the distorted SCIs generated by different JND models for document textual content (cropped for better visualization).
(a) Original. (b) Yang et al.’s method. (c) Zhang et al.’s method. (d) Liu et al.’s method. (e) Wu et al.’s method. (f) Proposed method.

residual is firstly shrunk by the JND profile and then lossless
compressed with the employed codec. Assume the prediction
residual for pixel p is R(p), it is compressed in the following
way,

R̂(p) =


0 |R(p)| ≤ T (p)

R(p)− T (p) R(p) > T (p)

R(p) + T (p) otherwise.
(31)

In the implementation, we incorporate the perceptually loss-
less coding scheme into the newly developed HEVC extension
codec HM-16.4+SCM-4.0 [59]. The test SCIs are identical
with those employed in Section V. The performance in terms
of the coding bits for each pixel is demonstrated in Table VI.
Specifically, “Anchor” indicates the lossless compression of
SCIs and the proposed scheme is the perceptually lossless
coding with the proposed JND model. It is observed that

on average 24% rate reduction is achieved. The bit savings
originate from the shrinkage of the residual energy.

Fig. 17 shows the original and perceptually lossless coded
SCI with the proposed method. Note that for this SCI the bit
saving is around 25%. However, since our proposed scheme
is based on JND profile optimization for perceptually lossless
coding, the perceptual distortions of both SCIs are equivalent
to zero. It can be observed that though the perceptually lossless
compression has undergone a irreversible information loss
process, little discernable artifacts can be observed.

To further validate our scheme, we carry out a subjective
quality evaluation test to compare the perceptually lossless
compressed SCIs by incorporating the proposed and conven-
tional JND models. Specifically, we also follow the subjective
testing guidelines in Section V-B, where two SCIs generated
by the proposed and one conventional JND method are com-
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pared. Again, the JND profiles generated by the conventional
methods are regulated by enforcing the scaling parameter β as
in (28), ensuring that exactly the same bit rate savings as re-
ported in Table VI are achieved. As such, better reconstructed
SCI quality corresponds higher compression performance. The
subjective testing results obtained by averaging the 15 SCIs
are reported in Table VII, which demonstrate that the SCIs
generated by the proposed JND model have better quality in
most cases. These results clearly demonstrate that the proposed
method can efficiently achieve the perceptually lossless coding
with better perceptual lossless coding performance.

TABLE VI
CODING BITS COMPARISON.

Image Num Anchor (bpp) Proposed (bpp) Saving
1 1.46 1.17 20.26%
2 0.81 0.75 8.25%
3 1.87 1.16 38.22%
4 1.15 0.85 25.52%
5 2.30 1.37 40.60%
6 2.56 1.82 29.02%
7 1.77 1.28 27.78%
8 1.23 0.90 27.08%
9 1.68 1.20 28.56%
10 2.24 1.49 33.60%
11 0.19 0.18 6.61%
12 0.30 0.21 30.25%
13 0.14 0.11 17.57%
14 0.58 0.50 14.38%
15 0.47 0.42 9.75%

Average 1.25 0.89 23.83%

TABLE VII
SUBJECTIVE EVALUATION OF PERCEPTUALLY LOSSLESS COMPRESSION

(THE PROPOSED MODEL VS. FOUR CONVENTIONAL MODELS).

`````````Score
Proposed vs. Yang Zhang Liu Wu

Average 0.24 0.31 0.22 0.37

VII. CONCLUSION

We have proposed a JND model that is specifically designed
for screen content images. The novelty of the model lies in
computing the JND at a finer scale by introducing a paramet-
ric edge model, which provides a feasible way to estimate
the visibility thresholds of three conceptually independent
components including luminance, contrast and structure. We
demonstrate the effectiveness of the JND model and compare
it with conventional schemes by subjective testing. The JND
model is further incorporated into the SCI compression, which
provides evidence that the proposed model can significantly
improve the coding efficiency.

The SCI JND model can play a variety of roles in the
transport of screen visuals. First, it can be used to opti-
mize the screen compression algorithms in the interactive
screen-remoting system. In this work, we incorporate the
JND model into the prediction coding process to shrink the
residual energy. Additionally, it can also influence various
modules in the compression pipeline, such as data discarding
(via JND based quantization), codec optimization (via JND
inspired rate-distortion optimization) and postprocessing (via

JND guided loop filter). Second, it can further help the design
of meaningful quality metrics to dynamically monitor and
adjust the SCI quality. Third, it can be applied in the screen
streaming system to optimize the transmission strategies and
further improve the visual quality-of-experience.
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