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Exploiting Spatial Channel Covariance
for Hybrid Precoding in Massive MIMO Systems

Sungwoo Park, Jeonghun Park, Ali Yazdan, and Robert W. Heath Jr.

Abstract—We propose a new hybrid precoding technique for
massive MIMO systems using spatial channel covariance matrices
in the analog precoder design. Applying a regularized zero-
forcing precoder for the baseband precoding matrix, we find
an unconstrained analog precoder that maximizes signal-to-
leakage-plus-noise ratio (SLNR) while ignoring analog phase
shifter constraints. Subsequently, we develop a technique to
design a constrained analog precoder that mimics the obtained
unconstrained analog precoder under phase shifter constraints.
The main idea is to adopt an additional baseband precoding
matrix which we call a compensation matrix. We analyze the
SLNR loss due to the proposed hybrid precoding compared
to fully digital precoding, and determine which factors have a
significant impact on this loss. In the simulations, we show that
if the channel is spatially correlated and the number of users is
smaller than the number of RF chains, the SLNR loss becomes
negligible compared to fully digital precoding. The main benefit
of our method stems from the use of spatial channel matrices in
such a way that not only is each user’s desired signal considered,
but also the inter-user interference is incorporated in the analog
precoder design.

I. INTRODUCTION

Massive MIMO systems increase cellular spectral efficiency
by employing many antennas at the base station to support
multiuser MIMO on the uplink and downlink. Such systems re-
quire a higher number of radio-frequency (RF) chains resulting
in high mixed signal complexity and larger power consumption
at the base-station. Hybrid analog/digital transmit precoding
aims to alleviate these issues by using a reduced set of RF
chains mapped via analog beamforming to a large number of
physical antennas. The hybrid precoding method essentially
divides the precoding process at the transmitter between the
analog RF and digital baseband part. This technique was first
investigated for general MIMO systems in [1], [2] and was
later applied to millimeter wave systems in [3]–[6]. Hybrid
precoding originally focused on beamforming and single-user
MIMO techniques, but it also extends to multiuser MIMO
configurations [7]–[16].

Most prior work on hybrid precoding for massive MIMO
systems or multiuser millimeter wave systems assumes full
channel state information at transmitter (CSIT) for all anten-
nas when designing the analog precoder [7]–[13]. Such an
approach has two fundamental limitations: First, it is inher-
ently difficult to obtain reliable instantaneous CSIT estimates
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in hybrid systems. Even in time-division duplexing (TDD)
systems where channel reciprocity can be exploited, the hybrid
structure makes it difficult to estimate the entire channel
matrix for all antennas since the estimator in the baseband
can only see a low(er)-dimensional pre-combined channel
through few(er) RF chains. To overcome this challenge, some
clever channel estimation techniques for the hybrid structure
were proposed by using compressive sensing methods in the
spatially sparse channel [17], [18]. These techniques, however,
require more measurements than a fully digital structure and
require sparsity in the channel. Consequently, these methods
work well only for time-invariant channels or very slowly
varying channels. Second, it is hard to directly apply this
approach to wideband OFDM systems where the channel is
frequency selective. While the digital baseband precoder can
be adapted to the channel of each subcarrier in the frequency
domain, the same analog RF precoder must be applied on all
the subcarriers as the analog RF precoder operates in the time
domain [19]. This is a distinguishing constraint on wideband
systems compared to narrowband systems. Since prior work
[7]–[13] that assumes full CSIT in narrowband systems fo-
cuses on the joint optimization between the baseband precoder
and the analog precoder for each channel realization, this
approach will produce a different analog precoder for each
subcarrier if applied to frequency selective wideband channels.
This fails to satisfy the constraint on the analog precoder for
wideband systems, and thus the approach in [7]–[13] cannot
be directly applied to wideband MIMO-OFDM systems.

A reasonable alternative to instantaneous CSIT is to use
long-term channel statistics, in particular the spatial channel
covariance, to configure the analog precoder. Firstly, spatial
channel covariances vary over a longer time scale compared to
the instantaneous channels, which makes it easier to estimate
[20]. Secondly, the spatial channel covariance is uniform
across all subcarriers, providing a good match to the problem
of designing one analog precoder for all subcarriers [21].
Motivated by this, we propose a hybrid multiuser precoding
algorithm where the analog precoder is designed using each
user’s spatial channel covariance of its entire channel matrix.

Limited work has been done on the multiuser hybrid precod-
ing technique using spatial channel covariance matrices in the
analog precoder design. In [15], users are divided into groups
based on their locations such that the users in each group
have an identical spatial channel covariance matrix. After
grouping, a so-called two-stage precoding is performed: a pre-
beamforming matrix that eliminates inter-group interference
by using spatial channel covariance matrices, and a multiuser
MIMO precoding matrix that removes intra-group interference
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by using per-user low-dimensional channel matrices. This two-
stage approach, however, does not explicitly take the hybrid
analog/digital architecture into consideration, thereby making
it difficult in general to apply the prebeamfomer to the analog
RF part that consists of phase shifters. Another problem of
this approach is its assumption that all users in a group
have the same covariance matrix, which requires a very large
number of users. In addition, the columns (corresponding to
the RF chains in the hybrid structure) in the prebeamforming
matrix are evenly assigned to groups. In [22], the hybrid
precoding is developed under the phase shifter constraint, and
the user-grouping concept in [15] is extended to a more general
case where different numbers of RF chains are dynamically
assigned to different groups. While the hybrid precoding
techniques in [15], [22] are limited to the assumption that there
exist groups in which users share the same covariance matri-
ces, a general hybrid precoding technique is proposed without
user grouping in [16], where each RF chain is dedicated to a
user. In this case, each analog precoding vector associated with
each RF chain is constructed from each user’s single dominant
eigenvector of the covariance matrix. A similar approach is
found in the hybrid precoding techniques that use full CSIT
in [8], [10], [11], [23]. This approach, however, does not
consider interference in the design of analog beamforming,
only maximizing each user’s desired power. In addition, the
number of assigned users must be the same as the number of
RF chains.

In this paper, we propose a new hybrid precoding algorithm
for multiuser massive MIMO systems. In our work, we use
regularized zero-forcing (RZF) precoding [24] as the digital
baseband precoder. Although RZF precoding is not optimal in
a capacity-maximizing sense, it is an attractive alternative to
dirty paper coding (DPC) [25], thanks to its low complexity.
Since the RZF, which is also known as transmit Wiener filter or
transmit MMSE precoding (see [26] and references therein), is
optimal in the sense of maximizing the signal-to-leakage-plus-
noise ratio (SLNR) [26]–[28], the SLNR is a reasonable metric
for analysis or precoder design and has been frequently used in
the work on massive MIMO systems. For example, bounds on
the ergodic rate when using RZF in massive MIMO systems
are analyzed by using the SLNR in [29], and the optimal user
loading to maximize the sum rate in massive MIMO systems
is derived based on the SLNR in [30]. In addition, the work in
[31], [32] proposes precoding techniques based on the SLNR
in multiuser MIMO systems [31] or massive MIMO systems
[32]. Therefore, we adopt the SLNR maximization to design
the hybrid precoders. Unlike conventional RZF precoders that
solely operate in the baseband with full CSIT, our hybrid
precoding tries to maximize the SLNR with a combination
of an analog and a digital precoder. In addition, our design of
the analog precoder only requires spatial channel covariance
matrices of users instead of full CSIT.

Our design process is as follows. We first develop an
unconstrained analog precoder without the constraint that
analog precoding is realized with phase shifters. The un-
constrained analog precoder is designed to aid the baseband
precoder to maximize the SLNR, only with the knowledge
of users’ spatial channel covariance matrices. Subsequently,

taking the phase shifter constraint into account, we divide
the obtained unconstrained analog precoding matrix into two
separate matrices: a constrained analog precoding matrix and
an additional baseband precoding matrix, which we call a
compensation matrix. The compensation matrix depends only
on the constrained analog precoder, and its role is to mitigate
the effect caused by using phase shifters. Using the compen-
sation matrix, the constrained analog precoder is optimized so
that the combination of the constrained analog precoder and
the compensation matrix is as similar to the unconstrained
analog precoder as possible. Since the compensation matrix
is determined by the constrained analog precoder, it does not
require instantaneous CSIT although this compensation matrix
operates in the baseband.

A distinguishing feature from the prior work in [16] is
that our work can be applied to the case when the number
of assigned users is less than that of the RF chains, without
dedicating an RF chain to a user (or a group of RF chains
to a user group [15]). Dedicating each RF chain to a specific
user is not efficient in that its applicability is restricted to the
case when the number of users is equal to the number of RF
chains. In typical cellular systems, the number of assigned
users tends to vary over time while the number of RF chains
is fixed. This makes our proposed technique more beneficial
in realistic scenarios. Similar work has been recently done
in [33] where the proposed scheme exploits only statistical
channel state information without dedicating an RF chain to
a user nor a group of RF chains to a user group, similar to
our work. Although the finding in [33] also accords closely
with ours, there are some differences. While the work in [33]
considers codebook-based hybrid precoding and focuses only
on designing the analog precoder, our work does not confine
its application to codebook-based hybrid precoding and deals
with the design of the baseband precoder as well as the analog
precoder.

We analyze the SLNR loss caused by the hybrid precoding
compared to the fully digital RZF precoding in massive MIMO
systems for various channel conditions. In single-user MIMO
systems, the loss from hybrid precoding is negligible if the
number of channel paths is smaller than the number of RF
chains in a spatially sparse channel. The loss in multiuser
MIMO systems depends, however, not only on the number of
channel paths for each user but also on the number of users.
Therefore, hybrid precoding in multiuser MIMO is likely to
have higher loss than in the single-user MIMO. Our finding,
however, reveals that the loss from hybrid precoding is still
low in spatially correlated channels if the number of users is
small enough compared to the number of RF chains.

The proposed hybrid precoding designs are evaluated by
simulations in terms of sum spectral efficiency. The results
show that the developed hybrid precoding design outperforms
prior work which dedicates a RF chain to a user. Simulation
results also illustrate that the proposed constrained analog
precoder with the compensation matrix results in almost the
same spectral efficiency as the unconstrained analog precoder.
In addition, both simulation and analysis results indicate that
the loss caused by the hybrid architecture can be low even
though the proposed analog precoder design does not require
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Fig. 1. Hybrid precoding for massive MIMO systems using spatial channel
covariance matrices in the analog precoder design.

instantaneous CSIT. This promotes the employment of massive
MIMO systems in practical cellular networks.

The rest of the paper is organized as follows: In Section
II we introduce the system and channel models. In Section
III, we obtain the unconstrained analog precoder to maximize
the SLNR by using the spatial channel covariance matrices.
In what follows, we propose a technique to mimic the un-
constrained analog precoder in Section IV. In Section V, we
analyze the SLNR loss in the proposed strategy. In Section VI,
simulation results validate the proposed method and Section
VII concludes the paper.
Notation: We use the following notation throughout this
paper: A is a matrix, a is a vector, a is a scalar, and A is
a set. |a| and ]a are the magnitude and phase of the complex
number a. ‖A‖F is its Frobenius norm, and AT , A∗, and A−1

are its transpose, Hermitian (conjugate transpose), and inverse,
respectively. [A]m,n is the (m,n)-th element of the matrix A.
]A is a matrix whose (m,n)-th element equals ej[A]m,n . I
is an identity matrix and 0 is a matrix whose elements are
all zeros. Subscripts will be used to denote their dimensions
such as IN and 0N×M , if necessary. CN (m,R) is a complex
Gaussian random vector with mean m and covariance R. E [·]
is used to denote expectation.

II. SYSTEM AND CHANNEL MODELS

Consider the downlink of a massive MIMO system where
a base station (BS) equipped with N antennas and M(≤ N)
RF chains communicates with U(≤ M) users with a single
antenna. Let FRF ∈ CN×M , FBB ∈ CM×U , P ∈ RU×U ,
and s ∈ CU×1 be the analog RF precoder, a digital baseband
precoder, a power control matrix, and a signal vector. The
received signal is given by

y = H∗FRFFBBPs + n, (1)

where n ∈ CU×1 ∼ CN (0, σ2I) is circularly symmetric
complex Gaussian noise, P is a diagonal matrix to maintain
the total transmit power Ptx, and H∗ =

[
h1 · · · hU

]∗ ∈
CU×N is the aggregate downlink channel matrix composed of
each user’s channel vector hu,∀u.

We consider three constraints on hybrid precoding in our
system model.
• Constraint 1: The number of RF chains is less than the

number of antennas.

• Constraint 2: FRF only depends on users’ spatial channel
covariance matrices Ru = E [huh

∗
u] ,∀u.

• Constraint 3: FRF is composed of phase shifters, i.e., all
the elements in FRF have the same amplitudes.

We assume that Ru is known to the BS through covariance
estimation for the hybrid structure, see e.g. [34]–[36]. Note
that FRF is designed by using only Ru’s, not hu’s as shown
in Constraint 2. This is different from prior work [7]–[13]
where FRF depends on the instantaneous channel hu’s.

We focus on the ideal covariance estimation case where the
ideal Ru is known to the BS without estimation error. The
impact of the covariance estimation error on the performance
of our hybrid precoding design is out of the scope of this
paper and remains as a future research topic. Since covariance
estimation error will affect spectral efficiency differently from
channel estimation error, this will be an interesting topic for
future work.

In regard to modeling each user’s channel vector hu, we
use a Kronecker correlation model for algorithm design due
to its analytical tractability in Section III. The channel hu
is modeled as hu = R

1
2
uhw,u where hw,u has identically

independent distributed (IID) complex entries of zero mean
and unit variance. The Ru’s are regarded as deterministic
variables while hu and n as random variables in Section III.
For numerical evaluations in Section VI, we adopt a simple
geometry-based channel model to investigate the relationship
between the spatial channel sparsity and the performance loss
caused by the hybrid structure. The details of the associated
simulation parameters will be described in Section VI.

III. HYBRID PRECODING USING SPATIAL CHANNEL
COVARIANCE MATRICES

In this section, we design hybrid precoder under Constraint
1 and 2; adding Constraint 3 will be considered in Section IV.

For intuition, we first introduce the prior design technique
in [16] where each RF chain is dedicated to a user. In the
design of an analog precoder, statistical eigen beamforming is
used where

FRF =
[
v1,max · · · vU,max

]
, (2)

and vu,max is the dominant eigenvector of Ru. Once FRF

is designed, the baseband precoder performs conventional
multiuser MIMO techniques such as zero-forcing (ZF) or
regularized zero-forcing (RZF) with respect to the combined
effective channel H∗eff = H∗FRF. This approach is similar
to [8], [10], [11], [23] using full CSIT. The rationale behind
this technique is to maximize the long-term average power of
the desired signal in the analog part. The main drawback of
this approach is that interference is neglected, which results
in performance degradation unless the channel is ideally or-
thogonal. Moreover, this technique cannot be directly applied
when U < M .

Now we explain our design. We will focus on the RZF case
throughout the paper where

FBB =
[
fBB,1 · · · fBB,U

]
= (F∗RFHH∗FRF + βI)

−1
F∗RFH,

(3)
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and β = U
ρ is a regularization parameter [24], where ρ =

Ptx

σ2 denotes the transmit SNR. We consider an equal power
strategy that makes each user’s power equal after precoding
including both FRF and FBB, so the u-th diagonal element of
P in (1) is

pu =

√
Ptx√

U‖FRFfbb,u‖
=

√
Ptx

Uh∗uW
2hu

, (4)

where W = FRF

(
F∗RFHH∗FRF + U

ρ I
)−1

F∗RF. The instan-
taneous SLNR is given by

SLNRu =
p2
u|h∗uFRFfbb,u|2∑

i6=u p
2
u|h∗iFRFfbb,u|2 + σ2

=
h∗uWhuh

∗
uWhu∑

i6=u h∗uWhih∗iWhu + Uσ2

Ptx
h∗uW

2hu

=
h∗uWhuh

∗
uWhu

h∗uW
(
HH∗ − huh∗u + U

ρ I
)

Whu
.

(5)

The goal is to find FRF to maximize the SLNR in (5).
Instead of assigning each column of FRF to each user as in
the prior work, our design configures FRF from an orthonor-
mal basis spanning a subspace that maximizes the SLNR.
Therefore, there is no constraint such as U = M , so this
approach can be applied for the case of U < M as well.
Later, we will show that allocating fewer than M users is
better than allocating M users when M RF chains are given.
Let FRF be a rank-M̃ matrix where M̃ ≤ M . Then, FRF

can be represented as FRF = VA where V ∈ CN×M̃ is a
semi-unitary matrix such that V∗V = I and A ∈ CM̃×M
is a rank-M̃ matrix. This can be easily proved by applying
SVD. In the following proposition, we show that the SLNR in
(5) has a maximum value when A is semi-unitary, i.e., FRF

needs to be a multiplication of two semi-unitary matrices such
that FRF = VU∗ where V∗V = U∗U = I to maximize the
SLNR.

Proposition 1: Suppose that FRF is decomposed as FRF =
VA where V ∈ CN×M̃ is a semi-unitary matrix such that
V∗V = I and A ∈ CM̃×M is a rank-M̃ matrix. If V and
Ptx is given, the SLNR in (5) is maximized when A is semi-
unitary, i.e., AA∗ = I, and the maximum value becomes

SLNRu = h∗uV

 U∑
i6=u

V∗hih
∗
iV +

U

ρ
I

−1

V∗hu, (6)

for any semi-unitary matrix A.
Proof: See Appendix A.

Since the SLNR is independent of A as long as A is semi-
unitary, let us focus on constructing V to maximize the SLNR.
Note that the SLNR in (6) is a random variable due to hi. The
random variable SLNR, however, converges to a deterministic
value as the number of antennas becomes large. Let hi =

R
1
2
i hw,i =

√
NR

1
2
i gi, where gi has IID complex entries with

zero mean and variance of 1/N . Then, as N goes to infinity,
the SLNR in (6) converges to

SLNRu

= Ng∗uR
1
2
uV

N U∑
i6=u

V∗R
1
2
i gig

∗
iR

1
2
i V +

U

ρ
I

−1

V∗R
1
2
ugu

a.s.−−→ Tr

R
1
2
uV

N U∑
i6=u

V∗R
1
2
i gig

∗
iR

1
2
i V +

U

ρ
I

−1

V∗R
1
2
u


a.s.−−→ Tr

R
1
2
uV

(
N

U∑
i=1

V∗R
1
2
i gig

∗
iR

1
2
i V +

U

ρ
I

)−1

V∗R
1
2
u


= Tr

V∗RuV

(
N

U∑
i=1

V∗R
1
2
i gig

∗
iR

1
2
i V +

U

ρ
I

)−1
 ,

(7)

where a.s.−−→ denotes almost sure convergence as N → ∞
[37]. In (7), the first convergence comes from the trace lemma
[38], and the second convergence comes from the rank-1
perturbation lemma [38].

By [37, Theorem 1], the random variable SLNR converges
to a deterministic SLNR value

SLNRu
a.s.−−→ γu, (8)

where γ1, ..., γU are the unique nonnegative solution of

γu = Tr

V∗RuV

 U∑
j=1

V∗RjV

1 + γj
+
U

ρ
I

−1
 . (9)

The solution of γ1, ..., γU can be obtained fixed point equa-
tions [37], [38] as γu = limt→∞ γ

(t)
u where

γ(t)
u = Tr

V∗RuV

 U∑
j=1

V∗RjV

1 + γ
(t−1)
j

+
U

ρ
I

−1
 . (10)

Let us consider the optimization problem that maximizes
the asymptotic SLNR averaged over all users as

max
V∈V

1

U

U∑
u=1

γu

s.t. γu =Tr

V∗RuV

 U∑
j=1

V∗RjV

1 + γj
+
U

ρ
I

−1
 ,∀u,

(11)

where V =
{
X | X∗X = I,X ∈ CN×m,m = 1, ...,M

}
. This

is difficult to solve directly due to the U fixed point equations
in (11). Instead, we resort to a simplified problem where we
assume that all users have the same SLNR as γ1 = · · · = γU =
γ = 1

U

∑U
u=1 γu. Then, the optimization problem becomes

max
V∈V

γ

s.t. γ = Tr

(
V∗RtotV

(
UV∗RtotV

1 + γ
+
U

ρ
I

)−1
)
,

(12)
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where Rtot = 1
U

∑U
u=1 Ru. Let V∗RtotV be decomposed as

UΛU∗ by eigenvalue decomposition and have eigenvalues of
ν1, ..., νM in descending order. Then, γ is rewritten as

γ =
1

U
Tr

(
UΛU∗

(
UΛU∗

1 + γ
+

1

ρ
I

)−1
)

=
1

U

M̃∑
m=1

1
1

1+γ + 1
ρνm

(13)

where M̃ = min(M, rank(Rtot)). Then, the solution to (12)
is given in the following proposition.

Proposition 2: The V that solves the maximization in
(12) is the matrix whose columns are composed of M̃
eigenvectors associated with the M̃ largest eigenvalues of
Rtot = 1

U

∑U
u=1 Ru where M̃ = min(M, rank(Rtot)).

Proof: See Appendix B.
Proposition 2 indicates that the analog precoding FRF that

results from the optimization problem in (12) uses the M̃
dominant eigenvectors of Rtot = 1

U

∑U
u=1 Ru, i.e., the sum

of the spatial covariance matrices of U users.
Although the derived solution is based on a simplified

optimization problem assuming that each user’s SLNR asymp-
totically converges to the average value over users in the
large antenna array regime, we will show in Section VI that
this solution outperforms the prior work using (2) and has
spectral efficiency close to that of the fully digital precoding
in spatially correlated channels. In addition, we will show that
the proposed solution has exactly the same spectral efficiency
as that of the fully digital precoding if Rtot is rank-deficient
and its rank is less than or equal to M . This will be discussed
further in Section V.

Even in the finite antenna regime where the SLNR does
not converge, the proposed analog precoder is beneficial in
the sense that the proposed technique maximizes a lower
bound of the expectation of the SLNR averaged over U
users. The expectation of the average SLNR over U users is
expressed in (14) where (a) comes from the fact that hw,u’s are
independent, (b) comes from the fact that E[A−1]− (E[A])

−1

is positive semidefinite for a positive semidefinite matrix A
and Tr(AB) ≥ 0 for positive matrices A and B, (c) comes
from the definition of Ru, and (d) comes from the fact
that A−1 − (A + B)−1 is positive semidefinite for positive
semidefinite matrices A and B. With the same notation used
in (12) and (13), the lower bound in (14) can be expressed as

E

[
1

U

U∑
u=1

SLNRu

]

≥ Tr

(
1

U
V∗RtotV

(
V∗RtotV +

U

ρ
I

)−1
)

=

M̃∑
m=1

1

U + ρ
νm

.

(15)

This lower bound in (15) has a similar form to (13). As a
result, the V that maximizes the expected average SLNR is
the same as the optimal solution in Proposition 2.

The proposed approach has some advantages over the prior
work. While each RF chain is dedicated to one user in the
analog precoding in the prior work in [8], [10], [11], [16],
[23], in our case all the RF chains construct a subspace for all
users as a whole in the proposed analog precoding. For this
reason, there is no limitation on assigning the exactly same
number of the users to the number of the RF chains, providing
a wider range of applicability of the proposed method.

Note that the proposed technique can be applied without
modification even when there are some users sharing the
same covariance matrix. Suppose that all users have the same
covariance matrix. This is an extreme case where there exists
only one user group sharing the covariance matrix. The role of
the analog precoder is to concentrate the transmit power on the
local scatterers shared by this user group. Even in this extreme
case, the RZF baseband precoder can still mitigate inter-user
interference if the number of users is less than the number
of dominant eigenvalues of the covariance matrix, which is
closely related to the number of dominant local scatterers. In
addition, note that the proposed hybrid precoding has the same
performance as the fully digital precoding if the rank of the
covariance matrix is less than or equal to M .

Fairness among users is not considered in this paper. There
are two different approaches to take fairness into consideration
for conventional multiuser MIMO. One is to design precoders
based on some fairness criteria, e.g., max-min-rate criterion or
max-sum-rate criterion under some quality-of-service (QoS)
constraints such as a minimum user rate requirement. The
other is to combine unfair precoding with fair scheduling, e.g.,
the combination of a sum-rate-maximizing precoder and a pro-
portional fair scheduling. Either precoder design considering
fairness or joint optimization of scheduling and precoder under
fairness constraints will be an interesting topic for future work.

IV. HYBRID PRECODING UNDER PHASE SHIFTER
CONSTRAINT

In this section, we add Constraint 3 into our precoder design.
Specifically, we propose a technique to mimic FRF obtained
in Section III under the phase shifter constraint. We will refer
to the unconstrained FRF derived in Section III as FRF,UC

and its constrained version as FRF,C.
In prior work [8], the constrained precoder was found by

solving

min
FRF,C,|[FRF,C]i,j |= 1√

N

‖FRF,UC − FRF,C‖2F . (16)

The precoder FRF,C that minimizes the Frobenius norm of
the difference between FRF,C and FRF,UC is a reasonable
approximation of FRF,UC [3]. The solution of (16) is given
by [F

(opt)
RF,C]i,j = 1√

N
ej]([FRF,UC]i,j). The weakness of this

approach is that FRF,C loses the orthogonality that FRF,UC

retains, thereby leading to performance degradation. In our
design, FRF,UC needs to have a multiplicative form of two
semi-unitary matrices to maximize the SLNR according to
Proposition 1.

To overcome this weakness, we apply a compensation
matrix in the baseband part to restore the orthogonality
lost in the analog part as shown in Fig. 2. Let FRF,C =
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Fig. 2. Proposed hybrid precoding structure

URF,CDRF,CV∗RF,C by compact SVD such that DRF,C is
an r × r diagonal matrix where r = rank(FRF,C). Then, the
compensation matrix FCM is given by

FCM = VRF,CD−1
RF,CV∗RF,C. (17)

The combination of FRF,C and FCM becomes a multiplicative
form of two semi-unitary matrices as

FRF,CFCM = URF,CDRF,CV∗RF,CVRF,CD−1
RF,CV∗RF,C

= URF,CV∗RF,C.
(18)

Applying this compensation matrix allows further improve-
ment in designing FRF,C by using the following property.

Proposition 3: Let FRF,UC = VU∗ ∈ CN×M denote an
optimal unconstrained analog precoding matrix with rank M̃
where V∗V = U∗U = IM̃ . Suppose that FRF,UCA is used in
place of the constrained analog precoder FRF,C ignoring the
phase shifter constraint for a nonsingular matrix A ∈ CM×M .
Then, the combination of FRF,UCA and its compensation
matrix is also an optimal unconstrained analog precoder for
any nonsingular matrix A.

Proof: See Appendix C.
By using Proposition 3, FRF,UC in (16) can be replaced by

FRF,UCA for any nonsingular matrix A without performance
loss. The modified optimization problem becomes

min
FRF,C,|[FRF,C]i,j |= 1√

N
,A
‖FRF,UCA− FRF,C‖2F . (19)

Thanks to the increased degrees of freedom in the design, the
constrained analog precoder FRF,C can be made closer to the
optimal constrained analog precoder. The solution to (19) can
be obtained by alternating minimization [39], [40]. Given a
fixed FRF,C, the optimal A is given by

A(opt) = arg min
A
‖FRF,UCA− FRF,C‖2F

= F∗RF,UCFRF,C.
(20)

Then, assuming that A is fixed, the optimal FRF,C is

F
(opt)
RF,C = arg min

FRF,C,|[FRF,C]i,j |= 1√
N

‖FRF,UCA− FRF,C‖2F

=
1√
N

] (FRF,UCA) .

(21)

Using (20) and (21), the solution can be obtained from an
iterative algorithm described in Algorithm 1. The convergence
of the alternating minimization algorithm is provided in [39].
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Algorithm 1 Find FRF,C

Input: FRF,UC

Initialization: F(0) = 1√
N
] (FRF,UC), n = 0

repeat
n← n+ 1
F(n) = 1√

N
]
(
FRF,UCF∗RF,UCF(n−1)

)
until ‖FRF,UCF∗RF,UCF(n−1) − F(n)‖F converges
Output: FRF,C = F(n)

Algorithm 2 Hybrid precoding design for multiuser massive
MIMO

Step 1: Find an unconstrained analog precoding matrix
FRF,UC

FRF,UC = VU∗,

where M̃ = min(M, rank(
∑U
u=1 Ru)), V ∈ CN×M̃ is

composed of M̃ dominant eigenvectors of
∑U
u=1 Ru, and

U ∈ CM×M̃ is a semi-unitary matrix such that U∗U = I.
Step 2: Find a constrained analog precoding matrix FRF

using Algorithm 1.
Step 3: Construct a compensation matrix, FCM, as

FCM = VRFD−1
RFV∗RF,

where FRF,C = VRFDRFV∗RF by SVD.
Step 4: Construct an RZF precoding matrix, FRZF, as

FRZF = (F∗CMF∗RFHH∗FRFFCM + βI)
−1

F∗CMF∗RFH.

Step 5: Construct an overall baseband precoding matrix
FBB,C and a overall hybrid precoding matrix FHB as

FBB = FCMFRZF,

FHB = FRFFBB = FRFFCMFRZF.

Once the optimal FRF,C is found, the compensation matrix
FCM is obtained from FRF,C using (17). The overall baseband
precoding in the constrained case is

FBB,C = FCMFRZF, (22)

where FRZF is a RZF precoder with respect to the effective
channel Heff,c = H∗FRF,CFCM as

FRZF =
(
H∗eff,cHeff,c + βI

)−1
H∗eff,c. (23)

Algorithm 2 summarizes the overall process for the hybrid
precoding design under Constraints 1-3.

V. ASYMPTOTIC ANALYSIS FOR THE SLNR LOSS CAUSED
BY THE HYBRID STRUCTURE

In this section, we analyze the SLNR loss of the proposed
hybrid precoding strategy compared to the fully digital pre-
coder. For analytical tractability, we focus on the unconstrained
analog precoding case obtained in Section III. Our analysis
is still useful though since the quantization due to the phase
shifters becomes negligible in the proposed constrained hybrid
precoding. This will be shown in Section VI. As a measure of
the loss, we use the ratio of the asymptotic SLNR averaged

over U users of the hybrid precoding to that of the fully
digital precoding. Similarly to the hybrid precoding case in
Section III, the asymptotic SLNR of user u in the fully digital
precoding case can be represented as

SLNR(FD)
u

a.s.−−→ γ(FD)
u , (24)

where γ(FD)
1 , ..., γ(FD)

U are the unique nonnegative solution of

γ(FD)
u = Tr

Ru

 U∑
j=1

Rj

1 + γ(FD)
j

+
U

ρ
I

−1
 . (25)

Let γ(HB)
u denote the asymptotic SLNR of the hybrid precoding

in (8). Then, we define the quality performance metric as

γH/F =
1
U

∑U
u=1 γ

(HB)
u

1
U

∑U
u=1 γ

(FD)
u

, (26)

and γH/F satisfies 0 ≤ γH/F ≤ 1. Note that 10 log10 γH/F

indicates the average SLNR loss in dB caused by the hybrid
precoding compared to the fully digital precoding. Therefore,
if R1, ...,RU are given, the SLNR loss can be calculated by
using (8), (24), and (26). The SLNR loss, however, does not
have a closed form due to the fixed point solutions.

In the following propositions, some special cases are in-
troduced where the SLNR loss metric has a closed form.
For the general case, we derive an approximation of the
SLNR loss metric in Proposition 6. We assume that U

N and
M
N have constant values as N goes to infinity. Note that
0 < U ≤M ≤ N .

Proposition 4: For uncorrelated channels, i.e. Ru = I,∀u,
the SLNR loss metric γH/F becomes

γH/F =
((M − U)ρ− U) +

√
((M − U)ρ− U)

2
+ 4MUρ

((N − U)ρ− U) +

√
((N − U)ρ− U)

2
+ 4NUρ

.

(27)

Proof: See Appendix D.
As ρ→∞, the limit of γH/F in (47) becomes

lim
ρ→∞

γH/F =
M − U
N − U

. (28)

This indicates that, in the high SNR region (ρ→∞) for the
uncorrelated channels, the SLNR loss caused by the hybrid
precoding becomes severe if M � N and U approaches M ,
i.e., U ≈M � N .

In the next proposition, we show that the SLNR loss
decreases as the channels become more spatially correlated. In
this correlated case, the covariance matrix Ru is likely to be
ill-conditioned, i.e., the eigenvalues are not evenly distributed,
and a few dominant eigenvalues account for most of the sum
of all the eigenvalues. The following proposition shows the
extreme case where there is no SLNR loss from the hybrid
precoding in the correlated channels.

Proposition 5: For correlated channels, if
∑U
u=1 Ru is rank-

deficient and its rank is lower than or equal to M , then the
SLNR loss metric γH/F is equal to one. In other words, hybrid
precoding has the same asymptotic SLNR as that of the fully
digital precoding.
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Proof: See Appendix E.
Now let us consider a general correlated channel where the

rank of Rtot is not strictly less than M . Although the (N−M)
smallest eigenvalues are not exactly zero, it is possible for
those eigenvalues to become much smaller than the other
dominant eigenvalues in the highly correlated channels. It is
intuitive that the smaller those non-dominant eigenvalues are,
the smaller the loss from the hybrid precoding. A question
still remains about how much the exact loss will be according
to the portions of the small eigenvalues. For quantitative
analysis, let λ1, ..., λN be the nonnegative eigenvalues of Rtot

in descending order and define a metric, κch, as the ratio of the
sum of M largest eigenvalues to the sum of all eigenvalues,
i.e., κch =

∑M
i=1 λi∑N
i=1 λi

. This metric κch ranging from M
N to

1 is a metric for eigenvalue concentration. The goal of the
quantitative analysis is to express the SLNR loss γH/F as
a function of the concentration metric κch and other system
parameters such as U

N and M
N , which can provide a useful

insight to the relation between both metrics.
The closed form expressions on the SLNR metric γH/F in

Proposition 4 and 5 are the special cases when κch = M
N and

κch = 1, respectively. The SLNR loss metric γH/F, however,
does not have a closed form expression if M

N < κch < 1.
Instead of pursuing exact expressions, we find an approximate
expression of γH/F resorting to two assumptions to get insight
to the impact of κch and other parameters on γH/F. First, all
users’ deterministic SLNR’s are the same as the average value
as used previously. Second, all the M largest eigenvalues have
an identical value that is their average values as

λ̄L =
1

M

M∑
m=1

λm

=
κch

M
Tr(Rtot),

(29)

and the N −M remaining eigenvalues have the same value as

λ̄S =
1

N −M

N∑
n=M+1

λn

=
1− κch

N −M
Tr(Rtot).

(30)

From (13) and the above assumptions, the deterministic
SLNR of the hybrid precoding and the fully digital precoding
become the nonnegative unique solution of

γ(HB) =
1

U

M∑
m=1

1
1

1+γ(HB) + 1
ρλm

=
1

U

M
1

1+γ(HB) + 1
ρλ̄L

,

(31)

and

γ(FD) =
1

U

N∑
n=1

1
1

1+γ(FD) + 1
ρλn

=
1

U

M
1

1+γ(FD) + 1
ρλ̄L

+
1

U

N −M
1

1+γ(FD) + 1
ρλ̄S

.

(32)

In the following proposition, the approximate SLNR loss
metric γH/F using the above two assumptions is derived in
a closed form.

Proposition 6: For spatially correlated channels where
Tr(Ru) = N for all u, if the deterministic SLNR of the
hybrid precoding and the fully digital precoding are given by
the solutions to (31) and (32), then the SLNR loss metric γH/F

becomes

γH/F =

(
1
A −

1
B − 1

)
+

√(
1
A −

1
B − 1

)2
+ 4

A

−6
(
D + ϕH + G

ϕH

)−1

− 2
, (33)

where ϕ = − 1
2 + 1

2

√
3i and

A =
U

ρκchN
, B =

M

ρκchN
, C =

N −M
ρ(1− κch)N

,

D = B + C − 1 +
N

U
, E = BC

(
ρN + U

U

)
−B − C

F = 2D3 − 9DE − 27BC, G = D2 − 3E,

H =

(
F +

√
F 2 − 4G3

2

) 1
3

.

(34)

Proof: See Appendix F.
The approximate SLNR loss metric is a decreasing function

with respect to κch. Since the range of κch is M
N ≤ κch ≤ 1,

the metric has a minimum value of (27) when κch = M
N

(uncorrelated channels), and a maximum value of one when
κch = 1 (correlated channels with rank(Rtot) = M ). The
approximate SLNR loss metric also depends on three other
factors: M

N , U
N , and ρ (= Ptx

σ2 ). The dependence of the
approximate SLNR loss on these factors will be discussed in
Section VI as well as the validation of the approximation.

VI. SIMULATION RESULTS

In this section, we use simulation results to evaluate the pro-
posed hybrid precoding strategy. We adopt a simple geometry-
based channel model for simulations. We assume that there are
L channel paths between a BS and a user, and the BS has a
uniform linear array with 0.5λ antenna spacing where λ is the
wavelength. Let α` and φ` denote the `-th complex path gain
and angle of departure (AoD), respectively. Then, the channel
vector of user u can be expressed as hu =

∑L
`=1 α`a(φ`)

where a(φ`) is the array response vector given by

a(φ`) =
[

1 ejπ sin(φ`) · · · ejπ(N−1) sin(φ`)
]T
. (35)

In the simulations, we assume that φ`’s are Laplacian dis-
tributed with an angle spread σAS, and α` ∼ CN (0, σ2

α`
)

where σ2
α`

’s are randomly generated from an exponential
distribution and normalized such that

∑L
`=1 σ

2
α`

= 1.
Fig. 3 compares the proposed hybrid precoding with the

prior technique in (2) when N = 64, L = 5, σAS = 10, and
SNR= 10dB. Since prior wok is targeted at the case of M =
U , both are compared in that case for a fair comparison, and
simulations are performed without phase shifter constraints.
Fig. 3 shows that our approach outperforms prior work as U
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Fig. 3. Sum spectral efficiency vs. M when U = M , N = 64, L = 5,
σAS = 10, and SNR= 10dB. Both of the hybrid precoding are performed
without the phase shifter constraint. The prior work denotes the hybrid
precoding technique in (2) from [16].

and M are not small. In addition, prior work does not approach
the fully digital precoding case even when M becomes N .

In Fig. 4, the case of U ≤M is evaluated, and the proposed
constrained hybrid precoding under the phase shifter constraint
is compared to the unconstrained case. Fig. 4 shows that
the proposed constrained analog precoder combined with the
compensation matrix achieves almost the same sum spectral
efficiency as the unconstrained case, and outperforms using
]FRF,UC in (16) whose elements are composed of the phase
components of FRF,UC. Since prior work in [16] where FRF

is designed from (2) cannot be directly applied when U ≤M ,
the effective number of RF chains used is equal to U in the
simulation. While M is a time-invariant system parameter, the
number of users U varies over time. When less than M users
are assigned, the approaches that assign a RF chain to a user
such as (2) do not fully exploit all RF chains, thereby leading
to inefficiency.

In Fig. 3 and Fig. 4, we assume that the phase shifters in
the analog precoder can take continuous phase values. Since
only quantized phases can be realized in the phase shifters
in realistic implementations, it is worthwhile to investigate
the phase quantization effect. Fig. 5 shows the impact of the
phase quantization on sum spectral efficiency in the same
environment as Fig. 4. We see that the sum spectral efficiency
of the constrained case with only three or four bit quantization
is close to that of the unconstrained case.

Fig. 6 shows sum spectral efficiency according to SNR.
When U is not so large as in Fig. 6(a), the gain of the proposed
technique is marginal compared to the prior work [16] when
M = U . Both techniques, however, lead to a considerable
rate loss compared to the fully digital precoding in the case of
M = U at high SNR. The figure shows that it is essential
to exploit more RF chains than users. Thereby, the ability
to support the case of U < M is a significant advantage.
In addition, even when U = M , the proposed technique
outperforms the prior work if U is not too small as shown
in Fig. 6(b).
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Fig. 4. Sum spectral efficiency vs. U when M ≥ U , N = 64, L = 5,
σAS = 10, and SNR= 10dB. FRF,UC is the proposed unconstrained analog
precoder, and ]FRF,UC denotes the solution of (16).
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Fig. 5. Phase quantization effect on sum spectral efficiency. The simulation
environment is the same as Fig. 4.

Now let us look at how much loss the proposed hybrid
precoding will bring compared to the fully digital precoding.
In the single-user MIMO case, the required number of RF
chains to approach to the performance of the fully digital
precoding depends on channel sparsity such as the number
of channel paths. Since the degrees-of-freedom is limited to
the number of channel paths L in the single-user MIMO case,
L RF chains are enough to have the same degrees of freedom.
Consequently, the loss from hybrid precoding is negligible or
moderate if M ≈ L. This is, however, not the case in multiuser
MIMO systems. Another factor, U , plays an important role in
the loss of hybrid precoding as shown in Section V.

Fig. 7 shows the approximate asymptotic SLNR loss derived
in Section V. We can see that the analytical approxima-
tion derived in (33) are well matched to the results from
numerical methods. The range of κch is M

N ≤ κch ≤ 1
where the minimum value M

N occurs in the uncorrelated case
and the maximum value 1 occurs in the correlated case of
rank(Rtot) = M . This means that the uncorrelated channel
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Fig. 6. Sum spectral efficiency vs. SNR when N = 64, L = 5, and
σAS = 10.
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case is the worst case in terms of hybrid architecture. While
hybrid precoding results in a considerable loss in the uncorre-
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Fig. 8. SLNR gap (analytical) vs. κch according to M
N

, U
N

, and ρ.

lated channel case, the loss can be moderate in the correlated
channel case. For example, the figure shows that the SLNR
loss is much smaller in the spatially sparse channels than in the
rich-scattering uncorrelated channels. The SLNR loss becomes
smaller as the number of channel paths decreases.

Note that the approximate SLNR loss metric γH/F in (33)
depends on four factors: MN , UN , and SNR (ρ = Ptx

σ2 ), and κch.
Among these factors, κch is calculated from the users’ spatial
covariance matrices, which depends on the channel environ-
ment such as channel sparsity. Fig. 8 shows the relationship
between the SLNR loss and κch according to various M

N , U
N ,

and SNR values. In Fig. 8(a), the SNR is fixed at 10dB,
and different M

N and U
M values are simulated. As expected,

the SLNR loss becomes small as M
N becomes large and U

M
becomes small. One interesting point is that the SLNR loss
deteriorates as M

N decreases when U = M . As U
M decreases,

M
N has less influence on the SLNR loss at the same κch value.
A similar phenomenon occurs when we look at the dependence
of the SLNR loss on SNR values in Fig. 8(b). The SNR values
have a significant effect on the SLNR loss only when M
approaches to U . In the high SNR region, the hybrid precoding
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results in a disastrous SLNR loss if M = U . These results
again emphasize the need to equip more RF chains than the
expected number of users in cell deployment scenarios.

Since we have examined the relationship between the SLNR
loss and κch, let us look at how much κch will be in various
channel environments. Fig. 9 shows the cumulative distribution
functions (CDFs) of κch according to various channel and
system parameters when N = 64. Fig. 9(a) shows that κch

has a larger value as L increases and σAS decreases, i.e., the
channel becomes spatially sparser. In addition to relating to
the number of channel paths, the distribution of κch is also
dependent on M and U . In Fig. 9(b), the distributions of κch

are shown according to different U and M values. We can
see that κch itself approaches to one when U

M is small. In this
small U

M case, the dependence of κch on M also decreases,
i.e., κch is still large even at small M values. The results in
Fig. 8 and Fig. 9(b) collectively indicate that equipping more
RF chains than users leads to not only a small SLNR loss at
a specific κch value but also a large κch value itself.

Although we focus on the SLNR loss throughout this paper
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Fig. 10. Sum rate loss caused by the hybrid architecture compared with the
fully digital precoding according to L and σAS when N = 64, M = 32,
and U = 16.

as the RZF is known as a precoder that maximizes the SLNR
[27], it is also meaningful to look at the rate loss caused by the
hybrid precoding designed based on the SLNR. Fig. 10 shows
the sum rate loss according to various L and σAS values by
numerical simulations. If the channel has only a single path,
i.e., L = 1, then there is no loss from the hybrid precoding as
shown in Fig. 10(b). The sum rate loss is less than 10 % as
long as L ≤ 10 when N = 64, M = 32, and U = 16. This
rate loss can become smaller as either M becomes larger or
U becomes smaller.

VII. CONCLUSIONS

In this paper, we proposed a hybrid precoding technique
that uses spatial channel covariance matrices when computing
analog precoders. We first obtained the unconstrained analog
precoder to maximize the SLNR when the baseband precoder
is RZF. Then, we used a compensation matrix that minimizes
the rate loss caused by using phase shifters. Simulation re-
sults showed that the proposed hybrid precoder outperforms
prior work in sum spectral efficiency, with larger gain as
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the number of users increases. The results also showed that
the proposed constrained precoding solution combined with
the compensation matrix performs close to the unconstrained
case. The analysis on the SLNR loss caused by the hybrid
architecture indicated that the proposed hybrid precoding is
an attractive approach in highly correlated channels, e.g.,
when many antenna elements are packed in a small area and
channels are spatially sparse.

APPENDIX A
PROOF OF PROPOSITION 1

Let H̃∗ = H∗V and h̃∗u = h∗uV. Then, h∗uW in (5)
becomes

h∗uW = h∗uVA

(
A∗V∗HH∗VA +

U

ρ
I

)−1

A∗V∗

= h̃∗uW̃AV∗,

(36)

where W̃A =
(
H̃H̃∗ + U

ρ (AA∗)
−1
)−1

. Using (36), the
SLNR in (5) can be rewritten as

SLNRu =
h̃∗uW̃AV∗huh

∗
uVW̃∗h̃∗u

h̃∗uW̃AV∗
(
HH∗ − huh∗u + U

ρ I
)

VW̃∗h̃∗u

=
h̃∗uW̃Ah̃uh̃

∗
uW̃Ah̃u

h̃∗uW̃A

(
H̃H̃∗ − h̃uh̃∗u + U

ρ I
)

W̃Ah̃u

=
h̃∗uW̃Ah̃uh̃

∗
uW̃Ah̃u

h̃∗uW̃A

(
H̃H̃∗ + U

ρ I
)

W̃Ah̃u − h̃∗uW̃Ah̃uh̃∗uW̃Ah̃u
.

(37)

Let χA,u be defined as

χA,u =
h̃∗uW̃Ah̃uh̃

∗
uW̃Ah̃u

h̃∗uW̃A

(
H̃H̃∗ + U

ρ I
)

W̃Ah̃u

=
w̃∗A,uh̃uh̃

∗
uw̃A,u

w̃∗A,u

(
H̃H̃∗ + U

ρ I
)

w̃A,u

,

(38)

where w̃A,u = W̃Ah̃u. Then, the SLNR in (37) can be
rewritten as

SLNRu =
χA,u

1− χA,u
. (39)

Note that 0 ≤ χA,u < 1 for any ρ > 0 and the SLNR is an
increasing function of χA,u. The optimal w̃A,u that maximizes
χA,u has the same direction as the generalized eigenvector
of
(
H̃H̃∗ + U

ρ I, h̃uh̃
∗
u

)
. Since H̃H̃∗ + U

ρ I is invertible, the
optimal solution of w̃A,u becomes

w̃
(opt)
A,u ∝ dominant eigenvector of

(
H̃H̃∗ +

U

ρ
I

)−1

h̃uh̃
∗
u

∝
(

H̃H̃∗ +
U

ρ
I

)−1

h̃u.

(40)

Since w̃A,u = W̃Ah̃u =
(
H̃H̃∗ + U

ρ (AA∗)
−1
)−1

h̃u, the
optimal w̃A,u that maximizes the SLNR is obtained when
AA∗ = I.

When A is semi-unitary, χA,u has a maximum value of

χA,u = h̃∗u

(
H̃H̃∗ + U

ρ I
)−1

h̃u. Then, the SLNR in (37)
becomes

SLNRu =
h∗uV

(
V∗HH∗V + U

ρ I
)−1

V∗hu

1− h∗uV
(
V∗HH∗V + U

ρ I
)−1

V∗hu

(a)
= h∗uV

 U∑
i6=u

V∗hih
∗
iV +

U

ρ
I

−1

V∗hu

(41)

where (a) comes from the matrix inversion lemma.

APPENDIX B
PROOF OF PROPOSITION 2

Let λ1, ..., λN be the eigenvalues of Rtot in descending
order and VA =

[
V V0

]
be a unitary matrix such that

V∗0V0 = I and V∗V0 = 0. Since VA is a unitary matrix,
V∗ARtotVA has the same eigenvalues as Rtot and can be
represented as

V∗ARtotVA =

[
V∗RtotV V∗RtotV0

V∗0RtotV V∗0RtotV0

]
. (42)

Let the eigenvalues of V∗RtotV be denoted as ν1 ≥ · · · ≥
νM . Then, by Cauchy’s interlacing theorem [41], the eigen-
values of the leading principal submatrix, V∗RtotV, have the
interlacing property

λN−M+i ≤ νi ≤ λi, for i = 1, ...,M. (43)

Since Rtot is Hermitian, λi for i = 1, ..., rank(Rtot) have
positive real values, and λi for i > rank(Rtot) have zero
values. Consequently, νi for i > rank(Rtot) become zero,
and

λ−1
i ≤ ν

−1
i ≤ λ−1

N−M+i, for i = 1, ..., M̃ . (44)

From (44), the constraint in (12) becomes

γ =
1

U

M̃∑
m=1

1
1

1+γ + 1
ρνm

≤ 1

U

M̃∑
m=1

1
1

1+γ + 1
ρλm

,

(45)

where the equality holds if V is composed of M̃ dominant
eigenvectors of Rtot. Since the solution of the fixed point
equation with respect to γ has a maximum value if the equality
holds, the proof is complete.

APPENDIX C
PROOF OF PROPOSITION 3

Since A is nonsingular, U∗A can be decomposed by
SVD as U∗A = U1D1V

∗
1 where U1 ∈ CM̃×M̃ is uni-

tary and D1 ∈ CM̃×M̃ is a diagonal matrix with nonzero
elements. Then, A∗F∗RF,UCFRF,UCA = V1D

2
1V
∗
1 , and thus

the compensation matrix with respect to FRF,UCA becomes
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V1D
−1
1 V∗1 . Consequently, the combination of FRF,UCA and

its compensation matrix becomes

FRF,UCAFCM = VU1D1V
∗
1V1D

−1
1 V∗1

= VU∗alt,
(46)

where Ualt = V1U
∗
1. Since U∗altUalt = U1V

∗
1V1U

∗
1 = IM̃ ,

the combined matrix FRF,UCAFCM results in the same SLNR
as FRF,UC by Proposition 1.

APPENDIX D
PROOF OF PROPOSITION 4

When Ru = I,∀u, γ(FD)
u in (25) is given by

γ(FD)
u = Tr


 U∑

j=1

1

1 + γ(FD)
j

+
U

ρ

 I

−1


=
N∑U

j=1
1

1+γ(FD)
j

+ U
ρ

, ∀u,

(47)

which implies that γ(FD)
1 = ... = γ(FD)

U = γ(FD) = N
U

1+γ(FD) +U
ρ

,

and the positive solution of γ(FD) to this equation is equal to
the denominator in (27) divided by N . In a similar way, it
can be proved that γ(HB)

1 = ... = γ(HB)
U = γ(HB) and γ(HB) is

given by the numerator in (27) divided by N , using the fact
that Rtot is an identity matrix.

APPENDIX E
PROOF OF PROPOSITION 5

Let the rank of Rtot be M̃ ≤M and VM̃ be the eigenvector
associated with its nonzero eigenvalues. Then, the rank of each
user’s covariance matrix Ru becomes at most M̃ and thus can
be represented as Ru = VM̃QuV

∗
M̃

where Qu ∈ CM̃×M̃ .
Note that this is not an eigenvalue decomposition, so Qu

is generally not a diagonal matrix. In the proposed hybrid
precoding technique, the analog precoder without the phase
shifter constraint is given by FRF =

[
VM̃ 0

]
, which means

that only M̃ RF chains are used among M ones. From (9),
the deterministic SLNR of user u in the hybrid precoding case
is the unique nonnegative solution of

γ(HB)
u = Tr

F∗RFRuFRF

 U∑
j=1

F∗RFRjFRF

1 + γ(HB)
j

+
U

ρ
IM

−1


= Tr

Q̃(M)
u

 U∑
j=1

Q̃
(M)
j

1 + γ(HB)
j

+
U

ρ
IM

−1


= Tr

Qu

 U∑
j=1

Qj

1 + γ(HB)
j

+
U

ρ
IM̃

−1
 ,

(48)

where Q̃
(M)
i =

[
Qi 0M̃×(M−M̃)

0(M−M̃)×M̃ 0(M−M̃)×(M−M̃)

]
. Let VA =[

VM̃ VN−M̃
]

be a unitary matrix where VN−M̃ is the
null space of VM̃ such that V∗

M̃
VN−M̃ = 0M̃×(N−M̃) and

V∗
N−M̃VN−M̃ = IN−M̃ . In the fully digital precoding case,

the fixed-point equation of the deterministic SLNR of user u
in (25) can be reformulated as

γ(FD)
u = Tr

VM̃QuV
∗
M̃

 U∑
j=1

VM̃QjV
∗
M̃

1 + γ(FD)
j

+
U

ρ
IN

−1


= Tr

VAQ̃(N)
u V∗A

 U∑
j=1

VAQ̃
(N)
j V∗A

1 + γ(FD)
j

+
U

ρ
IN

−1


= Tr

Q̃(N)
u

 U∑
j=1

Q̃
(N)
j

1 + γ(FD)
j

+
U

ρ
IN

−1


= Tr

Qu

 U∑
j=1

Qj

1 + γ(FD)
j

+
U

ρ
IM̃

−1
 ,

(49)

where Q̃
(N)
i =

[
Qi 0M̃×(N−M̃)

0(N−M̃)×M̃ 0(N−M̃)×(N−M̃)

]
. Since (48)

is identical to (49), and the solution of these fixed point
equations is unique, the proof is complete.

APPENDIX F
PROOF OF PROPOSITION 6

The deterministic SLNR of the hybrid precoding is the
nonnegative unique solution of

γ(HB) =
1

U

M
1

1+γ(HB) + 1
ρλ̄L

=
M/U

1
1+γ(HB) + M

ρκchN

,

(50)

and the solution is given by

γ(HB) =

(
1
A −

1
B − 1

)
+

√(
1
A −

1
B − 1

)2
+ 4

A

2
,

(51)

where A = U
ρκchN

and B = M
ρκchN

. In the fully digital
precoding case, the deterministic SLNR is the solution of

γ(FD) =
1

U

M
1

1+γ(FD) + 1
ρλ̄L

+
1

U

N −M
1

1+γ(FD) + 1
ρλ̄S

=
1

U
M(1+γ(FD))

+ U
ρκchN

+
1

U
(N−M)(1+γ(FD))

+ U
ρ(1−κch)N

.

(52)

Let C = N−M
ρ(1−κch)N , D = B+C−1+N

U , E = BC
(
ρN+U
U

)
−

B − C, and x = 1
1+γ(FD) , then (52) simplifies as

x3 +Dx2 + Ex−BC = 0. (53)

Since D ≥ 0 and BC ≥ 0, the nonnegative solution to (53)
is unique and given by

x = −1

3

(
D + ϕH +

G

ϕH

)
, (54)



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2701321, IEEE
Transactions on Signal Processing

14

where ϕ = − 1
2 + 1

2

√
3i, F = 2D3 − 9DE − 27BC, G =

D2 − 3E, and H =
(
F+
√
F 2−4G3

2

) 1
3

. From (51), (54), and

γ(FD) = 1
x − 1, the SLNR loss metric becomes (33).
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[36] R. Méndez-Rial, N. González-Prelcic, and R. Heath, “Augmented co-
variance estimation with a cyclic approach in DOA,” in Proc. IEEE Int.
Conf. Acoust., Speech and Signal Process. (ICASSP), Apr. 2015, pp.
2784–2788.

[37] S. Wagner, R. Couillet, M. Debbah, and D. Slock, “Large system
analysis of linear precoding in correlated MISO broadcast channels
under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp.
4509–4537, Jul. 2012.

[38] R. Couillet and M. Debbah, Random matrix methods for wireless
communications. Cambridge University Press, 2011.

[39] J. A. Tropp, I. S. Dhillon, R. Heath, and T. Strohmer, “Designing
structured tight frames via an alternating projection method,” IEEE
Trans. Inf. Theory, vol. 51, no. 1, pp. 188–209, Jan. 2005.

[40] C. Rusu, R. Méndez-Rial, N. González-Prelcic, and R. Heath, “Low
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