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Abstract—Task offloading from smartphones to the cloud is a promising strategy to enhance the computing capability of smartphones

and prolong their battery life. However, task offloading introduces a communication cost for those devices. Therefore, consideration of

the communication cost is crucial for the effectiveness of task offloading. To make task offloading beneficial, one of the challenges is to

estimate the energy consumed in communication activities of task offloading. Accurate energy estimation models will enable these

devices to make the right decisions as to whether or not to perform task offloading, based on the energy cost of the communication

activities. Simply put, if the offloading process consumes less energy than processing the task on the device itself, then the task is

offloaded to the cloud. To design an energy-aware offloading strategy, we develop energy models of the WLAN, Third Generation (3G),

and Fourth Generation (4G) interfaces of smartphones. These models make smartphones capable of accurately estimating the energy

cost of task offloading. We validate the models by conducting an extensive set of experiments on five smartphones from different

vendors. The experimental results show that our estimation models accurately estimate the energy required to offload tasks.

Index Terms—Mobile Computing, Cloud Computing, Smartphones, Offloading Decision, Energy Saving, WLAN Energy, 3G Energy,

4G Energy, Energy Estimation.
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1 INTRODUCTION

SMARTPHONES have unique constraints, namely limited
battery energy, processing capability, and memory ca-

pacity. Over the last few years, rapid progresses in semi-
conductor technologies have alleviated some of those con-
straints. However, the limited battery energy constraint has
not been satisfactorily addressed. According to Moore’s law,
the number of transistors on an integrated circuit doubles
every two years. In contrast, battery capacity increases only
by 5% every year [1]. This fact implies that the gap between
energy demand and supply grows by 4% annually [2],
[3]. In the recent years, the problem has become prevalent
among smartphone users, while the smartphones are be-
coming increasingly popular because of their capabilities
and functionalities. With powerful operating systems (e.g.,
Windows Mobile, Android, Apple iOS, BlackBerry, and Sym-
bian), smartphones are able to run advance applications that
are almost similar to desktop computer applications. Each
smartphone application performs a series of tasks, with each
task executing specific computations on a given data.

The need to reduce the energy consumption of smart-
phones has been attracting efforts from many researchers
[4], [5], [6]. Many methodologies and techniques have been
proposed in literature. Smart batteries, power scheduling,
efficient operating systems and applications, efficient graph-
ical user interfaces, energy-aware communication protocols,
and task offloading are all examples of these methodologies
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and techniques [7]. Task offloading is a promising technique
to reduce energy consumption in smartphones; specially,
with the emergence of high-speed broadband wireless Inter-
net access. That is because high-speed networks increase the
connection availability to the computing resources behind
the Internet. Using the offloading technique, smartphones
can offload their heavy tasks to remote machines and save
their energy of executing the task locally [8], [9].

In the era of Cloud Computing (CC), the energy con-
straint on smartphones can be eased off by offloading heavy
tasks from smartphones to the cloud [10], [11]. The mobile
device can save energy by offloading heavy tasks to the
cloud, and then the cloud executes the tasks and provides
the mobile device with the results. For example, a smart-
phone can upload a video file to a cloud and request to
encode the file into a desired format fitting the smartphone
capability with less energy consumption than doing the
encoding on the device. Task offloading will become vital
for the Information and Communication Technology (ICT)
in the near future because CC will be a dominant operator
for mobile computing [12], [13]. Mobile data storage and
data processing will take place on the cloud, and a promis-
ing way to have this kind of ICT structure is to employ
offloading techniques [14], [15].

Task offloading is a critical technique because in some
cases it increases the energy consumption of smartphones.
To illustrate this, if a smartphone has to perform a task
computation where task data exists on the smartphone,
there are two scenarios: either execute the task locally (S1),
or offload the task to the cloud (S2). Assume that the
smartphone consumes energy equal to E(S1) when the task
is executed locally. Similarly, assume that the smartphone
consumes energy equal to E(S2) when the task is offloaded,
which involves uploading of task data and downloading of
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TABLE 1
Offloading scenarios from the viewpoint of smartphone

Scenario Data Execution Networking Activities

S1 local local none
S2 local cloud upload task data and

download task results
S3 cloud local download task data
S4 cloud cloud download task results

task results to and from the cloud, respectively. In this case,
offloading is only beneficial if E(S2) < E(S1).

In order to make the offloading beneficial, the energy
cost of offloading for a given task should be estimated to
compare it with the energy cost of executing the task locally.
From a smartphone point of view, the energy consumed
during task offloading is mainly caused by the networking
activities. The focus of this study is developing energy
models to estimate the cost of task offloading caused by
the networking activities. Specifically, we model the energy
cost at the application level considering all the details of
the network stack (i.e., Transmission Control Protocol (TCP),
Media Access Control (MAC), and Physical layer (PHY)).
Estimating the energy consumed due to local task execution
is beyond the scope of this study as we studied it before
[16], and the literature shows other useful approaches that
can be adopted [17], [18].

This study extends our previous work on investigation
of the feasibility of task offloading to whether or not a
smartphone can save energy by offloading tasks to the
cloud [19]. We conducted a large number of experiments
on popular smartphones and real clouds with four different
offloading scenarios. The results revealed the potential of
task offloading to the cloud and the benefit of offloading
to the cloud in terms of energy saving. The smartphone
can save energy between 30% and 70% by offloading heavy
tasks to the cloud [19].

Given that a task involves execution of specific code on
given data, we have four possible offloading scenarios, as
listed in Table 1 and explained in what follows.

S1: In this scenario, the input data is available locally
on the smartphone and task execution occurs on the
smartphone as well. This is the normal case where no
offloading occurs. We use this scenario as a reference
case for comparison purpose.

S2: The second scenario is where the task execution hap-
pens on the cloud but the task data exists locally on
the smartphone. In this scenario, the smartphone has to
upload the task data to the cloud and then download
the task results.

S3: The third scenario is where the task execution is per-
formed locally on the smartphone, but the task data
exists on the cloud. In this scenario, the smartphone
needs to download the task data and perform the task
execution locally.

S4: In this scenario, the input data is available on the
cloud and task execution occurs in the cloud as well.
Therefore, the smartphone just needs to download the
task results.

In this work, we develop and validate mathematical
models for the energy that smartphones consume during

network activities for task offloading. We consider in our
models the most common network interfaces: WLAN and
3G/4G. We conduct experiments on popular smartphones
(i.e., HTC Nexus One, LG Nexus 4, Samsung Galaxy S3, Black-
Berry Z10, and Samsung Galaxy Note 3) to validate our energy
models. The experimental results reveal that our energy
estimation models are able to estimate the energy accurately.

In this paper, we make the following contributions:

1) We introduce models to estimate the energy consumed
in a smartphone to perform task offloading:

a) file downloading using WLAN and 3G/4G network
interfaces; and

b) file uploading using WLAN and 3G/4G network
interfaces.

2) We developed models so that provide an accurate esti-
mation to the total energy consumed for task offloading
by only taking the amount of data that the smartphone
would transfer for task offloading as an input.

3) We validate the energy models by means of implemen-
tation and measurement. In these experiments, we mea-
sure the actual energy consumed in the smartphones for
each of the aforementioned network activities.

The paper is organized as follows. The related works are
reviewed in Section 2. In Section 3, we describe our system
models in detail. In Section 4, we provide the details of our
energy estimation models. Validation of the models and the
experimental results are discussed in Section 5. The paper is
concluded in Section 6.

2 RELATED WORK

The offloading has been proposed for several purposes
such as load balancing, improve the performance, and save
energy. The work of Othamn et al. is the early study for
offloading a task to save energy on mobile devices [20]. The
offloading technique can be categorized into three major
approaches based on the type of the remote machine. The
first approach is the offloading to a web proxy [7], [21],
where a proxy works as an intermediary machine between
a web server and a mobile device. The mobile device sends
a web request to the proxy and the proxy delivers the
content to the mobile device after performing the desired
modification to the content, such as multimedia coding. The
second approach is the offloading to a local powerful server
[22], [23], [24], [25], where the server is located on the same
or nearby network as the mobile device existing. The mobile
device sends a computation-intensive task to the server,
requests to perform the given task, and then downloads the
task results. The third approach is the offloading to a cloud
[10], [21], [26], [27], where the cloud provides its ubiquitous
computation resources, such as processing and storage, to a
mobile device.

Task offloading to the cloud becomes practical because
cloud services are widely available [28], [29]. Consequently,
offloading to the cloud has been attracting the attention of
many researchers [10], [21]. Kelenyi et al. [21] proposed a
strategy to save energy of handheld devices using CC. In
their strategy, cloud servers are used as BitTorrent clients to
download torrent pieces on behalf of a handheld device.
While a cloud server is downloading the torrent pieces, the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING VOL:PP YEAR:2015



3

handheld device switches to sleep mode until the cloud
finishes downloading the torrent pieces and starts upload-
ing the torrent file in one session to the handheld device.
This strategy saves energy of handheld devices because
downloading torrent pieces from torrent peers consumes
more energy than downloading a single burst of torrent
pieces from the cloud. However, this strategy only takes
into account the impact of the Torrent traffic pattern on the
energy consumption and does not consider the computation
cost of the given task.

In general, the cloud can be used to offload not only
a specific task, namely downloading torrents, but also for
any computation task, if smartphones can save energy due
to offloading. Therefore, estimating the energy consumed
for task offloading to the cloud is fundamental to making
a task offloading decision. Kumar et al. [10] and Miettinen
et al. [1] model the energy cost at the system level when
a smartphone performs communication and computation.
The offloading decision is made by comparing the energy
cost of mobile communication and computation for a given
task. This work shows the impact of communication band-
width on task offloading, and illustrates that offloading
is beneficial if the task has heavy computation and needs
low communication. However, the energy cost in this work
lacks experimental validation, and the impacts of Internet
protocols and network interfaces on the energy cost have
not been considered.

Developing mathematical models for the energy con-
sumption is essential to make task offloading beneficial
with respect of energy cost. That is, the offloading deci-
sion depends on the estimation of the energy cost, which
is modeled mathematically, for offloading the task to the
cloud and for executing it locally. Modeling the energy
consumption has been developed extensively in the liter-
ature for the use of energy saving techniques such as task
offloading technique. Zhang et al. [30] and Jung et al. [31]
profiled the energy consumption of mobile device hardware
components including the wireless interfaces. The profiling
is developed by analyzing the access event of the system to
the component and the change in the power state, which
is provided from the Battery Monitoring Unit (BMU). Their
mathematical models are built based on the analysis to the
experimental results. As a result, the models lack for system
analysis and the detail of the protocols. In addition, the BMU
can not trace events that are shorter than BMU update rate
as in the case of wireless interfaces. Therefore, the models
are not accurate and not extendible for modeling the energy
consumption of the wireless interfaces.

In contrast, Xiao et al. [32] presented an energy cost
model for IEEE 802.11g networks. The model takes into
account the impact of the transmission control protocol
(TCP) and Internet traffic flow characteristics on the power
consumption of smartphones running different operating
systems. The model abstracts the detailed operation of the
IEEE 802.11g protocol, such as the RTS-CTS exchange, the
average back-off time, and the transmission of ACK packets.
Our MAC (media access control) energy model accurately
takes the detailed operation of IEEE 802.11 into consid-
eration where it is developed based on the IEEE 802.11g
protocol parameters. Hence, it can be easily extended to
other IEEE 802.11 standards.

The wireless interface of a mobile device with 3G/4G
radio consumes deterministic levels of power. These levels
are associated with the radio resources that the interface was
granted form the network. For instance, the interface con-
sumes a specific amount of power during the data transfer
period and another amount during signaling. Qian et al. [33]
and Huang et al. [34] showed these distinct levels of power
consumption by tracing the radio resources and power
consumptions of the smartphones for 3G and 4G networks,
respectively. We use this concept to develop our models.
Rather than consider the power consumption of individual
components inside the interface [35], we consider the overall
power consumption of the network interface, because we
develop our models to be used at the upper system level
where one only sees the total power consumption of the
interface. This will simplify our models and reduce the
parameters that are used for the offloading decision.

In the field of energy measurements for mobile devices,
Xiao et al. [36] presented a case study of energy cost for
mobile YouTube (m.youtube.com) on a mobile device (Nokia
S60) using 3G and WLAN networks. Energy cost data is
collected by the Nokia Energy Profile application that itself
runs on the mobile device to measure the current and the
voltage of the device battery. The analysis reveals that 3G
consumes 1.45 times more energy than WLAN. Moreover,
download-and-play consumes more energy than progres-
sive download because the network modules continue to
remain active for a while after the download is finished.

Abogharaf et al. [37] proposed an energy-efficient and
client-centric algorithm based on experimental observations
of data streaming. Their study shows the impact of commu-
nication parameters (i.e., buffer size, low water mark, and
socket-reading size) on the energy consumed during data
streaming. The parameters affect the sleep behavior of the
wireless network interface controller (WNIC). The proposed
algorithm tunes those parameters in an energy efficient way
by utilizing the WNIC during the continuous active mode
(CAM) and maximizing the use of power saving mode.

Albasir et al. [38] measured the energy cost of web
browsing for different contents, and they observed that for
web pages containing advertisements (ads) a smartphone
consumes more energy than the same web pages without
ads. Based on this observation, a client-server algorithm is
proposed that saves energy by managing the web browsing
contents. The server adapts the contents of the web pages
based on smartphone requests, where the requests include
battery-level and type of network connection.

The distinction between our work and the above work is
that we consider the offloading decision in the application
layer by taking into account the impact of lower layers on
the energy consumption. We analyze the lower layer pro-
tocols to build reasonable and realistic models. In addition,
we keep our models extendible to the next generation of
wireless communication systems by developing our models
based on the analysis to the standard of the network layers.
Furthermore, we develop fine-grained mathematical models
first, and then we validate them experimentally. We do
not drive the models from the experiment analysis. In the
experiments, we measure the actual energy using external
measurement equipment to avoid measurement overhead
such as BMU overhead on the device, and to obtain high
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Fig. 1. The system model

precision readings.

3 SYSTEM MODEL

Our system consists of two major parts, smartphones (i.e.,
user equipment, UE) and Cloud Computing (CC), both
linked to the Internet, as depicted in Fig. 1. The smartphones
are connected to the Internet through a WLAN access point
or a cellular data network base station (3G/4G). These
smartphones provide all of mobile computing functional-
ities to the end users via different applications. On the
other hand, the CC part consists of cloud data center and
cloud provider, which are accessible through the Internet.
The cloud provides the end users (e.g., smartphone users)
with all of the CC functionalities that are needed for mobile
computing.

In the offloading technique, smartphones access the
cloud via the Internet. Therefore, offloading is considered as
a Network Related Application (NRA). At the beginning of
studying NRA, network interfaces (i.e., 3G/4G and WLAN)
should be considered because each of these interfaces has
its own characteristics, such as supported data rate. As a
result, each network interface consumes unequal amount
of energy. In addition, the Internet protocols, namely, the
Hypertext Transfer Protocol (HTTP) and the File Transfer
Protocol (FTP) need to be taken into account. The network
interfaces and protocols are the major factors that affect the
energy costs of task offloading.

We present an extensive evaluation of the energy costs
of a set of smartphones with a large number of experiments.
We experimentally evaluate the energy cost on smartphones
when the offloading technique is used over different net-
work interfaces and Internet protocols. We conducted our
experiments in two broad experimental scenarios related to
the location of the task data as depicted in Fig. 2. In Fig. 2(a),
the task data is available on the smartphone itself while in
Fig. 2(b) the task data is available in the cloud. There are four
scenarios related to the location of the task data as follows.
The first scenario corresponds to S1, where there is a local
task execution and the task data exists on the smartphone,
as shown by “Local encoding” arrow in Fig. 2(a). The second
scenario corresponds to S2, where uploading the task data,
doing the task computation (encoding) by the cloud, and
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(a) Encoding scenarios where the task data (Original file) exists
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on the CC

Fig. 2. Task offloading scenarios

downloading the task result is presented by the “Upload
+ CC encoding + Download” arrow in Fig. 2(a). The third
scenario corresponds to S3, where there is a local task
execution and the task data is downloaded from the cloud,
as shown by the “Download + Local encoding” arrow in Fig.
2(b). The fourth scenario corresponds to S4, where the task
data exists in the cloud and the task executed on the cloud,
and the task result is simply downloaded, as presented by
the “CC encoding + Download” arrow in Fig. 2(b).

For uploading and downloading files to and from the
cloud, we consider the energy implications of: (i) using the
HTTP and FTP protocols at the application level; and (ii) us-
ing the 3G and WLAN communications at the wireless inter-
face level. Using Fig. 2(a), we conducted the experiments to
evaluate the energy cost of performing file encoding locally
on a smartphone, and the energy cost of performing the
same operation in the cloud remotely. Similarly, using Fig.
2(b), we conducted the experiments to evaluate the energy
cost of downloading an encoded file, and the energy cost
of downloading the file and performing encoding on the
smartphone. Therefore, we performed the experiments with
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TABLE 2
Our experiment cases

Offloading scenario S1 S2 S3 S4

no networking 1
HTTP - 3G 2 6 10
HTTP - WiFi 3 7 11
FTP - 3G 4 8 12
FTP - WiFi 5 9 13

Local App HTTP FTP HTTP FTP HTTP FTP
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Fig. 3. Total energy consumed in the four scenarios to offload a video
file encoding, where bar labels show the experiment case in Table 2.

13 cases for Fig. 2 as listed in Table 2.
A part of our results is shown in Fig. 3. The results

reveal that the FTP protocol is an energy efficient applica-
tion protocol. Therefore, we consider in this work the FTP
protocol using of both the 3G/4G and WLAN networks.
In the following, we develop mathematical models for the
energy consumed in smartphones. Specifically, we develop
four energy models that give smartphones the ability to
estimate the energy consumed for offloading any given task.
Since the energy cost of task offloading originates from task
data transferring (i.e., uploading and downloading), there
are four cases of task data transferring if we consider the
two types of smartphone networks. For a given task, a
smartphone needs two kinds of information: the network
type to choose the corresponding energy model, and the
amount of task data that would be transferred. By this
information, the smartphone precisely calculates the energy
cost for offloading the given task, and then it can make the
offloading decision based on the calculated cost. Further-
more, we experimentally validate the developed models by
implementing a set of experiments for each model. We set
up our experiments according to our system model and
measure the actual energy consumed by a smartphone.

4 ENERGY MODELS FOR WLAN AND 3G/4G

In the following subsections, we describe the energy models
for WLAN and 3G/4G networks. The models are developed
to estimate the energy consumed in a smartphone.

4.1 WLAN Analytical Energy Model

We consider a single-channel IEEE 802.11g WiFi network.
Following the carrier-sense multiple access with collision
avoidance (CSMA/CA) protocol as described in the IEEE
802.11 standard [39], if a node has a data packet to transmit
and senses the channel to be idle for a period of Distributed

TABLE 3
IEEE 802.11g system parameters

System Parameter Value

MAC Header HMAC 208 bits
TPHY 26µs
TRTS 7.583µ + TPHY

TCTS 5.583µ + TPHY

TACK 5.583µ + TPHY

Slot Time (σ) 9 µs
Short Inter-Frame Space (SIFS) 10 µs
Distributed Inter-Frame Spacing (DIFS) 28 µs
Basic Rate 24 Mbps
Data Rate 6 ≤ Rdata ≤ 54 Mbps
CWmin 32
Backoff stages (mb) 5

InterFrame Spacing (DIFS), the node proceeds by trans-
mitting an RTS packet. If the channel is busy, the node
defers its transmission until an idle DIFS is detected and
waits for a random backoff time in order to avoid collisions.
The backoff time counter is chosen uniformly in the range
[0,Wi - 1], where i ∈ [0, mb], mb is the number of backoff
stages, and Wi is the current contention window (CW ) size
in time slots. A time slot is the unit time in IEEE 802.11. The
contention window at the first transmission of a packet is
set equal to CWmin . After an unsuccessful transmission, the
CW is doubled up to a maximum value

CWmax = 2mb × CWmin (1)

The backoff counter decreases at every slot time when
the channel is sensed idle. The counter is stopped when the
channel is busy and resumed when the channel is sensed
idle again for more than DIFS. A station transmits the RTS
packet when its backoff timer reaches zero. If the destination
station successfully receives the RTS packet, it responds
with a CTS packet after a short inter-frame space (SIFS)
time interval. Upon the reception of the CTS packet, the
sender sends the data packet. The receiver then waits for an
SIFS time interval and transmits an acknowledgment (ACK)
packet. If the ACK packet is not received within a specified
ACK timeout interval, the data packet is assumed to be lost
and a retransmission will be scheduled.

We assume a fixed packet size. The packet transmission
time Ts is given by [40]:

Ts = TRTS + TCTS + 3SIFS + TACK + T +DIFS (2)

and the packet collision time, which is the channel time
wasted in a packet collision, is given by:

Tc = TRTS +DIFS (3)

The symbols TRTS , TCTS and TACK represent the transmis-
sion times for the RTS, CTS, and ACK packets as given in
Table 3 [39], respectively; T is the data packet transmission
time, which is constant for a fixed packet size.

We model the case of a single user in the WiFi network.
Therefore, the probability that a node sends a packet at a
random time slot can be give as [40]:

τ =
2

CWmin + 1
(4)

We assume that the file size is B bytes and each TCP
segment is carried only in one MAC frame. Therefore, the
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total number of MAC frames submitted to the AP by the
node under study is B

Fs
, where Fs is the MAC frame size in

bytes.

In the following, we model the energy usage in two
distinct cases, namely, file upload and file download. For
simplicity, we assume that the mobile device transceiver
uses only two power levels, namely, PRX when it is idle, in
backoff mode, or receiving and PTX when it is transmitting.

4.1.1 File Download Case

In this case, the mobile device is mostly receiving. Here,
we address first the general situation where there is no
limitation on the file download rate from the cloud. Next,
we address the situation where the cloud restricts the file
download rate. For every MAC frame to be received, the
mobile device has to send a CTS and an ACK frame. The mo-
bile device has to send a TCP ACK for every received TCP
segment. During downloading a file, a smartphone will be
receiving a data frame for a time T+3SIFS+TPHY +TRTS

and it has to wait for the AP backoff time σ
τ [40]. The

smartphone also receives an acknowledgment for the TCP
ACK it sends to the AP after receiving a data frame of the
file being downloaded. On the other hand, the smartphone
sends a TCP ACK using the basic access method (i.e., only
DATA-ACK) so it has to wait for an average backoff time of
σ
τ [40]. It also has to send a MAC ACK and a CTS frame for
each data frame it receives from the AP. Therefore, the total
energy consumed in a file download can be obtained as

Ed =

⌈

B

Fs

⌉

× (5)







(

TRTS + TACK + 3SIFS+
TPHY + T + TH

)

PRX+

(TACK + TCTS)PTX







+NdACK
(TH + TPHY + TTACK)PTX +

σ

τ
PRX

where the TCP acknowledgment transmission time
TTACK = ACKTCP

Rdata
and NdACK

is the number of TCP
acknowledgments received by the smartphone in the down-
load case, which is given as

NdACK
=

⌈

B

Ndseg
Fs

⌉

(6)

where T = Lmax

Rdata
, the transmission time for the MAC header

TH = HMAC

Rdata
, and Ndseg

is the number of TCP segments
that can be sent without receiving an acknowledgment in
the download case.

In fact, Eq. (5) estimates the consumed energy in down-
loading a file when the server hosting the file has no
limitation on the download data rate. If there is a limitation
on the download rate, there will be some idle time the
mobile terminal will experience between downloading a
TCP segment and the subsequent segment. This case can
be taken into account by adding the term Dns to Eq. (5) as
follows:

Edns
=

⌈

B

Fs

⌉

× (7)















(

σ
τ + TRTS + TACK+

3SIFS + TPHY + T + TH

)

PRX+

(TACK + TCTS)PTX















+NdACK

(σ

τ
+ TH + TPHY + TTACK

)

PTX

+Dns

where Rs is the server download rate and

Dns =







































⌈

B
Fs

⌉

×












Lmax

Rs
− σ

τ − TRTS−

TACK − 3SIFS−
TPHY − T − TH



−

(TACK + TCTS)









−

(

1

Ndseg
(στ + TPHY + TH + TACK)

)







































PRX

The term Dns takes into account the amount of energy
consumed by the smartphone while in idle state within the
inter-arrival time (Lmax

Rs
) of two consecutive TCP segments.

4.1.2 File Upload Case

Similar to the download case, we address first the general
situation where there is no limitation on the upload rate
to the cloud. Next, we address the situation where the
cloud restricts the file upload rate. In the upload case, we
take into account that the smartphone receives a TCP ACK
for every frame of the uploaded file so it has to wait for
the backoff time σ

τ that the AP takes to transmit the TCP
ACK in addition to the TCP ACK transmission time. The
smartphone also has to send a MAC ACK for each TCP
ACK. For every frame the smartphone transmits, it receives
a CTS, an ACK, and waits for 3TSIFS and an average
backoff time of σ

τ . In addition to sending the data frame,
the smartphone sends an RTS for every data frame of the
uploaded file. Therefore, the total energy used for uploading
a file can be given as

Eu =

⌈

B

Fs

⌉

× (8)

{ (

σ
τ + TCTS + TACK + 3SIFS

)

PRX+
(TRTS + TH + TPHY + T + TACK)PTX

}

+NuACK

(σ

τ
+ TTACK + TH + TPHY

)

PRX

where NuACK
is the number of TCP acknowledgments

received by the smartphone in the upload case, which is
given as

NuACK
=

⌈

B

Nuseg
Fs

⌉

(9)

where Nuseg
is the number of TCP segments that can be sent

without an acknowledgment in the upload case.
Similar to the download case, if there is a limitation on

the file upload rate, there will be some idle time the mobile
terminal will experience between uploading a TCP segment
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of the file and the subsequent segment. This case can be
taken into account by adding the term Uns to Eq. (8) as in
the following.

Euns
=

⌈

B

Fs

⌉

× (10)







(

σ
τ + TCTS + TACK + 3SIFS

)

PRX+
(TRTS + TH + TPHY + T + TACK)PTX







+NuACK

(σ

τ
+ TTACK + TH + TPHY

)

PRX

+Uns

where

Uns =







































⌈

B
Fs

⌉

×








[

Lmax

Rs
− σ

τ − TCTS−

TACK − 3SIFS

]

−
(

TRTS + TH + TPHY +
T + TACK

)









−

(

1

Ndseg
(στ + TPHY + TH + TTACK)

)







































PRX

The term Uns takes into account the amount of energy
consumed by the smartphone while in idle state during
the time (Lmax

Rs
) between uploading two consecutive TCP

segments of the file under consideration.

4.2 Mobile Data Analytical Energy Model

In this subsection, we present our models of energy con-
sumption of a smartphone connected to mobile data net-
works. Specifically, we develop our models for 3G and 4G
mobile networks.

4.2.1 Background

The 3G and 4G networks contain a Radio Resource Con-
troller (RRC), which manages all communication between
the user devices (i.e., user equipment, UE) and provider
networks. The aim of RRC is to provide high performance
mobile connectivity by reducing signaling latency and UE
power consumption, and enhance the network throughput.
From here, the RRC has direct impact on the power con-
sumption of the smartphone. Always-on keeps the latency
low, but drains the UE battery quickly. In contrast to always-
connected, only connected for data exchange minimizes the
power consumption, but increases link setup signaling and
consequently increases the network latency. The trade-off
between these two cases is served by the RRC in which the
radio resources take a specific status based on some con-
ditions to change between these statuses. The mechanism
of RRC and specifications are implemented and described
in the 3GPP standards. In general, the RRC defines two
major states for the radio connection, which are RRC IDLE
and RRC CONNECTED. In the RRC IDLE state, the ra-
dio is in a low-power state and there is radio resources
are assigned to the UE. In this case, the UE tunes to the
shared control channel where it listens to control traffic. In
the RRC CONNECTED state, the radio is in a high-power
state and a data connection is established where dedicated
radio resources are allocated to the UE. The transition to

CELL_DCH

CELL_FACH

CELL_PCH/

CELL_URA

IDLE

High Power

tDCH-FA

Low Power

tFA-PCH

Activity

detected

tPCH-idle

RLCbuffer >

RLCthreshold

Periodically

(a) 3G RRC status

Active

Short

DRX/DTX

Long

DRX/DTX

IDLE

High Power

tActive-short

Low Power

tshort-long

Activity

detected

tPCH-idle

(b) 4G RRC status

Fig. 4. 3G and 4G RRC status

RRC CONNECTED only occurs when the UE hears from
the network broadcast that there is data to be received or
the local buffer of transmission exceeded its threshold. At
that time, the UE initiates a connection by sending connec-
tion request to the network through promotion signaling
procedure [41]

In the 3G networks, the RRC CONNECTED state is
divided into two sub-states for further improvement, as
depicted in Fig. 4(a). The CELL DCH state is the state
where a device is in a high-power state and network re-
sources are assigned for data transfer. The CELL FACH is
an intermediate power state, where no dedicated network
resources are assigned but a shared low-speed channel. At
CELL FACH, a device consumes significantly less power
than at CELL DCH. The buffer thresholds and the RRC
timer govern the transitions among these states. If the buffer
state is not changed, the UE does not change the power state
to lower power state until the timer has expired. The timer
keeps the interface active, where it is waiting for possible
next network activity, to reduce the signaling. However, if
no activity coming, it switches to the lower power state.
In fact, the UE wastes some UE energy called tail energy
because of this timer.

Similarly, the RRC CONNECTED is divided into three
sub-states in the 4G networks as shown in Fig. 4(b). The
Active state is similar to the CELL DCH in the 3G. Similar
to the CELL FACH in the 3G, for better RRC performance
the 4G networks use further sub-states called Short Dis-
continuous Reception (Short DRX) and Long Discontinuous
Reception (Long DRX) in the downlink, and Discontinuous
Transmission (DTX) and Long Discontinuous Transmission
(Long DTX) in the uplink.

4.2.2 Energy Models for the 3G/4G

Based on the operation of the RRC states described above,
the total energy consumed to transfer data consists of three
parts: promotion signaling, data transfer, and tail energy
[33], [34]. Figure 6 shows an example of these three parts in
case of downloading data over a 3G network.Therefore, the
general energy consumption model follows the following
equation:

E3G/4G = Eps + Etrx + Etail (11)

where Eps, Etrx, and Etail are the energy consumed on pro-
motion signaling, data transfer, and tail timer, respectively.
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The energy consumed for a given task equals the power
multiplied by the duration that the smartphone takes to
finish the task, which is expressed as E = P × T . Then,
Eq. (11) becomes

E3G/4G = Pps × Tps + Ptrx × Ttrx + Ptail × Ttail (12)

As we discussed before that Tps and Ttail are determin-
istic for each mobile operator, Eps and Etail will be con-
stant for each given smartphone and mobile data provider.
Therefore, these two terms are calculated independently and
added to the data energy consumption. This addition is
valid under the assumption that each data transfer estab-
lishes and uses only one connection at a time. Another as-
sumption can be that signaling was already established for
second data transfer and there is another data transferring
takes place. The addition can be determined based on the
current status of the network interface. To simplify these
assumptions, the promotion signaling term is added if the
interface is idle otherwise it is not. The addition of the tail
energy needs further studies in what follows.

The term Ptrx × Ttrx represents the total energy con-
sumed for transfer the data, where Ptrx is the power level
of the mobile device adjusted by the Radio Link Control
(RLC), and Ttrx is the total time required to transfer the
data over the network interface. As we discussed early, Ptrx

is constant for transferring any amount of data but the time
Ttrx depends on the amount of data (F) and the achieved
data rate (Rtrx) for the given network interface as expressed
in the following equation:

Ttrx =
F

Rtrx
. (13)

It is well known that wireless networks suffer from lim-
ited resources (e.g., spectrum scarcity), high error rate, and
higher delay compared to wired networks. Therefore, recent
wireless networks target to increase spectrum utilization
and reduce the delay as well [42]. Due to these limitations,
especially high error rate, the TCP protocol experiences
degradation of its performance. However, in the 3G and 4G
mobile networks, new protocols called Automatic Repeat re-
Quest (ARQ) and Hybrid-ARQ are implemented into lower
layers to recover from errors. As a result, performance of
TCP is improved since it is almost isolated form wireless
channel effect. Nevertheless, TCP is still limited in some
cases by the delay occurring in the wireless networks be-
cause TCP is end-to-end control protocol.

Based on the discussed characteristics of the wireless
networks and TCP protocol, we can express the achieved
data rate as

Rtrx = min{RTCP , R3G/4G}, (14)

where RTCP and R3G/4G are the limits of the rate due
to TCP performance and the scheduler of the wireless
networks, respectively. We believe that this expression is
practical and simplifies the complex mathematical model
developed in [43].

The rate of TCP is defined by the effective TCP Conges-
tion Window (CWD), and the Round-Trip Time (RTT ) as
expressed in the following equation:

RTCP =
CWD

RTT
. (15)

The rate R3G/4G is the rate achieved at the TCP layer,
which is limited by the rate of the lower layers (i.e., PDCP ,
MAC, PHY ). In 3G/4G networks, the rate is adaptive
to the channel condition to maximize spectrum utilization.
The adaptation is implemented for each Transmission Time
Interval (TTI). In the adaptation process, different Modu-
lation and Coding Schemes (MCS) are used, taking into
account the Received Signal Strength (RSS) and Signal to
Noise ratio (SIN ). The receiver reports to the transmitter
the current channel condition using Channel Quality Index
(CQI), which is calculated using RSS and SIN . Then,
the transmitter selects the MCS according to the mapping
from the reported CQI and the user-equipment category to
MCS. This mapping is out of the focus of this work. We
use in our calculation the achieved data rate (R3G/4G) at the
TCP layer.

In the TCP protocol, part of the congestion control is
the slow-start at the beginning of the connection from
Initial Window size (IWD) until it reaches CWD. As we
discussed earlier, the power level does not depend on the
data rate. Therefore, the mobile device will consume the
same power during the TCP slow-start as the power at high
rate, as depicted in Fig. 6. Hence, Equation (13) becomes

Ttrx = Tss +
F − Fss

Rtrx
(16)

where Tss is the time for the slow-start to reach CWD, and
Fss is the amount of data transferred during the slow-start
stage. Their values can be calculated using the following
equations:

Tss = RTT × logγ(CWD/IWD), (17)

Fss = TCPsegment size × logγ(CWD/IWD), (18)

where γ is the exponential growth of the window size,
usually it takes a value of 2.

5 EXPERIMENTAL VALIDATION

In this section, we set up and conduct a set of experiments to
validate the energy models. We measure the actual energy
consumed in five different smartphones in real circum-
stances and a real cloud.

5.1 Methodology

We set up our experiments as depicted in Fig. 5. In this
setup, we use five different types of smartphones: HTC
Nexus One, LG Nexus 4, Samsung Galaxy S3, BlackBerry
Z10, and Samsung Galaxy Note 3. These smartphones can
access WLAN, 3G, or 4G networks. With these networks,
the smartphones upload and download files to and from
the cloud. The power supply can simultaneously power the
smartphone and record the power consumption. The power
readings during the experiments are recorded on a laptop
designated for this purpose.

The total energy consumed in a smartphone for a com-
munication task is the sum of the energy consumed by
several system parts as given in the following equation:

Etotal = EWNI + EOS , (19)

where Etotal is the total energy consumed for a communica-
tion task, EWNI and EOS are the energy consumed by the
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Fig. 5. Experiments setup

0 10 20 30 40 50 60
0

500

1000

1500

Time (seconds)

Po
we

r c
on

su
m

pt
io

n 
(m

W
)

 

 

0 10 20 30 40 50 60
0

1

2

3
x 10

5

Da
ta

 ra
te

 (B
/s

)

Power
Data rate

FACH 
timeout

Tail 
energy

DCH timeout

DCH 

FACH

idle

signalling

TCP slow-start

Fig. 6. Example for power and TCP status

wireless network interface (WNI) while transferring data,
and by the operating system (OS), respectively.

Our models are developed to calculate the energy con-
sumed for data transfer as represented by EWNI . The aim of
our experiments is to validate our energy models. However,
in our experiments, the overhead energy consumed by the
operating system is unavoidable. The EOS term is deter-
mined experimentally, and consequently, we distinguish the
energy consumed for transferring data from the total mea-
sured energy during the communication. Figure 6 shows
the real time power consumption of a smartphone when the
system is idle (low power consumption) and when a data
block is transferred (the high power consumption). Hence,
to compare our model with the experimental measurements,
we need to add the energy consumed by the operating sys-
tem to the models. Throughout this section, the comparison
between experimental results and models is presented with
respect to the energy consumed in the wireless interface.

For these experiments, we choose a 10 Megabytes (MB)
file to represent average multimedia files. We use the same
file for all of the experiments to keep the results consistent.
Figure 7 shows a comparison between the cumulative en-
ergy consumption of a smartphone obtained from experi-
ments (total) and the total energy calculated by our models
(Model). Figure 7 also shows the energy consumed by the
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Fig. 7. Total energy consumption for file downloading over WLAN

operating system (EOS ) after we separated it from the total
energy experimentally, and the energy consumed by WNI
(EWNI ) after we calculated it using Eq. (7). The results
reveal that our energy estimation model is very accurate
as shown in Fig. 7. This figure shows the energy consumed
in system parts to demonstrate our methodology for our
experiments. Hereafter, we only show the total energy ob-
tained by the experiments for the wireless interface and by
the mathematical models.

As the Internet traffic is bursty, bursts keep the wireless
interface in the inactive mode, or in the idle mode (i.e.,
power saving mode) if the waiting time for a traffic exceeds
a threshold amount [32]. To accurately measure the energy
consumed during traffic exchange, bursts traffic is avoided.
One way to tackle this problem is to limit the traffic rate at
the server. For this purpose, we conduct set experiments on
bursty traffic and non-bursty traffic, and then we compare
their TCP traces, as shown in Fig. 8. This figure depicts
the TCP trace, where packet arrival time is shown on the
x-axis and the amount of transferred packets on the y-
axis. The Bursty-Traffic line represents the flow of a bursty
traffic. We notice that most of the packets arrive at relatively
short time, which is called bursts, and few packets arrive
on much longer time, which causes the interface to use
power saving mode. Moreover, we notice that the time
between receiving bulk of packets is random. This obser-
vation explains why the bursty traffic leads to inaccurate
energy estimation, because it keeps the wireless interface
idle for random amount of time. To reduce the impact of
bursty traffic on energy consumption, we make sure there
is no idle period during the network activities when we
measure the energy consumption. We obtain this by running
a set of download and upload tests and monitor the burst
of the traffic using network analysis software “Wireshark.”
The resulting traffic is smooth as shown using the network
analysis software, by the Smooth-Traffic line in Fig. 8. This
line shows that packets arrival is uniformly distributed over
the transfer time, where there is no idle time for the wireless
interface. This leads to accurate energy measurement for
data transferring. For a more detailed examination of the
impact of traffic burstiness, see [44].

In our experiments, we perform more than 30 sets
of experiments involving file downloading and uploading
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TABLE 4
Average power consumption (mW )

Smartphone
Network Activity UE1 UE2 UE3 UE4 UE5

WLAN
Download 485 580 670 1010 1044

Upload 830 780 850 1140 1280

3G
Download 730 700 1080 950 730

Upload 750 711 1125 1025 750

4G
Download NA NA 1100 965 1250

Upload NA NA 1130 1220 2300

UE1: HTC Nexus One, UE2: LG Nexus 4, UE3: Samsung Galaxy
S3, UE4: BlackBerry Z10, and UE5: Samsung Galaxy Note 3

over a WLAN network, and again for file downloading
and uploading over 3G and 4G networks. Each set of
experiments is repeated between three to five times. The
results of our experiments reveal that all tested devices have
the same behavior of energy consumption during network
activities. We obtain consistent results among the devices,
which emphasizes that our models are device independent
and applicable to a wide range of devices. The only differ-
ence is the amount of power consumption, as summarized
in Table 4. Since all devices behave similarly, we present
an extensive statistics of the experimental results only for
the most modern device that we have at the time of our
experiments, namely, Samsung Galaxy Note 3. Moreover, we
will not present the statistics of the results for all tested
devices due to limited space. On the other hand, all devices
achieve similar TCP throughput, which we show in this
section.

5.2 File transfer over WLAN networks

We conduct our experiments for real circumstances and we
confirm some parameters from our experiment settings. Ta-
ble 5 lists the values that we obtained from the experiments
for the parameters used in Eq. (1) to Eq. (10) and not listed
in Table 3.

In the first set of experiments, we measure the total
energy consumed by the smartphone during downloading
a large file (10MB) over a WLAN network to validate
our energy estimation model in Eq. (7). Figure 9 shows a
comparison between real time experimental measurements

TABLE 5
Parameters obtained from the experiments

Parameter Value

B 25MB

Rdata 54 Mbps

Lmax 1448 Bytes

Fs 1448 Bytes

Ndseg 3

Nuseg 8

ACKTCP 32Bytes
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Fig. 9. Comparison between experiment measurements and WLAN
energy estimation model in the download case

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Transferred file size (MB)

C
om

ul
at

iv
e 

en
er

gy
 c

on
su

m
pt

io
n 

(J
ou

le
)

 

 
Upload
Download

Fig. 10. Energy consumption for WLAN versus file size

and our energy estimation model for downloading a file
over a WLAN network.

The cumulative energy is the sum of consumed energy
for a task from the beginning of the task to a given time.
However, the cumulative energy consumed during down-
loading a file is actually, what is drained out of the smart-
phone battery. For that, we compare the cumulative energy
obtained from our experiments and our energy estimation
models that we developed in Eq. (7) for the download case.
Figure 10 shows the cumulative energy obtained from our
model. The small vertical bars represent the 95% confident
interval of the experimental results around the models.

In the second set of experiments, we conducted similar
experiments, but for file uploading to validate Eq. (10).
Figure 10 shows a comparison between the cumulative en-
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TABLE 6
RRC parameter values

Parameter Value

3G

tsignalling ≃ 1 s
tDCH−FACH 6.3 s
tFACH−PCH 3.7 s
Eps 0.56 J
Etail 6.61 J

4G

tsignalling ≃ 1 s
tActive−ShortDRX 2.5 s
tShortDRX−LongDRX 10.5 s
Eps 0.45 J
Etail download 7.1 J
Etail upload 9.31 J
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Fig. 11. RTT statistics

ergy measure in the experiments and the cumulative energy
calculated from our model for file uploading case.

5.3 File transfer over 3G and 4G Networks

We conducted a set experiments to validate the energy
estimation model for 3G and 4G networks introduced in
Eq. (11) for file transfer. We used Wireshark to determine
experimentally the value of TCP throughput, RTT, IWD,
CWD, and RCC timers. Table 6 lists the parameters of RRC
that we obtained experimentally.

Figures 11, 12, and 13 show the experimental statistics
of RTT, TCP throughput, and power consumption, respec-
tively. In Fig. 11, we notice that the values of RTT in
the upload cases are much higher than the values in the
download cases. Therefore, the data rate in the uploading
cases is limited by the TCP rate due to high RTT. In contrast,
the data rate is limited by the network rate in the download
cases.
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Figures 14 and 15 show the energy consumed for trans-
ferring different amount of data using 3G and 4G networks,
respectively. The solid lines show the energy calculated
using our proposed models, where the bars represent the
amount of energy that the experimental results deviate from
the models with 95% confidence interval.

The standards of 4G networks adopted multiple-input
and multiple-output (MIMO) to be used whenever a UE
has the MIMO capability to enhance the performance of
the wireless links. For this reason, we examined the MIMO
capability on all of our devices and found that only UE5
has this capability. In the case of using 4G networks, Fig.
15 depicts a comparison between the cumulative energy
consumption for UE5 with MIMO capability and UE3 with-
out the MIMO capability, which is called single-input and
single-output (SISO).

5.4 Offloading case study

In this subsection, we examine the energy estimation models
in case of task offloading. As a case study, we consider
the second scenario (S2) because it involves file uploading
and downloading. Therefore, we have this scenario as a
benchmark of our models to show their accuracy. Robust
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estimation of this scenario leads to make reasonable offload-
ing decisions; especially, decide between scenario S1 and
scenario S2.

The estimated energy is computed by only knowing the
transferred file size (B) using Eq. (7), Eq. (10), and Eq. (11).
Based on the models, we study scenario S2 for offloading
a task, which encodes a video from one video format to
another. This scenario involves uploading a 23.97MB video
clip in flv video format, doing the encoding in the cloud from
flv to mp4 video format, and then downloading a 8.21MB
video clip in mp4 format. The details of encoding the video
files are presented in [19]. Since the size of the transferred
files is known, we can use our energy estimation models to
calculate the energy cost on a smartphone that is consumed
to perform the encoding offloading.

Figure 16 shows a comparison between experimental re-
sults and estimation models for WiFi and 3G networks. This
figure presents the total amount of energy consumed during
23.97MB file uploading, 8.21MB file downloading, and
total task offloading. Note that the offloading involves both
the uploading and downloading activities. As a result, the
total energy consumed in offloading is the sum of the energy
consumed in both of uploading and downloading activities.
These results indicate that our models accurately estimate
the energy required for complete a task offloading. In ad-
dition, the results emphasize that our models realistically
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Fig. 16. Total energy consumption for an offloading case study

estimate the energy consumed in the smartphone, which
can reach a correct offloading decision.

5.5 Discussion

We limit the WLAN models to the IEEE 802.11g standard but
we are able to model for IEEE 802.11n standard in the same
approach and analysis we used for IEEE 802.11g. However,
one of the main features in IEEE 802.11n is the Multi-input
and Multi-output (MIMO) diversity that are missing in all
of current smartphones. They are only feature by single
WLAN antenna, which degrades the system to work as IEEE
802.11g. We have experimentally approved this at the early
stage of our work. For that reason, we defer our work on
IEEE 802.11n to the future work. In contrast, we consider
the case of MIMO in the 4G modeling since the 4G interface
is featured with multi-antenna (e.g., Samsung Galaxy Note
3 has two 4G antennas).

We would like to mention that the issue of burst traf-
fic is only for the WLAN networking. In the 3G and 4G
networking, there is no burstiness experienced due to the
protocols of these networks that assign a dedicated data
channel for each device during data transferring. We de-
veloped our models to estimate the energy consumption
for file transferring. Therefore, it is intuitively that our
modeling was developed to compute the energy per bytes.
Regardless of the shape of the traffic, our models predict the
energy consumed for any given transferred data. However,
we use smooth traffic just for the case of WLAN and just
for experimental purpose. As we elaborated, we smooth
the traffic to avoid the impact of the power saving mode,
which could occur in the time between the bursts. Moreover,
the time between the bursts is random and modeling the
randomness of this time is out the scope of our work. Xiao
et al. [32] discuss this issue and show the impact of the burst
traffic.

The accuracy of our WLAN models does not affected by
the parameters listed in Table 3 because they are constant for
that standard. In contrast, the parameters shown in Table 5
affect the accuracy of the models if they are not obtained
correctly. For instance, the reduction on the data rate Rdata,
or the payload size Lmax will increase the transmission
time for the control and data packets; and consequently,
increase the energy consumption. On the other hand, the
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impact of Ndseg
and Nuseg

on the accuracy of the models
is relatively small because these parameters only affect the
energy consumed of the TCP packet acknowledgments.

6 CONCLUSIONS

Extending the capabilities of smartphones is possible by task
offloading to the cloud. However, estimating the energy con-
sumed in task offloading is crucial to making task offloading
beneficial, which happens only when the energy consumed
in the offloading process is less than the energy consumed
without it. Therefore, the major challenge in task offload-
ing is to estimate accurately the energy consumed during
the network activities of task offloading. In this work, we
developed mathematical models to estimate this energy
consumption. We considered the details of the network
stack from lower networking layers up to high layers. The
proposed energy models of WLAN, 3G, and 4G interfaces
allow smartphones to make correct offloading decisions.
Moreover, our models not only help for task offloading
but also opens new door for energy solutions that require
predicting the energy consumption. We experimentally val-
idated those models by conducting a set of experiments on
a set of smartphones and measuring the energy consumed
during task offloading. The experimental results reveal that
our energy estimation models can estimate energy cost
with sufficient accuracy. The models just need to know the
amount of transferred data and some system parameters,
and they can provide good estimations of energy cost.

In this work, the energy estimation models for WLAN
networks are developed based on the IEEE 802.11g standard.
Moreover, the energy estimation models for the cellular net-
works are developed based on the 3G HSDPA and 4G LTE
standard. In the future, we would extend our mathematical
models to recent WLANs and broadband networks, such as
IEEE 802.11n and 802.11ac networks. Moreover, we would
consider the impact of the number of WLAN network users
on the energy consumption.
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