
hymnMark: Towards Efficient Digital Watermarking on Android
Smartphones

Nai Miao*, Yutao He**, Jane Dong*

*Department of Electrical and Computer Engineering
California State University, Los Angeles

5151 State University Drive, Los Angeles, CA 90032 USA
**Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive, Pasadena, California 91109
miaonai1229@gmail.com,Yutao.He@jpl.nasa.gov,jdong2@calstatela.edu

ABSTRACT

Fast growth in ubiquitous use of digital-camera-equipped
smartphones in our daily life has generated large amount of
multimedia data such as images, audio, and video clips that
need to be processed, stored, and transmitted on battery-
powered mobile devices. Yet little research has been done to
protect those multimedia data on smartphone platforms.
This paper presents design and implementation of an
efficient digital watermarking application, called
hymnMark, to perform watermark embedding and detection
for digital images on the Android platform. Preliminary
evaluation shows that hymnMark can successfully embed in
color images different types of watermarks with good
resistance to noise as well as a number of digital signal
processing attacks, in the meantime entail low power
consumption.

Keywords: Digital Watermarking, Power efficiency,
Smartphone, Android, Discrete Cosine Transform.

1. INTRODUCTION

With the widespread of mobile networks, smartphone
applications become more and more popular in recent years.
The high mobility of the smartphones makes them ideal end
platforms for multimedia applications such as web video,
image browsing, photo sharing, etc. Since these digital
media are highly subject to attacks including content
modification, it is critical to better protect data integrity.

Digital watermarking is an effective technology to achieve
authentication, copyright protection, and integrity of
multimedia data and has been extensively studied in the past
decades [1]. However, digital watermarking algorithms are
computation-intensive and power hungry. How to develop
an efficient digital watermarking application on resource-
constrained mobile devices like smartphones requires a
decent balance between performance and power
consumption yet it has received little research attention. The
research described in this paper aims to tackle the problem
by developing a robust and power-efficient digital
watermarking application targeted to smartphone platforms.

In our research, first, characteristics of wide range of digital
watermarking algorithms have been investigated in the
context of the energy-constrained Android smartphone
platform. As a result of the study this set has been down-
selected to one algorithm with optimal power efficiency for
smartphone platforms. Second, the selected algorithm has
been further optimized to reduce the computation cost with
respect to Android computing environment. As a proof-of-
concept, it is then implemented in an Android app called
hymnMark. It features a user-friendly GUI to allow easy
watermark generation, embedding and detection in Android-
powered smartphones. Third, comprehensive empirical
evaluation has been conducted to measure the algorithm’s
performance (i.e., robustness against various attacks) and
power consumption.

In summary, our research makes the following main
contributions:
1. We have developed the first Android app that performs

digital watermarking completely on the smartphone.
Our research has shown that effectiveness of a digital
watermark algorithm for smartphones not only depends
on its performance but also its power efficiency, since it
will limit its sustained performance to protecting
multimedia data.

2. We have identified a set of practical optimization
techniques that proves to be effective in the smartphone
environment. We believe that they can be applied to
other digital watermarking applications on
smartphones.

3. We have developed a micro-level instrumentation
methodology that allows measurement of power
consumptions inside one application. It enables fine-
grained power profiling which in turns helps pinpoint
the hotspot of one application for further optimization.

The rest of the paper is organized as below. Section 2
describes the related work. Section 3 provides an overview
of digital watermarking technologies and the hardware
configuration of Android environment. Section 4 presents in
details the design of the hymnMark system. Complete

evaluation and results are given in Section 5, followed by
conclusions and future in Section 6.

2. RELATED WORK

The computation complexity of watermarking algorithms
varies significantly with different embedding approaches.
However, to achieve good resistance to noise, compression
and other signal processing attacks, a common practice is to
embed the watermark in the transform domain [1]. Some
robust watermarking approaches also require spread
spectrum analysis. Hence, the computational cost can be
fairly high, which will also lead to high power consumption.
Among the existing efforts of developing good
watermarking system on low power devices, Arun Kejariwal
at el made valuable contributions via evaluating a number of
existing watermarking approaches in embedded
environment. Their research provided a good perspective of
the power consumption of various watermarking algorithms
[2]. According to their experimental results, the Koch and
Bruyn approach has the lowest power consumption and
shortest execution time, especially for host images with high
resolutions.

Takao Nakamura [3] described a fast and robust
watermarking detection scheme on cellular phones.
However, it only worked with 16-bit watermark and images
with resolution 288*352. In 2011, J. Jeedella and H. Al-
Ahmad [4] at Khalifa University of Science, Technology &
Research proposed an algorithm for watermarking mobile
phone color images using BCH code. This algorithm
demonstrated good robust level through benchmark tests for
attacks and the watermarked image had high PSNR.
However, this method required the watermark to be in the
format of numbers. Particularly, the implemented algorithm
utilized cell-phone numbers as the watermark.

It is worthwhile to mention two available applications on
Android platform for watermark detection, namely Digital
Space [5] and Digimarc Discover [6]. These two
applications are very similar and allow the user to hold the
camera mounted on the smart-phone about 5-7” away from
the image until cell-phone “bee” to finish the detection.
After “Bee”, the application will tell the user whether there
is a watermark in the image. Users of these applications
need to register online, embed watermarks into images, and
save them in their accounts. Only watermark detection on
the registered images is performed on a smart-phone.

3. BACKGROUND INFORMATION

3.1 Overview of Digital Watermarking
Digital watermarking is the process of embedding
information into a digital signal, like audio, image, and
video, which can be detected for authentication and
identification. The embedded watermark can be number,

characters, image, or any other identification information
[1].

Digital watermarking systems can be categorized into
different types. In terms of perceptibility, there are visible
and imperceptible digital watermark. Since invisible
watermarks are typically used for authentication and data
integration, we only consider this type of watermarks in our
research. In terms of robustness, there are three types of
digital watermark, namely robust, semi-fragile, and fragile
watermark. Robust watermark are widely used for copyright
protection, while the other two are used for data integrity
and authentication. Specifically, due to its ability to detect
attacks as well as its good resistance to channel noise and
compression, semi-fragile watermark has become a
desirable approach for authentication.

The embedding process of digital watermark also varies a
lot. In general, the watermark can be embedded in spatial
domain, transform domain, or both. Embedding approaches
involving transform domain analysis usually provide better
resistance against compression. DCT (discrete cosine
transformation) DWT (discrete wavelet transformation) are
two widely used transformations in watermark embedding.
Both have their own advantages and disadvantages. Since
DCT is used in compression standards such as JPEG and
MPEG, DCT domain embedding offers significant
convenience for JPEG images, while the multi-resolution
nature of DWT offers good means for spread-spectrum
analysis and thus enhance the robustness of the embedded
watermark, or provides support to localize the regions being
attacked.

3.2 Smart-phone configuration requirements and
constraints
To design a digital watermarking application on an Android
smart-phone platform, it is important to take into accounts
its hardware constraints. Table 1 lists features of three
different Android smart-phones. Specifically, the screen
resolution, the processor power, the memory size and the
power efficiency are critical in a design. Ideally, a
developed watermarking system on an Android platform
should be fast and responsive, power efficient, uses less
memory space, and provides seamless user experience to
achieve the target security functions. To meet the above
design goal, an appropriate watermarking algorithm needs to
be selected that for implementation under hardware
constraints listed in Table 1 [7].

4. DESIGN OF HYMNMARK

4.1 Watermarking algorithm selection
The first step of our research is to study existing
watermarking algorithms and identify suitable algorithms
with good performance-computation balance that can be
implemented in low power devices. In comparison with
characteristics of a number of algorithms, Koch’s algorithm
[8] has been selected as the baseline algorithms, due to its

lowest power consumption, shortest execution time, and
greater robustness against common attacks.

The embedding process of Koch’s algorithm can be
described briefly as follows: First, DCT transformation is
applied to the entire image. The next step is to generate
position sequence that maps the watermark bit to the pixel
locations. Next, Randomly Sequenced Pulse Position
Modulated Code (RSPPMC) [8] will be embedded into the
locations in image blocks that are selected in the first two
steps. Lastly, inverse DCT and de-quantization is applied to
the embedded blocks. Among all the steps, the largest
computation power is spent in the RSPPMC embedding
part.

There are some limitations of Koch’s algorithm. First, it is
non-blind watermark algorithm, that is, watermark cannot
be detected without side information. In particular, detection

process of Koch’s algorithm needs a key file to indicate the
location sequence and watermark length in order to detect
watermark. Secondly, Koch’s algorithm does not support
multi-resolution images because of nature of the DCT
transformation. Thirdly, the watermark length is also
limited. Since only one bit is embedded into one 8*8 block
of an image, the watermark length is bounded by the
number of 8x8 blocks in a host image. As a result,
modifications are required to further improve its
performance. To the best of our knowledge, our work is the
first effort to implement and test Koch’s algorithm in
Android platform. Therefore, design and implementation of
the proposed watermarking application together with the
evaluation results will provide useful insights and guidelines
for future research in the area.

Table.1 Three Typical Smart-phone Hardware Configurations

4.2 hymnMark Architecture
The hymnMark conceptual flow-chart is shown in Figure.2.
In the top level hymnMark includes two processes:
watermark embedding and detection. The embedding
process includes four major functions: 1) import image; 2)
select watermark; 3) RSPPMC embedding; and 4)
save/export watermarked image. In our current
implementation, host images can only be imported from

local memory. A watermarked image can be saved to a file
on the SDCard of a smart-phone. The detection process
includes four essential functions: 1) import image; 2) import
a key file; 3) watermark detection; 4) display the retrieved
watermark.

4.3 Implementation

4.3.1 Overview

hymnMark is implemented as an app on Android operating
system using JAVA with Android Plug-In. It has been tested
on a real Android Phone NEXUS One with Android system
2.3.3. Its detailed configuration is: Android SDK 2.2,
Eclipse jdk-6u24-linux-x64, eclipse-jee-helios-SR2-linux-
gtk-x86_64, and Ubuntu 10.10 Linux.

4.3.2 GUI Front-End
hymnMark features a GUI-based front-end. It uses the
popular MVC (Model-View-Control) framework for GUI
applications. In this framework, user interface and the
models, which are usually called “classes” in Java, are
separately designed to cooperate with each other through
controllers. Generally, an “XML” layout is a view
interacting with users; a “Java” class is a model that will be
called by a controller when needed; an “activity” is a “View
and Controller”, so as a “View”, it corresponds with an
XML-layout as a “controller”.

4.3.3 Digital Watermark Kernel
Details of the watermark embedding and detection processes
of Koch’s algorithm are described as follows.

4.3.3.1 Embedding Process:
The embedding process takes three inputs, namely Host
image, selected Watermark, and JPEG Quality factor, and
produced the watermarked image. After the host image is
loaded, color space transformation will be applied such that
the image will be represented in YUV color space instead of
RGB. In hymnMark, the digital watermark is only
embedded in Y component for a true color host image.

After color space transform, block-based DCT is performed
followed by JPEG-alike quantization to each 8x8 block of
DCT coefficients. To embed RSPPMC, two DCT
coefficients will be randomly selected in the low-middle
frequency range per block while the MSE of the original
block and embedded block meets the minimum requirement,
which is 1 .

 	 ∑ ∑ , ,

where I(x,y) and I’(x,y) are the Y component values at the
index of (x,y) of the original and the embedded images,
respectively.

After the embedding process, de-quantization and inverse
DCT are conducted to each block. Then, the embedded
blocks are multiplexed to create the Y layer. YUV to RGB
color space conversion will be conducted to get the
watermarked image.

4.3.3.2 Detection Process:
The detection process takes two inputs, host image and key.
Like the embedding process, the detection process also

requires color space transformation, DCT transformation,
and JPEG-like quantization prior to actual detection.. Based
on the key stored in a file, essential information for
watermark detection, such as location sequence, watermark
length, watermark type, and quality factor, is obtained. The
selected DC coefficients blocks and the coefficients in each
block can be recovered in order of the “seed” from the key
file. Then, inverse RSPPMC is conducted to each pair of
coefficients in each block; the process is repeated until the
full length of watermark is recovered. The result of inverse
RSPPMC is a bitstream that is further converted to a text or
an image with respect to the watermark type. The detected
watermark can also be saved in a new file on the SD Card of
a smart-phone.

4.4 Optimizations to the Koch Algorithm

In order to reduce the computation cost, save power
consumption, and to accommodate color images, the
following modifications have been made in the
implementation.

First, the order of DCT transformation and the selection of
image blocks has been swapped. In the original Koch’s
algorithm, DCT transformation is applied to the entire
picture, which is unnecessary since we only embed the
watermark bits in a subset of DCT blocks. A disadvantage
of the original Koch’s algorithm is that if the image is big,
the DCT transformation will cause large amount of
computation. By switching the order, we only need to apply
the DCT transformation to the selected 8*8 blocks. As a
result, computation cost is reduced, and so does the power
consumption.

Secondly, our implementation narrows down the range of
pixel selection for watermark embedding within each block.
Watermark bits are supposed to be embedded into the low-
middle frequency of DC coefficients. In an 8*8 block, the
random selection range could be shrank to
{3,4,5,10,11,12,14,17,18,19,20,24,25,26,27,28,32,33,34,35,
40,41} instead of {0-63}. In the optimized implementation,
34.38% of computational power for DC coefficients
selection is saved compared to the original Koch’s
Algorithm.

Thirdly, we add an image size adjustment approach after a
host image is read from SD Card to avoid the out-of-
memory (OOM) problem that is common for Android
applications. To work with the memory constraints for an
Android application (16MB), hymnMark automatically
reduces the image size based on the device screen. For
example, Android Nexus One’s screen size is 600*480; then
a host image of 2096*2096 will be resized to 480*480. In
this way, we are able to control the memory usage of the
application while handling multiple images

Figue.2 hymnMark Application User Flow-Chart

In addition to reducing computation, we have modified the
algorithm to support color images. In particular, to achieve
good perceptual performance, color space conversion is
performed first and the watermark is embedded in Y
components of a color image.

5 RESULTS AND ANALYSIS

5. 1 User Interface

hymnMark has a user-friendly GUI. Figures 3 to 6 illustrate
the key steps of using hymnMark to embed and detect
watermark on a smart-phone.

As shown in Figure 3a, a user can click ImageView to
import a host image. Five types of watermark are supported
in hymnMark: plain text, a text file, a logo image file, the
MAC address of the smart-phone, and the IMEI number of
the smart-phone. A user can select the preferred watermark
types through the GUI. In addition, a user can input quality
factor (in range of 1 to 5) to indicate the watermarking
robustness. Figure 3b shows that a user types text message
hymnMark as the watermark and selects 5 as the quality
factor (the most robust). Figure.4a shows the embedding
progress and the watermarked image after the embedding
process is completed. If a user is satisfied with the

watermarked image , the user can click on “save” to save it
onto the SD Card.

From the main page, if a user chooses “detect”, a detection
page will show up. The embedded image will be displayed
in the “ImageView” and the application will ask for a key
file in order to detect the watermark in the image. After the
key file is loaded, the detection process will start. Figure 4b
displays the detected watermark. If the watermarked image
has been severely damaged, the detection may not be
successful, and the detected watermark may contain errors
or may be illegible.

(a) (b)

Figure.3 hymnMark Interface illustration: a) Five types of
watermark message Selection; b) Typing Message as

Watermark

 (a) (b)

Figure.4 hymnMark Interface illustration :a) Embedding
Page; b) Detected watermark shown page

5.2 Performance Analysis

To evaluate the performance of the hymnMark app with
respect to quality of watermarked images, a number of tests
have been conducted. Table 2 lists the quality analysis
results for host images of different sizes. It is obvious that if
the watermark is short (1 bit), the impact is small and the
resulted watermarked image has higher quality. Quality
factor indicates the robustness of the watermark. To make
the watermark more robust, it needs to be embedded into the
DCT coefficients of lower frequency, which will
consequently have more impact on the image quality. Our
test results show that even for quality factor of 5, the
watermarked image still has excellent quality (PSNR > 35
dB).

Host Image

Size
Watermark

Length
Quality
Factor

PSNR

32kb 1b 1 50.55

32kb 1b 2 50.42

32kb 1b 3 50.27

32kb 1b 4 50.01

32kb 1b 5 49.97

200kb 3.1kb 1 37.47

200kb 3.1kb 2 37.33

200kb 3.1kb 3 37.11

200kb 3.1kb 4 37.03

200kb 3.1kb 5 36.87
Table.2 PSNR for Various Quality Factors

5.3 Robustness Analysis through Multiple Attacks

In [9], Johnson C. Lee analyzed the attacks on common
watermark techniques. Following his analysis, we have
evaluated the performance of hymnMark system under some
common attacks including rotation, cropping, scaling,
mosaic, Gaussian, contrast, chrominance, luminance and
compression. All the attacks are executed through Adobe
Photoshop CS4 version 11.0.

Table 3 summarizes the results of the robustness tests. In the
table, robust range means that among the specified
parameter settings, the watermark can be detected correctly.
Take compression as an example, the max setting in
Photoshop for users to modify is 0-12, which 0 stands for
the worst quality, while 12 means the best quality. The
watermarked images are tested in the Photoshop and be
detected for the watermark message. When the compression
range is in 4 to 12, the watermark can be detected
completely. Therefore, its correspondent robust range is 4 to
12. The testing results show that hymnMark has no
resistance towards attacks such as rotation, cropping and
scaling, but has fairly good resistance against contrast
change and compression.

Attacks: Robust Range
Max setting in

PS
Rotation None 0 to 360
Cropping None Any
Scaling None Any
Mosaic None 2 to 200

Gaussian 0.0 to 5 0.0 to 250
Luminance -25 to 25 -50 to 150

Chrominance -10 to 10 -180 to 180
Contrast -50 to 50 -50 to 100

Compression 4 to 12 0 to 12
Table.3 Robustness Analysis

5.4 Power Consumption Analysis

The power consumption of hymnMark can be measured at
two different levels, macro-level and micro-level. Macro-
level measurement shows total power consumption of
hymnMark compared to other applications on the smart-
phone. Micro-level measurement, on the other hand,
provides a close-up view of power profiling of hymnMark,
which is capable of showing the hotspot of hymnMark, that
is, where it consumes most power.

5.4.1 Smart-phone power model:
Efficient energy management requires good understanding
of where and how power is consumed, including how much
the whole system uses and how much each component uses.
In [12], Aaron Carroll and Gernot Heiser tested energy
consumption of CPU/RAM, screen display, GSM (Global
System for Mobile Communication, originally from Group
Special Mobile), flash storage, network and GPS through
different applications. The results in Table.4 show that the
majority power consumption is used in GSM module and
screen display. In these experiments, it is easy to see that
brightness of display is the most significant factor that
affects the power consumption of a mobile device. ,
followed by the CPU power consumption.

On the other hand, smart-phones are considered as personal
portable computers nowadays and their users expect fast-
responsive time of apps. For example, people who get lost
want to find a right direction fast when they ask for help
from a map application on smart-phone.

Table.4 Daily energy usage and battery life under a number

of usage patterns [12]

5.4.2 Power Measurement Methodology
The most popular power consumption measurement tools
are PowerTutor and PowerProfile. PowerTutor is an
Android app working on Google phones that calculates the

power consumption of CPU, display, Wi-Fi, and user
applications running on the platform. To access the power
consumption measurement, it uses Android inner resources
such as:

 android.content.Context;
 com.android.internal.util.XmlUtils;
 org.xmlpull.v1.XmlPullParser.

However, PowerTutor and PowerProfile only calculate the
power usage based on components not within each
application. As a result, they fail to provide fine-grained
measurement and insights on power consumptions of
functions such as read-image, read-watermark, color space
conversion, block selection, DCT transformation,
quantization, and embedding/detection, de-quantization,
iDCT transformation, inverse color space conversion, store
images/watermark..

Research described in [13] has developed a fine-grained
power measurement tool called Eprof but it is not available
to the community. As a result, we have developed the
micro-level power consumption analysis method based on
Android EXTRA_LEVEL and EXTRA_SCALE APIs
EXTRA_LEVEL measures the current power level, and
EXTRA_SCALE measure the maximum level of the smart-
phone. The methodology details are described as follows:
1. Set up a test project to evaluate “EXRTA_LEVEL” and

“EXTRA_SCALE” variables, and verify their
functions;.

2. Once the verification is passed, the micro-level power
consumption analysis should be conducted following
the steps illustrated in Figure 9.

The current power level of the smart-phone is measured
before and after the execution of each code block. This
allows us to measure the power consumption of each part of
the application; and we can also study the impact of
application parameters (such as the quality factor) on the
power usage. Therefore, the micro-level power consumption
analysis is very useful to optimize the implementation of
each part of the application under power constraint.

5.4.3 Power consumption of hymnMark
To analyze the power consumption of hymnMark in the
macro-level, “PowerTutor”[10] is utilized. During our tests,
we have found that the total power of the fully charged cell-
phone, a Nexus one, was 1144mAh (4.12 Volt). The
watermark embedding and detection process have been
measured through continuous execution. On average, the
embedding process consumes about 66.7mW power, and the
detection process consumes 38.4mW. Hence, the average of
the entire hymnMark is (66.7+38.4)/2=52.55mW.

Using the same experiment setting, we have also measured
an Android default browser’s power consumption, which is
around 282mW. In comparison, our developed hymnMark
system consumed less power than a regular web browsing
application.

Currently we are in the process of tuning the micro-level
instrumentation, and we hope to report the preliminary
results of the micro-level power analysis for hymnMark
during the conference presentation.

 Figure.9 Procedure of Micro-level power consumption
analysis

6. CONCLUSION AND FUTURE WORK

This paper presents the first Androi SmartPhone watermark
app. The core of the system is the watermark embedding
and detection processes based on Koch’s algorithm.
Optimizations have been made to reduce the computation
cost and power consumption on the Android SmartPhone
platform. Comprehensive testing has been conducted to
evaluate quality, robustness, and power consumption of the
implementation. Experimental results demonstrate that the
watermarked images have excellent visual quality; and the
power consumption is lower than a web browser app on a
smart-phone platform. In the future, we will further optimize
the algorithm to reduce the power consumption and
execution time. More power consumption analysis will be
conducted to gauge the energy efficiency of each internal
function block.

References

 [1]. Watermarking digital image and video data, A-State-of-the-
Art Overview, Gerhard C. Langelaar, Iwan Setyawan, and
Reginald L. Lagendijk, IEEE image processing magazine, 2000

[2]. Energy Analysis of Multimedia Watermarking on Mobile
Handheld Devices, Arun Kejariwal, Sumit Gupta, Alexandru
Nicolau, Nikil Dutt, Rajesh Gupta, School of Information and
Computer Science Tensilica Inc. Dept. of Computer Science and
Engineering University of California at Irvine, IEEE Conference
Publications,2005

[3]. A Fast and Robust Digital Watermark Detection Scheme for
Cellular Phones, Takao Nakamura, Atsushi Katayama, Ryo
Kitahara, and Kenji Nakazawa, NTT Cyber Space Laboratories
Yokosuka-shi, 239-0847 Japan, 2006

[4]. An Algorithm For Watermarking Mobile Phone Color Images
Using BCH Code, J. Jeedella and H. Al-Ahmad, Khalifa
University of Science, Technology & Research, IEEE Conference
Publications, 2011

[5]. Digital Space,
https://play.google.com/store/apps/developer?id=Digital+Space

[6]. DigiMarc Discover,
https://play.google.com/store/search?q=digimarc+discover&c=app
s

[7]. Android System Smart-Phone Hardware Configuration.
http://www.engadget.com/2011/04/15/htc-sensation-versus-the-
rest-of-the-dual-core-world-smartphone/

[8]. Towards Robust and Hidden Image Copyright Labeling, E.
Koch & J. Zhao, Fraunhofer Institute for Computer Graphics
Wilhelminenstr. 7, 64283 Darmstadt, Germany, Proc. of 1995
IEEE Workshop on Nonlinear Signal and Image Processing (Neos
Marmaras, Greece, June 20-22, 1995)

 [9]. Analysis of Attacks on Common Watermarking Techniques,
Johnson C. Lee, Student Member, IEEE Electrical and Computer
Engineering Department University of British Columbia 2356
Main Mall, Vancouver, BC Canada V6T 1Z4, IEEE Conference
Publications, 2011

[10]. Power Tutor,
http://ziyang.eecs.umich.edu/projects/powertutor/

 [11]. How Fast Is Your Mobile App? Gomez Knows, Charles
Babcock, InformationWeek November 04, 2011.

[12]. An Analysis of Power Consumption in a Smartphone, Aaron
Carroll, NICTA and University of New South Wales, Gernot
Heiser NICTA, 2010 USENIX Annual Technical Conference,
2010.

[13] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang, Where is
the energy spent inside my app? Fine Grained Energy Accounting
on Smartphones with Eprof , Eurosys 2012.

