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Abstract—Automatic target recognition has been studied widely
over the years, yet it is still an open problem. The main obstacle
consists in extended operating conditions, e.g., depression angle
change, configuration variation, articulation, occlusion. To deal
with them, this paper proposes a new classification strategy. We
develop a new representation model via the steerable wavelet
frames. The proposed representation model is entirely viewed
as an element on Grassmann manifolds. To achieve target
classification, we embed Grassmann manifolds into an implicit
Reproducing Kernel Hilbert Space (RKHS), where the kernel
sparse learning can be applied. Specifically, the mappings of train-
ing sample in RKHS are concatenated to form an over-complete
dictionary. It is then used to encode the counterpart of query
as a linear combination of its atoms. By designed Grassmann
kernel function, it is capable to obtain the sparse representation,
from which the inference can be reached. The novelty of this
paper comes from (i) the development of representation model
by the set of directional components of Riesz transform; (ii) the
quantitative measure of similarity for proposed representation
model by Grassmann metric; (iii) the generation of global kernel
function by Grassmann kernel. Extensive comparative studies are
performed to demonstrate the advantage of proposed strategy.

Keywords—SAR, Target Recognition, Riesz transform, Steerable
Wavelet, Grassmann manifold, Sparse representation, Hilbert space.

I. INTRODUCTION

AS an active sensor, synthetic aperture radar (SAR) could
provide broad-area imaging at high resolution and acquire

image during night as well as day. At present, it has been
widely used, such as, monitoring the environment, recognizing
and tracking ground vehicle, and mapping the Earth’s re-
sources. With the development of synthetic aperture technique,
images collected from SAR sensor are too huge to be processed
timely by photo analyst. This situation breeds an urgent need
for automatic target recognition [1]. Though it has been studied
over the decades, it is still an open problem. The main obstacle
of target recognition lies in extended operating conditions,
where a single operational parameter is significantly different
between the images used for training and those for testing [2].
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The specific challenge to be addressed is robust recognition
of military target that can be collected at different pose and
depression angle.

Early target recognition system relies on template match-
ing [3]. The inference is reached by quantifying the similarity
between the query and multiple templates generated by the
training samples. It is ineffective under extended operating
conditions, because slight changes in articulation or occlusion
may result in significantly different scattering phenomenology.
Hence it is difficult to quantify the similarity between the query
and templates. Then another family of methods, correlation
pattern recognition, was presented [4]. These methods utilize
the global features (Fourier transform coefficients) that are
optimized for standard operating conditions. The classification
accuracy for extended operating conditions was reported to be
limited. As widely reported, SAR image often results from
both specular and diffuse reflections [5]. To take both types of
scatterers into account, some parameterized statistical distribu-
tion models are used to represent SAR image amplitudes [6],
[7]. Given SAR image of an unknown target and a specific
statistical model conditioned on target class and pose, the
task of target recognition and pose estimation can be achieved
in terms of Bayesian hypothesis testing and minimum mean
square error estimation. The log-likelihoods are obtained using
the parameters estimated from the training samples. However,
this family of methods usually suffer from the parameter
estimation under limited samples. They easily fail when strong
statistical relationship between the query and the observed does
not exist. Again, some researchers have presented multiple
discriminative features, and report their performance under
training and testing scenarios [8], [9]. However, the relative
performance of these features is difficult to be assessed based
upon the empirical evaluation.

Recently, a general multi-dimensional analytic signal, the
monogenic signal has been developed around the Riesz trans-
form [10]. It possesses distinguishing property that the under-
lying feature extraction process is truly rotation-invariant. This
also explains its success in many applications, e.g., contour
detection [11], local structure analysis [12], motion estima-
tion [13], image registration [14], and pattern recognition [15],
[16]. To consider the scale and directionality properties, some
works have been done to transpose the monogenic signal to the
wavelet domain. S. Olhede and G. Metrikas define the general
vector-valued quaternion mother wavelet functions to combine
the monogenic signal with the act of localization [17]. M.
Unser et al. introduce the multi-resolution monogenic analysis
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via Riesz-Laplace wavelet transform, where a complexified
Riesz transform mapping a real-valued wavelet basis into a
complex one are developed [18]. S. Held et al. present a new
n-dimensional monogenic wavelet from the hyper-complex
monogenic signal with the Riesz transform and isotropic
wavelet frame [19]. M. Unser and D. Ville develop a general
continuous-domain frameworks for steerable, reversible signal
transformations [20]. R. Soulard et al. introduce a nontrivial
extension of the monogenic framework to a non-marginal
monogenic wavelet transform [21]. A. Depeursinge and A.
Foncubierta-Rodriguez propose a rotation-covariant texture
learning strategy using steerable Riesz wavelets [22]. These
works prove that the steerable wavelet transform allows for
translation, scaling, rotation, and hence provides great potential
for model representation.

The majority of available techniques for pattern recognition
assumes an underlying Euclidean space. Yet many advantages
can be attained by considering these problems with a non-
Euclidean geometry [23]. The relevant non-Euclidean space
is the set of fixed dimensional subspaces, commonly called
Grassmann manifold, a special type of Riemannian manifold
with column orthogonalized. Over the years, many works are
devoted to pattern recognition from exemplars that lie on
certain manifolds. O. Tuzel et al. develop an approach for
classifying points on a connected Riemannian manifold with
the geometry of the non-Euclidean space [24]. P. Turaga et
al. demonstrate that the commonly used parametric models
for videos and image sets can be represented by the unified
framework of Grassmann and Stiefel manifolds [25]. Y. Hu et
al. propose a new approach for image set classification, where
the sample of image set and its affine hull model are by jointly
considered into a unified framework [26]. These works provide
a good deal of enlightenment for classifying a set of signals.

To solve the obstacle of target recognition, this paper
presents a new classification strategy. The steerable pyramid
and tight Riesz wavelet frames are considered into Grassmann
manifolds. Specifically, a steerable wavelet pyramid frames
derived from the multi-orientation and multi-scale Riesz trans-
form [27], is utilized to produce a new representation model1.
The proposed representation model allows for a wide range
of rotation, scaling and translation. Since the proposed rep-
resentation model composes of a set of directional wavelet
coefficients, it could not be dealt with by the conventional
learning skill in Euclidean space. To handle the difficult train-
ing regimes, this paper considers the proposed representation
model in non-Euclidean space. It is entirely regarded as an
element on Grassmann manifolds. The measure of similarity
between two proposed representation models is realized by
accumulating Grassmann metric over the wavelet scale. The
next problem is how to pursue the learning of classification.
Inspired by the preceding works [29], [30], this paper embeds
Grassmann manifold into an implicit Reproducing Kernel
Hilbert Space. The proposed representation model is cast into
the Hilbert space with a nonlinear mapping. Then, various

1Steerability refers to the property that the underlying wavelets can be
rotated to any orientation by forming suitable linear combinations of a primary
set of equiangular directional wavelet components [28].

kernel analysis skills can be applied. This paper utilizes kernel
sparse learning model due to the good performance. First, the
mappings of the training sample in RKHS are concatenated
to build a redundant dictionary to encode the counterpart of
query as a linear combination of themselves. The presented
regression model is solved with a designed Grassmann kernel.
The decision is reached according to the characteristics of
sparse representation on reconstruction, i.e., evaluating which
class of samples could produce the minimal reconstruction
error.

Contributions. This paper proposes a classification strat-
egy for target recognition in SAR image. The set of multi-
orientation and multi-scale wavelet coefficients resulting from
the high-order Riesz transform are used to generate a new
representation model. The proposed representation model is
entirely viewed as an element on Grassmann manifold. The
measure of similarity for proposed representation model is
implemented by aggregating Grassmann metric across the
wavelet scale. To the end, we embed Grassmann manifold into
an abstract Hilbert space, where kernel sparse learning model
can be built to draw the inference. The main contribution of
our proposed strategy can be summarized as follows.
• The development of representation model via steerable

wavelet frames. The proposed representation model al-
lows for invariance towards translations and rotations,
and hence provides great potential for target recognition.

• The definition of the measure of similarity for proposed
representation model with Grassmann metric.

• The designed kernel function for sparse learning model.
• The utilization of kernel sparse representation on Grass-

mann manifolds. The proposed representation model is
cast into RKHS, where kernel analysis skills is applied.

The reminder of this paper is organized as follows. The next
section provide the related works, the steerable wavelet frames,
followed by the proposed strategy, kernel sparse representa-
tion on Grassmann manifolds. The effectiveness of proposed
strategy has been evaluated in Section III, followed by the
conclusion of this paper in Section IV.

II. THE PROPOSED STRATEGY

Radar targets, when observed from a given orientation, often
produce a radar cross section (RCS) [31]. Different from the
common optical sensors, SAR RCS often composes of both
specular scatterers and and diffuse ones. The collection of
scatterers contributing to a resolution cell in SAR image are
usually dominated by a specular component resulting in glint at
the location of the image. Thus, SAR images are typically non-
literal, which results in the mutable scattering phenomenology
even with small changes in pose, depression, and configuration.
Due to the special image formation process, it is difficult to
achieve satisfied performance using the conventional represen-
tation model. To deal with these issues, this paper develops
a novel classification strategy. We represent the scattering
phenomenology by the tight wavelet frame of Riesz transform.
The directional coefficients of steerable wavelet frames are
entirely viewed as an element on Grassmann manifold. It is
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Fig. 1. The complete pipeline of proposed strategy. The proposed strategy
composes of two separate phases: representation and classification. The first
phase devotes to generating a representation model by performing the N th-
order and J th-scale Riesz wavelet transform. The resulting model is entirely
viewed on Grassmann manifolds. The second phase devotes to classification
learning. The proposed representation model is cast into the Hilbert space. The
mappings of training sample are concatenated to form a redundant dictionary
to encode the counterpart of query as a linear combination of themselves.
Grassmann kernel is used to generate the sparse representation, from which
the inference can be reached.

then cast into the RKHS, where kernel analysis schemes can be
applied. The pipeline for proposed strategy is shown in Fig. 1.

We first introduce the steerable wavelet frames, followed
by the proposed representation model. The classification strat-
egy, kernel sparse representation on Grassmann manifolds, is
presented in the end.

A. Steerable Wavelet Frames
1) The Riesz Transform: The Riesz transform is an ex-

tension of Hilbert transform. For any signal f(x),x =
[x1, x2, ..., xn]T ∈ Rn, the Riesz transform is defined as
fRr

(x) = limε→∞ cn
∫
|y|<ε

yr
|y|n+1 f(x− y)dy, where cn =

Γ[(n+1)/2]
π(n+1)/2 . The convolution kernel of Riesz transform is

R{f}(x) =


R1{f}(x)
R2{f}(x)

...
Rn{f}(x)

 =


(h1 ∗ f)(x)
(h2 ∗ f)(x)

...
(hn ∗ f)(x)

 (1)

where hr = cn
xr

|x|n+1 is the rth sub-transform. The transfer
function of Riesz transform can be expressed as

H(u) =
[
− j u1

|u|
,−j u2

|u|
, ...,−j un

|u|

]T
(2)

where Hr = −i ur

|u| is the frequency response of the rth sub-
transform. The Riesz transform keeps unit length in any direc-
tion, and hence has isotropic energy distribution. Moreover, it
has many unique properties.

• Property 1: translation-invariant

∀x0 ∈ Rn,R{f(· − x0)}(x) = R{f(·)}(x− x0)

• Property 2: scale-invariant

∀a ∈ R+,R
{
f
( ·
a

)}
(x) = R

{
f(·)

}(x
a

)
• Property 3: steerability

hr(Rvx) = 〈v,Rδ(x)〉 =
n∑
l=1

vlhl(x)

where Rv denote a n × n rotation matrices whose rth
row is the unit vector v = [v1, v2, ..., vn].

• Property 4: inner-product preservation

‖Rf‖2Ln
2

=
n∑
r=1

‖Rrf‖2L2
= ‖f‖2L2

2) Higher-Order Riesz Transform: To further exploit the
angular selectivity property, M. Unser et al. develop the higher-
order Riesz transform [20], [28],

R(N)
{
f
}

(x) =


R(N,0,...,0){f}(x)

...
R(N1,N2,...,Nn){f}(x)

...
R(0,0,...,N){f}(x)

 (3)

where RN =
√
|N |!
N ! R

N1
1 R

N2
2 · · ·RNn

n is the multi-index, and
|N |!
N ! =

(
N

N1,...,N2

)
= N !

N1!N2!···Nn! . The corresponding transfer

function is RN{F}(u) =
√
|N |!
N !

(−ju)N

‖u‖|N| F (u).
3) Steerable Wavelet Frames: Thanks to shift- and scale-

invariance, the N th-order Riesz transform could convert any
wavelet frame into another one [20]. For a signal with finite en-
ergy, we could produce the following wavelet decomposition:
∀f ∈ L2(Rn), f(x) =

∑
r∈Z

∑
l∈Zn{〈f, ψr,l〉L2

ψr,l(x)}. The
wavelets at the rth scale are the dilated version of the ones at
the finest scale: ψr,l(x) = 2−r(n/2)ψ0,l(x/2

r). Then, a general
wavelet frames can be obtained,

ψNr,l = RNψr,l =

√
N !

N1!...Nn!
RN1

1 · · ·RNn
n ψr,l (4)

The steerable wavelet frames inherits the fundamental prop-
erties of primary operator, and hence provides great potential
for signal analysis.

B. A New Representation Model
Thanks to steerable Riesz wavelet, the property of scale

invariance, translation-invariance, and rotation-invariance can
be achieved. These peculiar properties motivates us to develop
a new representation model, with which the extended operating
conditions, for example, pose and depression change, structural
modification, articulation, and occlusion can be handled.
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For a 2-D signal (or image) f with h × w pixels in size,
we first produce the N th-order Riesz transform. A set of the
5th-order Riesz transform are pictorially shown in Fig. 2.
Obviously, the higher-order Riesz transform has good angu-
lar selectivity. Since the higher-order Riesz transform could
extract the N th-order smooth derivatives, it commutes with
translation and scaling operators. Another more remarkable
property is that it commutes with spatial rotation.

R(5,0) R(4,1) R(3,2) R(2,3) R(1,4) R(0,5)

Fig. 2. The frequency response of the 5th-order Riesz transform.

Second, the higher-order Riesz transform could map any
frame of L2(Rn) into another one, it is therefore capable to
produce the tight wavelet frames. The wavelet frames are a
family of functions {ψr,l}r∈Zn,l∈Z indexed by location and
scale (or resolution) pair (r, l). The basis function at the rth-
resolution is the rescaled and dilated version of the one at
the finest resolution. Thus, the higher-order Riesz transform
can be used to produce a family of self-reversible and tight
pyramids, i.e., the steerable wavelet frames. An instance of
the J(2)nd-scale and N(5)th-order steerable wavelet frame is
given in Fig. 3. It achieves a better decomposition of the image
in terms of directional components, and hence are steerable in
arbitrary directions.

To exploit the invariant properties, this paper develops a
new representation model with the directional components of
steerable wavelet frames. The proposed representation model
composes of a set of directional pyramid wavelet coefficients.
Then, the task to infer the membership of the query is
converted to classify a set of wavelet coefficients to one of
the training class. We expect that robust performance can be
achieved by a set of pyramid coefficients rather than a single
signal. The implementation of target classification on the pro-
posed representation model refers to set-to-set match problem.
Hence the conventional learning methods could not be applied
any more. Recent studies prove that great advantages can
be achieved by considering pattern classification with a non-
Euclidean geometry [23]–[25], [30]. This inspires us to deal
with the proposed representation model in a non-Euclidean
space, i.e., Grassmann manifolds.

Manifold is a topological space which is locally similar to
Euclidean space. The space of d×m-dimensional matrices is a
special type of Riemann manifold, Stiefel manifold (S(m, d)),
if it satisfies S(m, d) , Y ∈ Rd×m : YTY = Im, where
Im is m ×m-dimensional identity matrix. Grassmann mani-
fold G(m, d) is a quotient manifold. It fulfills the following
relation: Y1 ∼ Y2, if and only if Span(Y1) = Span(Y2),
where Span(Y) is the subspace spanned by the columns
of Y. The similarity between two elements on manifold is
measured by geodesic distance. A direct approach to compute
geodesic distance is the principal angles. Given two elements

R(5,0) R(4,1) R(3,2) R(2,3) R(1,4) R(0,5)

Fig. 3. Illustration of the 2th-scale and 5th-order steerable wavelet frames.
In each sub-figure, the first image show the finest resolution component, while
the second and third ones demonstrate the first- and second-scale ones.

Y1,Y2 ∈ Rd×m, their principal angle is defined as

cos θk = max
uk∈Span(Y1)

max
vk∈Span(Y2)

uTk vk

subject to

(
uTk uk = 1, vTk vk = 1

uTk uj = 0, vTk vj = 0, j = 1, ..., k − 1

) (5)

The first principal angle θ1 is defined as the smallest angle
between a pair of unit vector, each of which result from
Span(Y1) and Span(Y2). The kth principal angle can be
obtained recursively. Actually, there is no need to solve (5)
directly. Principal angle can be also obtained by singular value
decomposition YT

1 Y2 = USV, where U,V are unitary matri-
ces, and S = diag(cos(θ1), ..., cos(θm)) is the diagonal matrix.
For two elements on Grassmann manifolds, their similarity
can be measured by the principal angles. The popularly used
Grassmann metric includes:
• Arc length: δ2

Arc(Y1,Y2) =
∑
r θ

2
r = ‖Θ‖22

• Projection Metric: δ2
Pj(Y1,Y2) =

∑m
r=1 sin2(θr)

• Binet-Cauchy Metric: δ2
B(Y1,Y2) = 1−

∏m
r=1 cos2(θr)

Given 2-D signal f ∈ Rh×w, its N th-order and J th-scale
steerable wavelet frames can be expressed{

ψ
(N,0)
l , ψ

(N−1,1)
l , . . . , ψ

(0,N)
l

}
, ψ

(·,·)
l ∈ Rh/2

l×w/2l

l = 0, ..., J − 1. We reshape each wavelet component to be
a dl-dimensional (dl = (h/2l)(w/2l)) single vector by raster-
scanning the columns. The wavelet components at a certain
scale are concatenated to form a matrix Ψl ∈ Rdl×m, where
m = N + 1. The orthogonal condition ΨT

l Ψl = I can be
easily realized with the mathematical operations, e.g., Schmidt
orthogonalization. The resulting matrix fulfills, ∀f1, f2

Ψl(f1) ∼ Ψl(f2), if and only if, Span(Ψl(f1)) = Span(Ψl(f2)).

The proposed representation model can be then entirely viewed
as an element on Grassmann manifolds. The similarity between
two representation models at a certain scale can be measured
by Grassmann metric. The global similarity can be obtained by
accumulating Grassmann metric across the wavelet scale. This
measure of similarity can be then conjunction with a simple
kth-nearest-neighbor classifier to achieve target classification.

Given n training samples x1,x2, ...,xn from L distinct
classes, their representation models can be produced by build-
ing the N th-order and J th-scale steerable wavelet frames

{ΨN,J(x1),ΨN,J(x2), ...,ΨN,J(xn)}. (6)
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Fig. 4. The measure of similarity between a pair of proposed representation
models. The set of Riesz wavelet components are entirely viewed as an
element on Grassmann manifolds. The global similarity are defined by
accumulating Grassmann metric over the wavelet scale. d0, d1 and d2 denote
the dimensionality of components at the 0th-, 1st-, and 2nd-scale.

These representation models are entirely viewed as the ele-
ments on Grassmann manifolds. For a query sample y, its
representation model ΨN,J(y) can be obtained similarly. To
measure the similarity between two proposed representation
models, this paper defines the global similarity by aggregating
Grassmann metric over the wavelet scale,

Sim(ΦN,J(y),ΦN,J(xk)) =
J−1∑
r=0

Siml(Φr(y),Φr(xk)) (7)

where Siml(Φr(y),Φr(xk)) is the similarity between two
representation models at the rth-scale. It can be implemented
using the Grassmann metric, e.g., arc length, projection metric.
Since the addition of any valid metrics is a valid one, the
measurement (7) is a valid metric. To demonstrate the global
similarity, a conceptual example is shown in Fig. 4, where two
SAR images are compared with in terms of their representation
models.

With the measurement defined in (7), the similarity between
the probe and the gallery can be measured, from which the
decision can be reached. The complete procedure for kNN on
Grassmann manifold is listed in Algorithm 1.

C. Sparse Representation on Grassmann Manifold
The proposed representation model composes of a set of

wavelet coefficients, whose dimensions are different, it is
therefore difficult to be applied into the learning framework in
Euclidean space. Though the developed similarity metric can
be conjunction with a nearest neighbor classifier to implement
target classification, there are some severe restrictions. More-
over, its recognition performance is limited. To achieve robust-
ness to difficult training regimes, this paper embeds Grassmann
manifold into an abstract RKHS. Then various kernel analysis

Algorithm 1 kNN on the Grassmann Manifolds (NNG)
Input: x1,x2, ...,xn: a set of training samples for L classes;

y: a query sample;
Output: identification of y.

1: Produce the representation model of the query by the N th-
order and J th-scale Riesz wavelet ΨN,J(y);

2: for k ← 1, n do
3: Generate the representation model of the kth training

sample ΨN,J(xk) ;
4: for r ← 0, J − 1 do
5: Quantify the similarity between the query and the kth

training sample with Grassmann metric;
6: Aggregate the similarity over the wavelet scale:

SimVk+ = Sim(Ψr(y),Ψr(xk))

7: end for
8: end for
9: Reach the inference: Label{arg mink{SimV }}.

schemes can be applied. Inspired by the preceding works [32]–
[34], we design kernel sparse signal modeling.

Given an embedded function φ(·) : G 7→ H, by which
Grassmann manifolds can be embedded into the Hilbert space,
the proposed representation model at a certain scale Ψr can be
cast into the Hilbert space φ(Ψr). For a pair of representation
models, Ψr(xk) and Ψr(xl), we could define a Grassmann
kernel function,

κ(Ψr(xk),Ψr(xl)) = 〈φ(Ψr(xk), φ(Ψr(xl)〉 (8)

Jihun Hamm and Daniel D. Lee prove that the projection kernel
and Binet-Cauchy kernel are valid Grassmann kernel [29].
They are widely used in the preceding works.
• Projection Kernel: κPj(Y1,Y2) = ‖YT

1 Y2‖2F
• Binet-Cauchy Kernel: κBC(Y1,Y2) = det(YT

1 Y2)2

Since the addition of any valid kernels yields a valid one,
we could form a global kernel function by assembling the ones
over the wavelet scale,

κ(·, ·) =
J−1∑
r=0

βrκr(·, ·) (9)

where κr(·, ·) is the kernel function at the rth-scale. βr is the
weight value for the rth-scale kernel function. This paper sets
these weights to be unit. The details on the selection of kernel
weight will be discussed in Section III. The experiments in
Section III corroborate that the discrimination power can be
enhanced by assembling the kernel function over the scale.

Given a set of training samples, x1,x2, ...,xn, we first
generate their representation models by the N th-order and J th-
scale steerable wavelet. The resulting representation models
are cast into the Hilbert space by φ(·),{

φ(ΨN,J(x1)), φ(ΨN,J(x2)), ..., φ(ΨN,J(xn))
}
. (10)

These mappings in the Hilbert space are concatenated to form a
redundant dictionary D. The resulting dictionary is then used
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to encode the counterpart of query φ(ΨN,J(y)) as a linear
combination of themselves,

φ(ΨN,J(y)) = φ(ΨN,J(x1))α1 + φ(ΨN,J(x2))α2

+ · · ·+ φ(ΨN,J(xn))αn = Dα (11)

where α = [α1, α2, ..., αn] ∈ Rn is the representation vector.
In (11), the recognition problem is cast as one of classifying
among multiple linear regression, where the mappings of
training sample, {φ(ΨN,J(xr))}nr=1 play the role of regressors
(or predictor), and the one of query φ(ΨN,J(y)) is the corre-
sponding response. The next problem is how to seek the op-
timal regression coefficients α̂. For notation convenience, the
mapping of query and training, φ(ΨN,J(y)) and φ(ΨN,J(xk)),
will be abbreviated as φy and φxk

.
The membership of the query is unknown, hence it is repre-

sented with the entire training set, i.e., the training sample of
all classes. Since a query sample can be sufficiently represented
using only the training samples from the same class [35],
the entries of the coefficient vector α should be zero except
those associated with the unknown class. This representation is
naturally sparse if the number of classes and training samples
is reasonably large. The popularly used approach to produce
the sparse solution is to restrict the feasible set via sparsity
constraint, for example, `1-norm minimization,

min
α
‖α‖1 subject to ‖φy −Dα‖22 < ε (12)

where ε is the allowed error tolerance. The objective function
expresses the sparsity level, while the constraint term gives
the reconstruction error (i.e., the fidelity term). However, it
is difficult to be solved directly, due to the absence of the
embedded function φ(·). To circumvent the problem, we first
unfold the fidelity term (it is re-notated by g(α)),

g(α) = ‖φy −Dα‖22
= (φy −Dα)T (φy −Dα)

= φTyφy − 2φTyDα+ αTDTDα
(13)

Then, some items of the fidelity can be replaced using the
kernel trick. By introducing the proposed Grassmann kernel
(8), the fidelity term can be re-written as:

φTyφy = 〈φy, φy〉 = κ(ΨN,J(y),ΨN,J(y))

φTyD =


〈φy, φx1

〉
〈φy, φx2

〉
...

〈φy, φxn〉

 =


κ(ΨN,J(y),ΨN,J(x1))
κ(ΨN,J(y),ΨN,J(x2))

...
κ(ΨN,J(y),ΨN,J(xn))〉


and (14), where κ(ΨN,J(xk),ΨN,J(xl)) can be realized by
assembling Grassmann kernel functions over the wavelet scale

κ(ΨN,J(xk),ΨN,J(xl)) =
J−1∑
r=0

{βrκr(Ψr(xk),Ψr(xl))}

Given a Grassmann kernel, (12) can be then tractable
accordingly. From (12) to (14), we found that the embedded
function φ(·) does not participate in the numerical implementa-
tion of sparse representation. It only plays a role of bridge that

links Grassmann manifold and Hilbert space. By integrating
the fidelity into (12), the problem can be then solved using
the common optimization skills, such as the feature-sign search
algorithm [36]. Finally, the inference can be reached according
to the characteristics of sparse representation on reconstruction,
i.e., evaluating which class of samples could result in the
minimum reconstruction error,

min
k=1,...,L

{‖φy −Dδk(α̂)‖22} (15)

where δ(·) : Rn 7→ Rn preserves the entries associated with
the kth training class and sets the remaining to be zero. The
complete procedure of propose strategy, sparse representation
on Grassmann manifold, is shown in Algorithm 2 (KSRG).

Algorithm 2 Sparse Representation on Grassmann Manifolds
Input: x1,x2, ...,xn: a set of training samples for L classes;

y: query sample;
κ: Grassmann kernel;
λ: the regularization parameter;

Output: identification of y.
1: Produce the representation model of query by the N th-

order and J th-scale Riesz transform ΨN,J(y);
2: Generate the representation model of the training samples

ΨN,J(x1),ΨN,J(x2), . . . ,ΨN,J(xn);
3: for r ← 1, n do
4: Compute the similarity between the query and the rth

training sample in terms of their representation models
in RKHS, κ(ΨN,J(y),ΨN,J(xr))→ [φyD]r;

5: for l← 1, n do
6: Quantify the similarity between the rth and lth train-

ing sample in terms of their representation models in
RKHS, κ(ΨN,J(xr),ΨN,J(xl))→ [DTD]r,l;

7: end for
8: end for
9: Seek the optimal regression coefficients α̂;

10: Make the decision: mink{‖φy −Dδk(α̂)‖22}.

III. EXPERIMENT AND DISCUSSION

The proposed strategy are verified with MSTAR database,
a gallery collected using a 10 GHz SAR sensor with 1×1-ft
resolution in range and azimuth. To the best of our knowledge,
it is the only publicly released database available for SAR
target recognition. We first discuss the effect of some related
factors on target recognition performance, followed by several
fundamental verifications. Multiple comparative studies are
performed finally. Images are collected at various depression
angles over 0 ∼ 359◦ range of aspect view 2. Images available
are of around 128×128 pixels. To standardize the input, we
extract the center 64×64 pixels patches. The cropped image
is used to build the steerable wavelet frames.

2The depression angle refers to the angle between the line of sight from
the radar to target and the horizontal plane at the radar.
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DTD =


〈φ(ΨN,J(x1)), φ(ΨN,J(x1))〉 〈φ(ΨN,J(x1)), φ(ΨN,J(x2))〉 · · · 〈φ(ΨN,J(x1)), φ(ΨN,J(xn))〉
〈φ(ΨN,J(x2)), φ(ΨN,J(x1))〉 〈φ(ΨN,J(x2)), φ(ΨN,J(x2))〉 · · · 〈φ(ΨN,J(x2)), φ(ΨN,J(xn))〉

...
...

. . .
...

〈φ(ΨN,J(xn)), φ(ΨN,J(x1))〉 〈φ(ΨN,J(xn)), φ(ΨN,J(x2))〉 · · · 〈φ(ΨN,J(xn)), φ(ΨN,J(xn))〉



=


κ(ΨN,J(x1),ΨN,J(x1)) κ(ΨN,J(x1),ΨN,J(x2)) · · · κ(ΨN,J(x1),ΨN,J(xn))
κ(ΨN,J(x2),ΨN,J(x1)) κ(ΨN,J(x2),ΨN,J(x2)) · · · κ(ΨN,J(x2),ΨN,J(xn))

...
...

. . .
...

κ(ΨN,J(xn),ΨN,J(x1)) κ(ΨN,J(xn),ΨN,J(x2)) · · · κ(ΨN,J(xn),ΨN,J(xn))


(14)

A. Effect of the Related Factors on Performance
We first perform two sets of experiments for different order

of Riesz transform and different scale of wavelet. Four military
vehicles, BMP2, BTR60, T72, and T62 are used to perform 4-
class target recognition. The number of aspect views available
for different targets are tabulated in TABLE I. The number
of aspect views available for training are in bold, while the
ones for testing are underlined. The items in bracket mark
the configuration by the series number. The detail explanation
on dataset can be found in Section III-C. Three metrics, arc
length, projection metric, and Binet-Cauchy metric, and two
Grassmann kernels, projection kernel and Binet-Cauchy kernel
are utilized to demonstrate the performance.

TABLE I. NUMBER OF ASPECT VIEWS FOR DIFFERENT TARGETS

Depr. BMP2 T72 BTR60 T62 Total

17◦
233 (SN 9563) 232 (SN 132)

256 299 1020232 (SN 9566) 231 (SN 812)
233 (SN c21) 228 (SN s7)

15◦
195 (SN 9563) 196 (SN 132)

195 273 1246196 (SN 9566) 195 (SN 812)
196 (SN c21) 191 (SN s7)

1) Scale of Wavelet Frames: The recognition performance
across different scale of wavelet frame is shown in TABLE II,
where the N(5)th-order Riesz transform is used to generate the
representation model. Experiments are performed by changing
the scale of wavelet from J(0)th to J(2)nd. The J(0)th-scale
wavelet refers to the original N(5)th-order Riesz transform
coefficients, while the first- and second-scale wavelet are
the rescaled and dilated ones, corresponding to the wavelet
coefficients of 32×32, 16×16 in size. The bar diagram is
shown in Fig. 5. We can see that the performance has been
improved with the multi-scale wavelet frames. The best per-
formance, 0.8957, is obtained when the J(2)nd-scale wavelet
are performed. The experimental results demonstrate that each
wavelet coefficients have some discrimination power. The per-
formance can be improved by aggregating the discrimination
information across the scale.

2) Order of Riesz Transform: The recognition accuracy
across the order of Riesz transform is shown in TABLE III,
where J(2)nd-scale pyramid wavelet are built. Experiments
are conducted by adjusting the order of Riesz transform from
N(2)nd to N(6)th. The bar diagram is drawn in Fig. 6.

From TABLE III (a), we could see that the recognition rates
obtained using Projection metric and Binet-Cauchy metric are

TABLE II. THE RECOGNITION ACCURACY ACROSS THE SCALE OF
WAVELET FRAMES.

(a) The accuracies obtained using Algorithm 1

Metric J = 0 J = 1 J = 2

Arc length 0.8283 0.8555 0.8844
Projection 0.8307 0.8604 0.8836

Binet-Cauchy 0.8202 0.8644 0.8957

(b) The accuracies obtained using Algorithm 2

Kernel J = 0 J = 1 J = 2

Projection 0.8684 0.8788 0.9278
Binet-Cauchy 0.8620 0.8941 0.9230
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Fig. 5. The pictorial illustration of recognition performance across the scale
of wavelet frames.

irregularly varied. The recognition accuracy obtained by the
N(5)th-order Riesz transform is slightly better than the others.
From TABLE III (b), we could see that Projection kernel
outperforms Binet-Cauchy one. The recognition accuracy ob-
tained using Binet-Cauchy kernel fluctuates more sharply than
the one obtained using Projection kernel. This is because the
definition of Binet-Cauchy kernel refers to determinant opera-
tion, while Projection kernel only involves addition operation.
The N(5)th-order Riesz transform consistently achieves the
best performance.

Based on the above experiments, J(2)nd-scale and N(5)th-
order Riesz transform is used to produce the proposed repre-
sentation model. This settings will be utilized in the following
comparative studies.
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TABLE III. THE RECOGNITION ACCURACY ACROSS THE ORDER OF
RIESZ TRANSFORM.

(a) The rates obtained using Algorithm 1

Metric N = 2 N = 3 N = 4 N = 5 N = 6

Arc length 0.8684 0.8700 0.8700 0.8844 0.8748
Projection 0.8708 0.8700 0.8756 0.8836 0.8764

Binet-Cauchy 0.8652 0.8692 0.8820 0.8957 0.8716

(b) The rates obtained using Algorithm 2

Kernel N = 2 N = 3 N = 4 N = 5 N = 6

Projection 0.9165 0.9213 0.9230 0.9278 0.9318
Binet-Cauchy 0.9238 0.8852 0.8965 0.9230 0.8868
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Fig. 6. The pictorial illustration of recognition performance across the order
of wavelet frames.

B. Fundamental Verifications
The subsequent experiments devote to several fundamental

verifications, such as the study of kernel fusion, the validation
of kernel function, and the comparison with our preceding
work. The experimental setting is same to the precious one.

1) The Study of Kernel Fusion: In this paper, the global
kernel function is generated by accumulating the Grassmann
kernel over the wavelet scale, as defined in (9). It is natural
to ask how to generate the kernel weight. An intuitive idea is
to set the kernel weight equally. In addition, several studies
recommend to generate a learned kernel weights [34], [37]–
[40]. Inspired by these works, this paper introduces two rule
for kernel fusion. The first rule produces the kernel weight
according to the classification accuracy obtained by each single
kernel function, as developed in [38]. It can be expressed as

βr =
Rr − δ∑J−1

j=0 {Rj − δ}
(16)

where Rr denotes the recognition rate obtained using the rth
scale kernel κr(·, ·), and δ is a certain threshold that should
be less than the minimum of accuracy obtained using single
kernel function.

The second rules generates the kernel weight via the kernel
alignment strategy [39]. The kernel alignment is a measure of
similarity between two kernel Gram matrix [41],

A(Km,Kn) =
〈Km,Kn〉F√

〈Km,Km〉F · 〈Kn,Kn〉F

where 〈Km,Kn〉F =
∑
i

∑
j κm(xi,xj)κn(xi,xj). The ker-

nel weight is then set as

βr =
A(Kr,Kd)∑J−1
j=0 A(Kj ,Kd)

(17)

where Kd is the ideal kernel matrix whose elements are defined
as

Kd(i, j) =

{
1 if xi,xj from the same class
0 otherwise.

To study the effect of kernel weight on recognition perfor-
mance, a set of experiments are performed, where the equal
weight is compared with the learned one. The experimental
results are given in TABLE IV, where Learn1 and Learn2

denote the kernel weight obtained by (16) and (17).

TABLE IV. THE RECOGNITION ACCURACY OBTAINED USING VARIOUS
KERNEL WEIGHT SCHEMES.

Equal Learn1 Learn2
Projection Kernel 0.9318 0.9352 0.9334

Binet-Cauchy Kernel 0.9230 0.9246 0.9238

From TABLE IV, we would come the conclusion as follows.
The performance of two learned kernel weight schemes are
better than equal weight. The recognition rate obtained by
Learn1 is better than the one obtained by kernel alignment
scheme. The performance improvement obtained by projection
kernel is more significant than the one obtained by Binet-
Cauchy kernel.

2) The Validation of Kernel Function: As proved by Jihun
Hamm and Daninel D. Lee [29], the projection kernel and
Binet-Cauchy kernel are valid Grassmann kernel function.
They are associated with the projection metric and Binet-
Cauchy metric, respectively. Though several kernel functions
are widely used in the preceding works [40], [42], they are
valid only in the vector space, and hence unreasonable to be
utilized on Grassmann manifolds. To verify this proposition,
this paper performs a set of experiments. Gaussian RBF kernel
is conjunction with Grassmann metric to form a pesudo-
kernel function. It is then compared with the proposed method.
Gaussian RBF is defined as

κ(xi,xj) = exp
{
− γ‖xi − xj‖22

}
where γ is the width parameter. The measure of similarity
‖xi−xj‖22 is realized by Grassmann metric. The experimental
results are given in TABLE V.

TABLE V. THE VERIFICATION OF KERNEL FUNCTION.

Gaussian RBF Grassmann Kernel
Projection metric BC metric Arc length Projection kernel BC Kernel

0.8720 0.8307 0.8323 0.9318 0.9230

Though Grassmann metric is used to generate the measure
of similarity, the recognition accuracy of Gaussian RBF is still
much lower than the one obtained using Grassmann kernel.
This is because Gaussian RBF is not a valid Grassmann
kernel, and hence unreasonable to be applied on Grassmann
manifolds. The performance of Binet-Cauchy metric and arc
length are worsen than projection metric.
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3) The comparison of Representation Model: This paper
develops a new representation model via the steerable wavelet
frames. Though the proposed method is an improvement
version of our preceding works [43], sparse representation of
monogenic signal on Grassmann manifold, their core ideas are
significantly different, as summarized in the following items.
• The formation of Grassmann manifolds. This paper

builds Grassmann manifolds with steerable wavelet coef-
ficients, while our preceding work constructs Grassmann
manifolds by the multi-resolution monogenic signal.

• The measure of similarity. This paper generates the
measure of similarity by accumulating Grassmann met-
ric over the wavelet scale.

• The definition of kernel function. This paper defines
the global kernel function by assembling Grassmann
kernel over the wavelet scale.

To test the performance of proposed representation model, a set
of experiments are performed, where the steerable wavelet rep-
resentation are compared with the multi-resolution monogenic
signal. The experimental results are shown in TABLE VI.

TABLE VI. THE COMPARISON OF MONOGENIC SIGNAL
REPRESENTATION WITH STEERABLE WAVELET REPRESENTATION.

Model Monogenic signal [43] Steerable wavelet
Classifier SVM SRC SVM SRC
Accuracy 0.9085 0.9270 0.9229 0.9318

From TABLE VI, we can see that whether SVM of SRC are
utilized, the performance of steerable wavelet representation
model are consistently better than the one of multi-resolution
monogenic signal representation.

4) The comparison of learning model: This paper develops
a new representation model via the steerable wavelet frames.
The proposed representation model is then cast into the Hilbert
space. To achieve target classification, the proposed representa-
tion model is fed into kernel sparse learning. Another popularly
used kernel analysis skill is support vector machine learning.
To demonstrate the advantage of sparse learning model, a
set of experiment are performed, where the sparse learning
is compared with SVM. To make the comparison fair, the
proposed representation model is set as the input of SVM. In
addition, the Grassmann kernel is utilized to search the support
vector. The experimental results are given in TABLE VII.

TABLE VII. THE COMPARISON OF SPARSE LEARNING AND SUPPORT
VECTOR MACHINE LEARNING.

Classifier SVM SRC
Kernel Projection Binet-Cauchy Projection Binet-Cauchy

Accuracy 0.9229 0.9213 0.9318 0.9230

As can be seen from TABLE VII, the performance of sparse
learning is better than SVM. The improvement obtained using
the projection kernel is more significant than the Binet-Cauchy
kernel.

C. Performance Evaluation
Target recognition in SAR image is a non-trivial problem

due to the peculiar working mechanism. Unlike the optical

sensor, SAR imaging of the same target taken at different as-
pect views will result in significantly different phenomenology.
To deal with these problems, the preceding works develop
several algorithms by the monogenic signal [16], [44]–[46].
Actually, these works have been done around the J(0)th-scale
and N(1)st-order Riesz transform. Therefore, these algorithms
are employed as the baseline for performance comparison. In
addition, the prototype of sparse signal modeling [35] and
support vector machine learning are included. It should be
noted that Grassmann kernel is utilized in the framework
of SVM, i.e., the input of SVM is the proposed represen-
tation model. The methods to be studied are summarized in
TABLE VIII. To model the real battle-field condition, we
pursue four kinds of experiments, configuration variation, nose
corruption, articulation and occlusion, small sample size.

TABLE VIII. THE METHODS TO BE STUDIED IN THIS PAPER.

Abbre. Full name (description) Ref.
SRC Sparse representation-based classification [35]
MSRC Sparse representation of monogenic signal [44]
SRCR Sparse representation on Riemannian manifolds [45]
TJSR Joint Sparse Representation of monogenic signal [46]
SVMG Support vector machine learning with Grassmann kernel —
KSRC Kernel sparse representation-based classifier [32]
KLMC Kernel linear coding of monogenic signal [45]
KSRM Monogenic signal representation on Grassmann manifolds [43]
KSRG Steerable wavelet representation on Grassmann manifolds Alg.2

1) Configuration Variations: Under the realistic battlefield,
there may be many different physical target configurations
that could be categorized in a single class. In this context,
the configuration simply refers to physical change and struc-
tural modifications. Examples of such variability are listed in
TABLE IX. This sub-section deals with target recognition on
different configurations. We train the classification algorithms
by the standard, and test them by the variants.

TABLE IX. EXEMPLARS FOR CONFIGURATION VARIATION

Version Variant
Smoke Grenade Launchers

Side Skirts

Configuration Variant
Two Cables
Fuel Barrels

Incidental Structural Modifications
Dented Fenders

Broken Antenna Mount

Four military vehicles, BMP2, T72, BTR60, and T62 are se-
lected. BMP2 and BTR60 are armored personnel carrier, while
T72 and T62 are main-battle tank. BMP2 and T72 have several
configuration variants with small structural modifications. The
details on configuration can be found in TABLE I. Their
are three variants for BMP2 and T72, SN 9563, SN 9566,
SN c21 (BMP2), SN 132, SN 812, and SN s7 (T72). Only
SN 9563 and SN 132 taken at a 17◦ depression angle are used
to train the algorithms, while the remaining, SN 9566, SN c21
and SN 132, SN s7 collected at a 15◦ depression angle are
used for testing. Both the configuration and depression angle
are different between the images used for training and those
for testing.

The performance comparison is shown in TABLE X, where
both the overall recognition rate and confusion matrix are
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TABLE X. THE PERFORMANCE FOR TARGET RECOGNITION ON
CONFIGURATION VARIATION.

(a) Confusion matrix obtained using SRC [35]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9617 0.0255 0.0102 0.0026

0.8708
T72 0.0466 0.6477 0.0078 0.2979

BTR60 0.0154 0.0 0.9692 0.0154
T62 0.0 0.0147 0.0 0.9853

(b) Confusion matrix obtained using MSRC [44]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9286 0.0230 0.0255 0.0230

0.8748
T72 0.0415 0.6736 0.0259 0.2591

BTR60 0.0 0.0 0.9897 0.0103
T62 0.0 0.0 0.0 1.0

(c) Confusion matrix obtained using TJSR [46]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9107 0.0510 0.0230 0.0153

0.9117
T72 0.0181 0.8349 0.0 0.1425

BTR60 0.0256 0.0103 0.9385 0.0256
T62 0.0 0.0037 0.0 0.9963

(d) Confusion matrix obtained using SVMG (Projection)

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9311 0.0255 0.0306 0.0128

0.9229
T72 0.0337 0.8394 0.0 0.1269

BTR60 0.0154 0.0 0.9744 0.0103
T62 0.0037 0.0037 0.0 0.9927

(e) Confusion matrix obtained using KSRC [32]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9464 0.0383 0.0102 0.0051

0.9045
T72 0.0363 0.7746 0.0052 0.1839

BTR60 0.0256 0.0 0.9641 0.0103
T62 0.0 0.0073 0.0073 0.9853

(f) Confusion matrix obtained using CKLR [16]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9719 0.0281 0.0 0.0

0.9325
T72 0.0259 0.8394 0.0026 0.1321

BTR60 0.0256 0.0 0.9641 0.0103
T62 0.0 0.0037 0.0 0.9963

(g) Confusion matrix obtained using KSRM [43]

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9311 0.0357 0.0281 0.0051

0.9270
T72 0.0570 0.8420 0.0026 0.0984

BTR60 0.0 0.0 0.9897 0.0103
T62 0.0 0.0 0.0037 0.9963

(h) Confusion matrix obtained using KSRG (Algorithm 2)

Target BMP2 T72 BTR60 T62 Overall
BMP2 0.9566 0.0408 0.0 0.0026

0.9318
T72 0.0596 0.8264 0.0 0.1140

BTR60 0.0 0.0 0.9949 0.0051
T62 0.0 0.0 0.0 1.0

given. The performance of BTR60 and T62 are satisfied.
The lowest recognition rate of BTR60 is 0.9385, while the
lowest one of T62 is 0.9853. On the other side, the recog-
nition accuracy for BMP2 and T72 are drastically varied.
The recognition accuracy of BMP2 fluctuates from 0.8903
to 0.9719, while the recognition rate for T72 changes from
0.6477 to 0.8420. This is because both the configuration and
depression angle are different between the images for training
and those for testing. The performance of proposed method are
similar to the one of CKLR, much better than the remaining.
The results demonstrate that the proposed strategy could deal

with the configuration variation even under the quasi-battle
circumstance.

2) Random Noise Corruption: Pixels in SAR image usually
exhibit speckle due to the coherent combinations of returns
from the the scatterers. The relative motion of scatters is on
the order of a wavelength of the incident signal. Thus, it
is necessary to test the performance under noise corruption.
Again, four kinds of targets, BMP2, BTR60, T72, and T62,
are employed. To simulate noise, we corrupt a percentage of
randomly chosen pixels from each of the images available for
testing, replacing their intensity values with the independent
and identically distributed samples drawn from a uniform
distribution U [0, uM ], where uM is the largest possible pixel
value. The corrupted pixels are randomly chosen, i.e., their
locations are unknown for the algorithms.
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Fig. 7. Illustration of random noise corruption. The set of images demonstrate
that 0%, 5%, 10%, 15%, 20%, 25%, and 30% of pixels are corrupted.

TABLE XI. THE PERFORMANCE FOR PROPOSED REPRESENTATION
MODEL UNDER RANDOM NOISE CORRUPTION.

SRC MSRC SRCR TJSR CKLR KSRG

0% 0.8764 0.8868 0.9117 0.9117 0.9325 0.9318
5% 0.8587 0.8515 0.7873 0.8427 0.8619 0.9238

10% 0.7945 0.8090 0.7408 0.8041 0.8515 0.9205
15% 0.6653 0.7504 0.7022 0.7480 0.8314 0.8941
20% 0.5618 0.6661 0.6846 0.7415 0.8001 0.8531
25% 0.5016 0.5939 0.6100 0.7030 0.7817 0.8339
30% 0.4655 0.5393 0.5923 0.6821 0.7504 0.8098
Drop 41.09% 34.75% 31.94% 22.96% 18.21% 12.12%

The recognition rate is listed in TABLE XI. For sparse
signal representation, the robust version, the extended `1-
minimization is used to seek the regression coefficients [35].
We vary the percentage of corrupted pixels from 0 percent
to 30 percent, by which the scattering phenomenology of
target can be manually changed. Some examples of noise
corruption are demonstrated in Fig. 7. The proposed strategy
consistently outperforms the reference methods. From 5 per-
cent upto 30 percent noise corruption, the proposed strategy
is 6.19%, 6.90, 6.27%, 5.30%, 5.22%, 5.94% better than the
nearest competitors. The drop of recognition accuracy for
proposed representation model is 10.12%, significantly lower
than the competitors. Even at 30 percent noise corruption,
the performance of proposed representation model is 34.43
percent, 27.05 percent, 21.75 percent, 12.77 percent, and 5.94
percent better than SRC, MSRC, SRCR, TJSR, and CKLR.
The results demonstrate that the proposed strategy is robust
towards noise corruption.

3) Articulation and Occlusion: The invariance to articula-
tion and occlusion, e.g., turret rotation, open hatch, is desirable
in the real batter-fields. This sub-section considers target
articulation and occlusion. Three kinds of military vehicles,
2S1, BRDM2, and ZSU23/4 are employed, among which
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BRDM2 and ZSU23/4 have articulated variants. Example of
the standard and articulated variants are demonstrated in Fig. 8.

  

(a) (b) 

 

Fig. 8. Illustration of articulation, (a) turret straight, (b) turret articulated.

To evaluate the performance under articulation and occlu-
sion, the standard taken at a 17◦ depression angle are used to
train the algorithm, while the variants collected at 30◦ and 45◦
depression angle are used for testing. The number of aspect
views available for three targets taken at 17◦, 30◦, and 45◦
depression angle are tabulated in TABLE XII. The items in
bracket give the articulated variants.

TABLE XII. IMAGES AVAILABLE FOR STANDARDS AND VARIANTS.

Depression 2S1 BRDM 2 ZSU23 Total
Training (17◦) 299 298 299 896

Testing
(30◦) 288 287 (133) 288 (118) 1114
(45◦) 303 303 (120) 303 (119) 1148

The recognition performance are given in TABLE XIII,
where the overall recognition rate is in parentheses. The drop
of recognition accuracy is pictorially shown in Fig. 9. The
recognition accuracy degrades drastically when the depres-
sion angle varies from 30◦ to 45◦. At the first scenario, a
moderate change of 13◦ from 17◦ to 30◦ depression angle,
the recognition performance is satisfied. The performance of
proposed strategy is slightly better than the baseline. At the
second scenario, a drastic change of 28◦ from 17◦ to 45◦
depression, the result is significantly different. Though the
recognition accuracy of all methods are drastically decreased,
the proposed strategy still achieve the best performance. It is
5.32%, 6.97%, 14.11%, 13.76%, and 24.04% better than the
competitors. This set of experiments proves that the proposed
strategy could handle articulation and occlusion.

4) Small Sample Size: Another important issue for target
recognition is the robustness to limited training samples. This
sub-section evaluates small sample size problem. BMP2, T72,
BTR60, and T62 are employed. The details on aspect view
can be found in TABLE I. Different from the preceding
experiment, the size of training set are gradually decreased
from 1020 to 307, corresponding to 1, 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3 times of the original size. Samples available for testing
are kept unchanged, i.e., the total number of testing sample is
1246. The experimental results are shown in TABLE XIV.

With the decrease of training set, the recognition perfor-
mance is deteriorated too. However, the proposed strategy con-
sistently achieve the satisfied performance. Even with the 307
training samples, the performance of proposed representation
model (SVMG and KSRG) is much better than the others. The
experimental results demonstrate that the proposed strategy

TABLE XIII. THE PERFORMANCE FOR TARGET RECOGNITION ON
DEPRESSION VARIATION.

(a) Confusion matrix obtained using SRC [35]

Target 30◦-Depression (0.9488) 45◦-Depression (0.5366)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9757 0.0243 0.0 0.7789 0.2013 0.0198
BRDM2 0.0595 0.9190 0.0214 0.4232 0.5650 0.0118
ZSU23 0.0172 0.0222 0.9606 0.6706 0.0237 0.3057

(b) Confusion matrix obtained using MSRC [44]

Target 30◦-Depression (0.9497) 45◦-Depression (0.6394)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9618 0.0 0.0382 0.8647 0.0825 0.0528
BRDM2 0.0429 0.9262 0.0310 0.2648 0.4610 0.2742
ZSU23 0.0123 0.0222 0.9655 0.1848 0.1588 0.6564

(c) Confusion matrix obtained using SRCR [45]

Target 30◦-Depression (0.9515) 45◦-Depression (0.6359)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9132 0.0868 0.0 0.4620 0.5182 0.0198
BRDM2 0.0119 0.9810 0.0071 0.0591 0.9267 0.0142
ZSU23 0.0148 0.0369 0.9483 0.1872 0.3436 0.4692

(d) Confusion matrix obtained using TJSR [46]

Target 30◦-Depression (0.9524) 45◦-Depression (0.7073)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9861 0.0069 0.0069 0.5644 0.3366 0.0990
BRDM2 0.0214 0.9000 0.0786 0.0757 0.6738 0.2506
ZSU23 0.0025 0.0148 0.9828 0.0095 0.1469 0.8436

(e) Confusion matrix obtained using CKLR [16]

Target 30◦-Depression (0.9712) 45◦-Depression (0.7238)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9896 0.0104 0.0 0.7030 0.2937 0.0033
BRDM2 0.0667 0.9310 0.0024 0.0709 0.7991 0.1300
ZSU23 0.0 0.0 1.0 0.0900 0.2464 0.6635

(e) Confusion matrix obtained using KSRM [43]

Target 30◦-Depression (0.9381) 45◦-Depression (0.7282)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9722 0.0 0.0278 0.6865 0.2442 0.0693
BRDM2 0.0 0.8690 0.1310 0.0515 0.7096 0.2389
ZSU23 0.0049 0.0099 0.9852 0.0142 0.2180 0.7678

(f) Confusion matrix obtained using KSRG (Algorithm 2)

Target 30◦-Depression (0.9820) 45◦-Depression (0.7770)
2S1 BRDM2 ZSU23 2S1 BRDM2 ZSU23

2S1 0.9861 0.0139 0.0 0.7030 0.2871 0.0099
BRDM2 0.0214 0.9667 0.0119 0.0662 0.7943 0.1395
ZSU23 0.0049 0.0 0.9951 0.1185 0.0687 0.8128

TABLE XIV. RECOGNITION ACCURACY ACROSS THE SIZE OF
TRAINING SET.

SRC MSRC TJSR SVMG KSRM CKLR KSRG

1020 0.8708 0.8748 0.9117 0.9229 0.9270 0.9325 0.9318
918 0.8748 0.8820 0.9077 0.9189 0.9350 0.9213 0.9270
816 0.8764 0.8828 0.8973 0.9141 0.9262 0.9205 0.9173
713 0.8724 0.8764 0.8900 0.9093 0.9165 0.9125 0.9165
612 0.8716 0.8740 0.8981 0.9133 0.9262 0.9117 0.9222
511 0.8604 0.8620 0.8836 0.8916 0.8989 0.8981 0.9141
408 0.8387 0.8499 0.8700 0.8892 0.8933 0.8812 0.8957
307 0.7978 0.8266 0.8266 0.8684 0.8531 0.8627 0.8700

could deal with the difficult training regime of small sample
size.

IV. CONCLUSION

To handle extended operating conditions, this paper recom-
mends a novel representation model via the steerable pyramids
and tight wavelet frames. The proposed representation model
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Fig. 9. The drop of recognition performance when the depression angle is
varied from 30◦ to 45◦. The percents provide the drop of recognition accuracy.

commutes with translation, scaling, and spatial rotations. To
deal with difficult training regimes, the proposed representa-
tion model is cast into the abstract Hilbert space. The main
contributions of this work include: i) we represent SAR image
via the N th-order and J th-scale Riesz wavelet transform; ii)
we define the measure of (dis)similarity between two proposed
representation models via Grassmann metric; iii) we embed the
Grassmann manifold into an abstract Hilbert space.

To test the feasibility of proposed strategy, multiple compar-
ative studies have been done on MSTAR SAR database. The
experimental results demonstrate: (i) the proposed representa-
tion model could characterize the scattering phenomenology
of SAR image, (ii) the proposed strategy could deal with
configuration variation and depression change because the
representation model allows for translation, scaling, and spatial
rotation. (iii) the proposed strategy demonstrates great potential
for real-world applications, e.g., noise corruption, articulation,
occlusion, and small size of training set.

The performance achieved using the proposed strategy is
the result of coupling steerable wavelet frames and kernel
analysis of sparse coding. The redundant dictionary is formed
by concatenating the mappings of training sample directly. An
intriguing question for our future work is how to generate
a more compact and discriminative dictionary using the de-
veloped learning skills. This topic has also been exploited in
the recent studies [30], [33]. On the other hand, the recent
development on kernel fusion, i.e., multiple kernel learning in
the framework of sparse representation, can be also exploited.
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