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Abstract— Target recognition in synthetic aperture
radar (SAR) images has become a hotspot in recent years.
The backscattering characteristic of target is a significant issue
taken into consideration in SAR applications. Almost all of
the previous work focus on the scatter point extraction to
depict the backscattering characteristic of the target; however,
a point-target corresponds to a region rather than a single
point due to the convolution during the imaging. Based on
this fact, we first analyze the extent to how a point-target
spreads, then propose a novel scatter cluster extraction (SCE)
method, and utilize the scatter cluster as the feature to solve
the airplane recognition problem in SAR images. In practice,
there often exist interfering objects near the target to be
classified. To overcome this issue, we design a reweighted sparse
representation (RSR)-based automatic purifying method by
assigning a weight to each element of the feature iteratively
according to the representation error. Since the element with
large representation error always corresponds to the interfering
objects, we give it a small weight, consequently suppressing the
influence of the interference. Experimental results demonstrate
that the proposed SCE method outperforms the traditional
scatter point extraction-based method as well as some state-
of-the-art methods. The comparison result also validates the
effectiveness of the proposed RSR method.

Index Terms— Airplane recognition, reweighted sparse
representation (RSR), scatter cluster extraction (SCE), synthetic
aperture radar (SAR) images.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an effective earth
observation system, which unlike optical systems, is not

significantly affected by meteorological conditions. Target
recognition in SAR images is a worth studying problem in
the field of SAR application and has attracted a lot of interest
recently.

As a hotspot, there have been some literature working on
the target recognition in SAR images. Zhang et al. [1] classify
three kinds of ships by analyzing the features of these ships.
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The constant false-alarm rate (CFAR) algorithm is used to
extract the scatter points of the target and the identity of a
query ship is obtained through a decision tree designed for
the three kinds of ships. In [2], the geometric information
together with the density of the radar cross section (RCS)
of ships is extracted as the feature. Then the sparse rep-
resentation classifier (SRC) is used to obtain the identity
of the target. We denote this method as the SRC method.
Zhang et al. [3] propose a kernel SRC (KSRC)-based method,
in which KSRC rather than the traditional SRC is applied.
The Gabor-support vector machine (SVM) method for SAR
target recognition is proposed in [4], in which Gabor filter
is used to extract the feature and SVM is applied as the
classifier. As sample numbers are usually inadequate for target
recognition in SAR images, the study in [5] utilizes the
simulated images to train the classifier and use the real images
to test. Hu’s invariant moments are used in [6] to extract the
stable feature of the target and SVM is applied as the classifier.
Chen et al. [7] utilize corner detectors to extract the salient
points vector (SPV) of the airplane, and recognize the target
via template matching.

In this letter, we propose a target recognition method
in SAR images via scatter cluster extraction (SCE) and
reweighted sparse representation (RSR), and apply the method
to airplane recognition in TerraSAR-X images. Specifically
speaking, three types of airplanes, B52, B707, and straight
wing (SW) airplanes shown in Fig. 1 are used as the targets.
The target recognition problem is not at all straightforward
as two targets belonging to the same category may vary a lot
when their incidence or azimuth angles differ. It is indicated
in [8] that in high-resolution SAR images, the RCS of the
target is mainly determined by the geometric structure of its
subcomponents, and the subcomponents of the target will form
strong scatter points. Consequently, almost all of the previous
work emphasizes the extraction of the scatter point, such as
CFAR and SPV detection. However, according to the imaging
theory of SAR, a point-target corresponds to a region rather
than a single point in the image due to the convolution during
the imaging. In this letter, we refer to the backscattering region
of the point-target or the subcomponents of the target as scatter
cluster. It is apparent that extracting the scatter cluster to
describe the characteristic of the target is more reasonable.
On the other hand, most of the literature focuses on the
case when there are no or few interfering objects near the
target to be classified or when the image is purified manually
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Fig. 1. Three types of airplanes in TerraSAR-X images. B52 (left),
B707 (middle), and SW (right).

Fig. 2. Absolute of the 2-D sinc function.

in advance. However, in the real application, there always exist
interfering objects near the target, making the background
complex and so increasing the difficulty of the problem.
To overcome this issue, we design an RSR-based automatic
purifying method by assigning a weight to each element of the
feature iteratively according to the representation error. As the
element with large representation error always corresponds to
the interfering objects, we give it a small weight, consequently
suppressing the influence of the interfering objects.

The remainder of this letter is organized as fol-
lows. Section II analyzes the scatter cluster of the tar-
get in SAR images and details how to extract the scatter
cluster. In Section III, an airplane recognition method via
SCE and RSR is proposed. The experimental results are shown
in Section IV and the conclusions are given in Section V.

II. SCATTER CLUSTER EXTRACTION

In this section, we first analyze the backscattering properties
of SAR targets, and then detail the proposed SCE method.
SAR target consists of a set number of subcomponents,
each of which can be viewed as a combination of several
point-targets. Ideally, a point-target corresponds to a single
point in the image, however, due to the convolution dur-
ing the imaging, the point will be diffused in the image.
Suppose there is a point-target located in (m, n) with inten-
sity I , then it can be written as Iδ (i − m, j − n), where
δ (i, j) is the 2-D Dirichlet function. After the convolution,
it will change to I |Sinc(i − m, j − n)|, where Sinc(i, j) =
((sin πai)/(πai))((sin πbj)/(πbj)) is the 2-D sinc function.
The coefficients a and b are determined by imaging parame-
ters, satisfying a = Bs/ fs and b = Ba/ f p , where Bs , fs ,
Ba , and f p are the bandwidth of the signal, sampling fre-
quency, processing bandwidth, and pulse repetition frequency.
Fig. 2 plots the absolute value of Sinc(i, j), and the intensity of
the first sidelobe is −13.26 dB, that is, 0.2173 of the maximum
value in magnitude. It is worth noting that the decrement of
the first sidelobe is independent of the parameters a and b.

Fig. 3. Comparison results of SCE and CFAR for a B52 (top) and
a B707 (bottom) airplane. (a) SCE results. (b) Binary images obtained via
SCE. (c) Binary images obtained via CFAR.

The principle of SCE is based on the fact that the center of
the cluster should be a peak point that is surrounded by several
points with decreased intensity. For a peak pixel x p , to obtain
the cluster it belongs to, search the points x surrounding it,
if the intensity ratio between x and x p is larger than a preset
value τ , then x is treated as the point in the cluster. τ can be set
to 0.2173, which is the intensity ratio between the sidelobe and
the peak point. In order to make the SCE result more robust,
two more constraints are added to the method. One constraint
is that if a peak value is already in one cluster, it will not be
considered as the center point in any other clusters. The other
constraint is that the radius of the cluster should not be too
small, in which case, the points in that cluster are likely to
be the points with strong intensity caused by noise. Based
on the above analysis, we proposed a seed-growing-based
SCE method that consists of the following four steps.

1) Step 1: Set the parameters used in SCE, that is, the num-
ber of clusters N , the minimum intensity ratio τ , and the
minimum radius of clusters rmin.

2) Step 2: Sort pixels of the image in descending order and
take out the points one by one as the seed point when
the number of clusters is less than N .

3) Step 3: For a seed point, if the point is already in a
certain cluster, take the next point, otherwise, set the
current radius of the cluster r at 0, then gradually
increase the radius of the cluster and calculate the mean
intensity of the pixels in the circle with radius r until
the ratio between the mean intensity and the intensity of
the seed point is less than τ .

4) Step 4: If the radius of the cluster is not smaller than
rmin, set all the points in the cluster as the scatter points
and go to Step 3 to process the next point until the
number of clusters is up to N .

Fig. 3 shows the SCE results of a B52 and a B707,
and compares the binary images obtained via SCE and CFAR.
As illustrated in Fig. 3, after SCE the noise can be removed
markedly; in the meanwhile the shape of the target is reserved.
It is also indicated from Fig. 3 that SCE has better abil-
ity to extract scatter points than CFAR, which is a point
extraction-based method.
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Fig. 4. Principal direction extraction through HT. (a) Detect one line
using HT. (b) Detect three lines using HT.

III. AIRPLANE RECOGNITION VIA SCE AND RSR

A. Preprocessing

Before recognizing the target, we should align the image
first. Hough transform (HT) [9] is used to extract the principal
axis of the target. HT tends to be affected by strong points,
Fig. 4(a) for example. To solve this problem, we detect several
lines, as shown in Fig. 4(b), and find the two closest lines in
terms of the angle of the line. The mean angle of the two lines
is looked upon as the principal direction of the target. Then
the image is rotated accordingly and by scanning each line of
the rotated image, we can get the principal axis of the target.
Finally, by searching the first and the last bright points along
the principal axis, we can obtain the head and the tail of the
airplane. Here, bright points are defined as the points whose
intensity is larger than τm xm , where xm is the maximum value
of the image and τm is a preset parameter. We add a constraint
that the first and the last bright points should be surrounded
by other bright points to reduce the influence of noise. When
the head and the tail of the airplane are determined, the central
point can be obtained and the images are aligned according to
the central point.

B. Airplane Recognition Through Reweighted
Sparse Representation

The aligned binary image is divided into blocks and the
density of scatter points in each block is concatenated to form
the feature. The SCE feature has the following two advantages.

1) The feature provides not only density but also position
information of the scatter point, therefore, although
roughly, it reflects the topology of scatter clusters of
the target, which is significant for target recognition in
SAR images.

2) The feature is insensitive to image misalignment, which
is inevitable in a real application.

As suggested from the recent research in the pattern recog-
nition field, SRC is an effective classifier and has been widely
used in many classification problems. We will briefly introduce
SRC first, and then detail the proposed RSR method. Denote
by Xk the training data set of the kth category, and each
column of Xk is one training sample in the kth category;
here the training sample refers to the image stacked as a
vector or the feature extracted from the image. Suppose there
are K categories to be classified, let X = [X1 . . . XK ] be the
whole training data set. SRC codes the query data y over X
by solving the following �1-norm minimization problem first:

α̂ = arg min
α

{‖y − Xα‖2
2 + λ‖α‖1

}
(1)

where α is the representation coefficient and λ is the
Lagrangian factor that balances the tradeoff between the
fidelity and the sparsity terms. Equation (1) is essentially a
sparsity constrained convex optimization problem that searches
α to make y ≈ Xα and in the meantime to make α as sparse
as possible with respect to �1-norm. α̂ can be written as
α̂ = [α̂1; . . . ; α̂K ], where α̂k is the coefficient corresponding
to the kth category. Then SRC computes the representation
residual of each category as follows:

εk = ‖y − Xk α̂k‖2 (2)

and the identity of the query data y, denoted by ky, is obtained
by finding the category that can represent y with the minimum
residual, that is

ky = arg min
k

{εk}. (3)

It is known that only when the error e = y − Xα obeys the
Gaussian distribution, the solution of (1) is the maximum like-
lihood estimation solution of the problem. However, usually e
does not meet this condition in practice, especially when there
are interfering objects near the target, as some elements of e
will become very large, and in this case the recognition rate
of SRC will decrease because SRC does not take the issue
into account. Although one can use the data with interfer-
ing objects as the training sample, the improvement is not
obvious as the position of the interfering object is completely
random. In order to reduce misclassification resulting from
the interfering objects, we design an RSR automatic purifying
method by assigning each element ei of e with a weight wi .
As ei with a large value often corresponds to the region having
interfering objects, we assign it with a small weight wi . Define
a diagonal matrix W whose diagonal element is the weight wi ,
i = 1, . . . , n, then the RSR method can be formulated as
solving the following optimization problem:

α̂ = arg min
α

{‖W(y − Xα)‖2
2 + λ‖α‖1

}
(4)

where wi satisfies

wi = fu

(
2exp

( − e2
i /h

)

1 + exp
( − e2

i /h
)

)

(5)

where h is a constant and fu(x) is a thresholding function
with parameter u defined as follows:

fu(x) =
{

x, x ≥ u

0, x < u.
(6)

We initialize W with the identity matrix, that is, W(0) = I,
and then iteratively update the weight matrix W and the
representation coefficient α. Suppose after t iterations the
weight matrix is W(t), then by solving (4) we can obtain
the representation coefficient α̂

(t). Therefore, the error e(t)

can be calculated through e(t) = y − Xα̂
(t), then wi is

reweighted via (5) to get W(t+1). This process is repeated
until the change of W between two adjacent iterations is
small enough or t reaches the number of iterations. To explain
why RSR works, let us look at the first term of the object
function in (4). If we rewrite Wy as y′ and WX as X′, (4)
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has the same form as (1) and the difference lies in that y is
reweighted using W. When ei is very small, wi approximates
one, therefore y ′

i in y′ is nearly equal to yi ; and when ei is
large which often corresponds to the region with interfering
objects, wi is less than one, consequently the corresponding
element y ′

i is smaller than yi because y ′
i = wi yi . In RSR,

the larger the representation error ei is, the smaller the element
y ′

i becomes; therefore, the RSR method has the ability to
reduce the influence of the interfering objects. The above fact
can be seen more clearly by expanding ‖W(y − Xα)‖2

2 as∑
i w2

i (yi −xT
i α)2, where xT

i is the i th row of X. It is obvious
that yi with a small wi plays a less role in the object function
benefiting from the reweighted operation. When the iteration
terminates, we can use (2) and (3) to obtain the identity of the
query target. A better scheme is training an SVM classifier
using the training data and making y′ = W(T )y as the test data,
where W(T ) is the weight matrix when the iteration terminates.
As SVM has excellent ability for problem with small sample
size and y′ obtained through RSR method can be seen as a
purified version of y, it can achieve better recognition result.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the effectiveness of the proposed method, several
experiments are conducted on four HH-polarized TerrarSAR-X
spotlight amplitude images of the aircraft boneyard in Davis.
The incidence angles of the four images are 45.1°, 45.2°,
45.1°, and 41.3°, respectively, and the spatial resolution is
0.5 m × 0.5 m. We manually collect two airplane data
sets from the four images. Data set I consists of 125 B52,
129 B707, and 134 SW airplanes, and we manually remove
apparent interfering objects if they exist. Data set II consists
of 10 B52, 10 B707, and 10 SW airplanes with severe
interfering objects. The lengths of B52, B707, and SW are
48.5, 46.61, and 34 m, and the width of their wings are 56.4,
44.42, and 22 m, respectively. The selected targets consist
of 128 × 104 pixels.

When using the SCE feature, there are three schemes
to obtain the identity of the target. We denote the method
using SVM classifier as SCE-SVM, using RSR to purify the
data followed by SRC as SCE-RSR-SRC, and using RSR to
purify the data followed by SVM classifier as SCE-RSR-SVM.
We compare these three methods with the principal compo-
nent analysis (PCA)-SVM method, the CFAR-SVM method,
the SRC method in [2], the KSRC method in [3], the Gabor-
SVM method in [4], and the SPV method in [7] on data set
I. The parameters in the proposed method are set as follows:
N is set to 50, τ is set to 0.3, rmin is set to 1, τm is set
to 0.5, and M is set to 64. For SCE-RSR-SRC and SCE-
RSR-SVM, we use the �1-ls method [10] to solve the �1–
norm minimization problem and the number of iterations is
set to 10. We randomly select p percent samples of data
set I as the training data and take the remainder samples
as the testing data. To decrease the influence of the sample
selection, the experiment is conducted several times and we
take the average recognition rate as the final result. Table I
lists the recognition rates of various methods and the average
runtimes of PCA-SVM, CFAR-SVM, SRC, KSRC, Gabor-
SVM, SPV, SCE-SVM, SCE-RSR-SRC, and SCE-RSR-SVM

TABLE I

COMPARISON OF RECOGNITION RATES (%) OF DIFFERENT METHODS

TABLE II

RECOGNITION RATES (%) OF SCE-RSR-SVM WITH VARIOUS τ

are 0.52, 624.82, 160.03, 72.37, 355.2, 124.66, 7.09, 176.94,
and 180.30 ms, respectively. The experimental results show
the following.

1) The proposed SCE-based methods outperform the tradi-
tional PCA and CFAR-based methods, which validates
the effectiveness of the SCE feature.

2) The SCE-RSR-SVM method achieves the best recogni-
tion rate and by further analyzing the probably confusion
matrix of each method, we can see that compared with
the other methods, SCE-RSR-SVM has better ability to
distinguish between B52 and B707, and in the meantime
is competitive for recognizing the SW airplanes.

3) SCE-RSR-SVM outperforms SCE-RSR-SRC, and the
reason is partly that SRC needs a certain amount training
data to get a satisfactory result; however, even when p
is set to 0.3, the number of the training data is still
small. It can be noticed that with the increase of p,
the gap in recognition rates between SCE-RSR-SRC and
SCE-RSR-SVM reduces.

4) SCE-RSR-SVM is better than SCE-SVM, which demon-
strates that RSR is an effective tool to purify the data.

To see how parameter τ affects the proposed method,
we set τ to different values and the recognition rates of
SCE-RSR-SVM with various τ are shown in Table II. It is
indicated that the optimal τ in the experiment is 0.3, and too
small or too large a value of τ will both decrease the
recognition rate. The incidence and azimuth angles play a
key role in SAR target recognition. To discuss the effect of
the incidence and azimuth angles on the proposed method,
we conduct the following experiment. First, we divide data
set I into two parts S1 and S2 according to the incidence angle,
and samples having similar incidence angles are grouped into
one set. Then part of samples in S1 are selected to form the
training set, the remaining samples in S1 are taken as the
testing set S1, and samples in S2 are taken as the testing set S2.
Therefore, the samples in S1 and the training set have similar
incidence angles while the incidence angles of the samples in
S2 and the training set are quite different. Table III lists the
recognition rates of SCE-RSR-SVM on S1 and S2. It can be
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TABLE III

RECOGNITION RATES (%) OF SCE-RSR-SVM ON S1 AND S2

TABLE IV

RECOGNITION RATES (%) OF SCE-RSR-SVM ON T1 AND T2

Fig. 5. Comparison of the image and SCE results before and after
reweighting. (a) Image having close targets. (b) Image slice before
reweighting. (c) SCE result of (b). (d) Image slice after reweighting. (e) SCE
result of (d).

seen from Table III that when the incidence angles of the train-
ing and the testing data are quite different, the performance of
the approach will decrease evidently. A similar experiment is
conducted to reveal the influence of the azimuth angle. In the
experiment, data set I is divided into the training set and the
testing sets T1 and T2. The samples in T1 and the training
set have similar azimuth angles while the azimuth angles of
the samples in T2 and the training set are quite different.
The experimental result shown in Table IV indicates that when
the azimuth angles of the training and the testing data are
quite different, the performance of the approach will decrease
evidently.

As mentioned in Section III, SCE-RSR-SVM would have
more advantages when the image has severe interfering
objects. To validate this, we conduct another set of experi-
ments, in which 30% samples of data set I are used as the
training data and the samples in data set II are taken as
the testing data. Since it is hard to find the major direction
of the target when the interference is severe, we manually
align the testing data. The recognition rate of SCE-SVM and
SCE-RSR-SVM are 73.33% and 80%, respectively, and the
result indicates that SCE-RSR-SVM has more advantages than

SCE-SVM when the data have interfering objects, recalling
that in the first set of experiment the two methods have
similar performances when p = 0.3. Fig. 5 illustrates why
RSR works when dealing with an image having interfering
objects. Fig. 5(a) is an image having close targets, therefore
when we cut the image slice from this image, there will
be severe interfering objects near the target in the image
slice as shown in Fig. 5(b). Fig. 5(c) is the SCE result of
Fig. 5(b). It is apparent that when directly using Fig. 5(c) as
the feature, neither SVM nor the SRC can obtain the correct
result. Fig. 5(d) and (e) gives the reweighted image and the
corresponding SCE result. It can be seen clearly that most
of the interfering objects are removed through reweighting
in RSR, so a correct result can be obtained.

V. CONCLUSION

An SCE and RSR-based method for airplane recognition is
proposed in this letter. The feature obtained via SCE can better
depict the characteristic of the target than that obtained through
the traditional point extraction-based method, as a point-target
corresponds to a region in the image due to the convolution
process in the imaging. We then design an RSR-based auto-
matic purifying method by assigning a weight to each element
of the feature iteratively according to the representation error.
The experimental results demonstrate the effectiveness of the
SCE feature and the RSR method, especially when the data
are affected by interfering objects. In addition, the proposed
method can be generalized to other recognition problems in
SAR images without major modification.
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