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Networks with Noise Uncertainty

Mengwei Sun, Chenglin Zhao, Su Yan, Bin Li

Abstract—This correspondence investigates a joint spectrum

sensing scheme in cognitive radio networks with unknown and

dynamic noise variance. A novel Bayesian solution is proposed to

recover the dynamic noise variance and detect the occupancy of

primary frequency band simultaneously. The states of primary

users are detected based on particle filtering technology, and

then, the noise parameters are tracked by using finite dimen-

sional statistics for each particle based on marginalized adaptive

particle filtering. Simulation results are provided to validate

that the proposed method can improve the sensing performance

significantly and target the dynamic noise variance accurately.

Index Terms—Spectrum sensing, dynamic noise variance,

marginalized adaptive particle filtering, joint estimation.

I. Introduction

Cognitive radio (CR), as an e↵ective technology to solve
spectrum scarcity problem, was first proposed in [1]. CR
has a potential to accomodate for the 5th generation (5G)
communication system, since it can fully utilize all avail-
able non-contiguous spectrums flexibly and e�ciently in 5G
wireless networks [2]. However, the main challenge of CR
is to circumvent inference to primary systems. One strategy
for this challenge is that the secondary users (SUs) access to
frequency bands opportunistically which are detected to be
vacant. This flexible approach is defined as spectrum sensing
(SS). It’s important to note that the prior knowledge of noise
distribution is crucial for SS. However, the SUs often need to
detect primary signals accurately with imperfect knowledge
of noise level which is referred to as noise uncertainty when
implementing SS in the 5G communication system.

In order to deal with noise uncertainty, various SS methods
are investigated [3]-[5]. Dong Chen et al. propose a com-
bination method of cooperative SS with adaptive multiple
thresholds in [3]. And according to [4], Chunyi Song et al.
present a multi-antenna based SS method using the generalized
likelihood ratio test (GLRT) paradigm to tackle noise uncer-
tainty. These reports can address the noise uncertainty issue
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but are impractical to be applied to single-node single-antenna
(SNSA) systems due to the high complexity of communication
devices. In [5], Yonghong Zeng et al. present a SS algorithm
based on the di↵erence of statistical covariance matrix be-
tween transmitted signals and pure noise. This algorithm can
be applied to SNSA systems, nevertheless, it requires high
correlation of transmitted signals in space or time. In addition,
the properties of noise process are often non-stationary due
to the variability and uncertainty of wireless or mobile com-
munication environment. But unfortunately, existing methods
are designed for noise process with static statistical properties
and the performance will deteriorate when being applied to
CR systems with dynamic noise properties.

To overcome the challenge caused by non-stationary noise
properties and also to alleviate the di�culty in future flexible
deployments (e.g. D2D communications), we propose an ef-
fective SS method which can detect the PU states and track the
noise variance jointly based on Bayesian inference framework.
The proposed sensing algorithm is easy to be applied in SNSA
systems with dynamic noise variance and doesn’t require the
correlation of transmitted signals. The main contributions of
this correspondence can be summarized into two aspects.

Firstly, we formulate a dynamic state-space model (DSM) to
depict SS system with dynamic noise variance. The PU states
and noise variance are considered as hidden states and only
the sampling observation of received signals is known to SU,
hence the SS is converted into a blind estimation problem.

Secondly, based on the formulated DSM, a sequential esti-
mation scheme is proposed which can monitor PU states and
dynamic noise variance jointly and in real time at the receiver.
This joint estimation framework is accomplished by utilizing
marginalized adaptive particle filtering (MAPF) technology
[6]. By tracking noise variance, the information uncertainty
can be suppressed to the minimum, and the improvement of
sensing performance will be achieved. Moreover, as an unex-
pected gift, the recovered noise variance will go far towards
further CR enhancements especially in power allocation for
spectrum sharing and is also helpful for SU to recognize the
radio environment.

The rest of this correspondence is organized as follows.
In Section II, we provide the DSM of SS system. The joint
blind sensing algorithm is introduced in detail in Section III.
In Section IV, numerical results and performance analysis are
provided. And finally, conclusions are drawn in Section V.

The notations used in this correspondence are defined as
follows. Symbols for vectors and matrices are in lowercase
boldface and uppercase boldface respectively. b·c means the
floor value. E (·) denotes the ensemble average.
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II. SystemModel

We consider the following discrete time dynamic state-space
model which relates the hidden PU state S n and the noise
variance �2

n to the observation yn.

[S n, xn] = �([S n�1, xn�1]) (1)

�2
n = �(�2

0:n�1) (2)

yn =  (xn, vn,�
2
n) (3)

Here, S n in (1) denotes PU state and comes into two forms:
active and dormant, and xn represents the corresponding PU
transmitted signal. The evolution behavior of S n is character-
ized by TSMC [7] [8]. And the transition probability matrix
(TPM) can be written as:

X =

2
666664
pd!d pd!a

pa!d pa!a

3
777775 =

2
666664

p00 1 � p00

1 � p11 p11

3
777775 (4)

In CR system, SU monitors PU states and transmits its own
signal periodically, and this time frame structure is defined as
sensing-transmission slot (STS) which comprises two parts,
namely sensing time Ts1 and signal transmission time Ts2
respectively, and Ts1+Ts2 = Ts [9]. It should be noted that the
PU state remains the same in one STS. In sensing time, the
transmitted signals of PU xn will be sampled and processed by
SU. In this correspondence, M is set to denote the sampling
size and n represents the STS index.

In (2), �2
n is the actual noise variance at the n-th STS, and

vn = [vn,0, vn,1, . . . , , vn,M�1] in (3) is an i.i.d sampling noise
sequence where vn,m ⇠ N(0,�2

n). It’s well-known that a station-
ary white Gaussian assumption of background noise is only
an approximation as it ignores the distributional uncertainty
[10]. Therefore, we assume that the receiver can narrow down
the noise process within a set of distributions denoted byW",
where " represents the amount of average signal to noise ratio
(SNR) uncertainty, i.e., there is at most " dB uncertainty inW"

[11]. Since the radiometer only sees energy, the distributional
uncertainty of actual noise variance can be summarized in an
interval �2

n 2 ⌃ = [(1/⇢)�2
0, ⇢�

2
0] where ⇢ = 10

"
10 and �2

0 rep-
resents the nominal noise variance which is associated with the
uncertainty setW". In addition, the noise variance is assumed
to be slow varying in this correspondence and a third order
TS-AR process is utilized to model the dynamics of noise
variance in view of autoregressive (AR) model can represent
di↵erent types of random process and describe certain time-
varying processes in signal processing [12]. Specifically, the
state transform equation � in (2) is represented by:

�2
n† = a0�

2
n†�1 + a1�

2
n†�2 + a2�

2
n†�3 + z†n, �

2
n† 2 ⌃ (5)

where zn† is white noise. n† denotes noise variance time index,
the relationship between n† and STS index n is written as:
n† = bn/Jc, J is an integer greater than 1. Specifically, the
evolution of noise variance is supposed to be slow varying and
will be static over several STSs. Therefore, the STSs can be
classified into two categories due to the di↵erent relationship
with noise variance coherent period, i.e., first slot and non-first
slot, and noise variance changes only in the first slots.

There are two hypotheses: H0 denotes that the PU signal
does not exist, while H1 denotes that the PU signal exists.
The observation under these two hypotheses are given by:

yn =

8>><
>>:

PM
m=1 vn,m, H0

PM
m=1(xn,m + vn,m), H1

(6)

III. Spectrum Sensing Algorithm
The purpose of the proposed joint estimation algorithm

is to detect hidden PU states S 0:n together with unknown
noise variance �2

0:n. We address this problem by concerning
the joint posterior probability of transmitted signal and noise
variance, i.e. p(�2

n, x0:n|y0:n). From Bayesian perspective, the
joint estimation could be achieved by maximum a posteriori
probability (MAP) criterion.

(b�2
0:n,bx0:n)MAP = arg max

h
p(�2

0:n, x0:n|y0:n)
i

(7)

Following the concept of marginalized particle filtering
(MPF) [6], we decompose the joint posterior probability in
(7) into conditional densities as follows:

p(�2
0:n, x0:n|y0:n) = p(�2

0:n|x0:n, y0:n)p(x0:n|y0:n) (8)

We can conclude from (8) that the joint SS method consists
of three steps: estimate PU transmitted signal using PF [13],
track noise variance based on marginalization concept [14],
and detect PU state by Neyman-Pearson (N-P) detector.

A. Estimation of PU Transmitted Signal
The posteriori distributions of transmitted signal xn is ap-

proximated with discrete random measures based on PF [15],
[16], and then, xn is estimated by MAP criterion.

b
xn ⇡ arg max

2
666664

PX

i=1

!i
n�(xn � x

i
n)
3
777775 (9)

Specifically, the particles are generated from an important
distribution, i.e. xi

n ⇠ ⇡(xn|xi
0:n�1, y0:n). And then, the important

weights can be evaluated by [17]:

e!i
n /

p(xi
n, yn|xi

0:n�1, y0:n�1)
⇡(xi

n|xi
0:n�1)

!i
n�1 (10)

where the marginal distribution p(xi
n, yn|xi

0:n�1, y0:n�1) can be
computed by integrating out the unknown noise variance:

p(xi
n, yn|xi

0:n�1, y0:n�1)

=

Z
p(xi

n, yn|�2
n, x

i
0:n�1, y0:n�1)p(�2

n|xi
0:n�1, y0:n�1)d�2

n
(11)

The predictive distribution p(�2
n|xi

0:n�1, y0:n�1) can be sim-
plified as p(�2

n|n�1) and we can rewrite (11) as:

p(xi
n, yn|xi

0:n�1, y0:n�1)

=

Z
p(xi

n, yn|�2
n, x

i
0:n�1, y0:n�1)p(�2

n|n�1)d�2
n|n�1

/
Z

p(yn|�2
n|n�1, x

i
0:n, y0:n�1)p(xi

n|xi
0:n�1)p(�2

n|n�1)d�2
n|n�1

(12)

Here, the prior probability of PU signal p(xi
n|xi

0:n�1) is
achieved by the TPM given in (4). And the likelihood function
follows Gaussian distribution and can be obtained by:
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p(yn|�2
n|n�1, x

i
0:n, y0:n�1) =

1
q

2⇡M�2
n|n�1

exp
0
BBBBB@�

yn �PM
m=1 xi

n,m

2M�2
n|n�1

1
CCCCCA

(13)
Then, the important weights is normalized and the transmit-

ted signal is derived with particles and associated importance
weights based on asymptotical MAP criterion in (9).

B. Estimation of noise variance

It should be noted that the evolution of noise variance is
characterized by slow varying, so it is di�cult to get reliable
and fixed estimation for the whole sensing process based
on a refinement after several STSs. In order to overcome
this problem, we designed an adaptive estimation mechanism
which can track the evolution of noise variance in real
time. More specifically, the estimated result of noise variance
b�2

n equals to the statistical expectation of current posterior
probability p(�2

n|y0:n) depending on unbiased estimation. And
p(�2

n|y0:n) is approximated by the marginal posterior probabil-
ity p(�2

n|xi
0:n, y0:n) and the associated importance weights !i

n.
Furthermore, the hyper-parameters of the marginal posterior
probability are updated based on the the concept of conjugacy
prior and the adaptive mechanism of forgetting factor designed
in this correspondence. The concrete calculated steps for noise
variance are shown as follows.

For noise following normal distribution with known mean
and unknown variance, the conjugate prior is defined as an
inverse Gamma (iG) distribution [14] and the hierarchical
Bayesian model can be written as:

vn,m|�2
n ⇠ N(0,�2

n) (14)

�2
n|n�1 ⇠ iG(↵i

n|n�1, �
i
n|n�1) /

0
BBBBB@

1
�2

n|n�1

1
CCCCCA
↵i

n|n�1+1

exp
0
BBBBB@�
�i

n|n�1

�2
n|n�1

1
CCCCCA
(15)

where ↵i
n|n�1 and �i

n|n�1 are the predictive hyper-parameters.
Based on the derivation presented in (16), the posterior prob-
ability of noise variance also follows iG distribution.

And the hyper-parameters of the posterior distribution can
be computed recursively as follows:

↵i
n|n = ↵

i
n|n�1 +

1
2

(17)

�i
n|n = �

i
n|n�1 +

yn �PM
m=1 xi

n,m

2M
(18)

where the predictive hyper-parameters are updated as ↵i
n|n�1 =

�↵i
n�1|n�1 and �i

n|n�1 = ��
i
n�1|n�1. Here, � denotes forgetting

factor which specifies how quickly the filter reduces the
influence of past sample information. In this correspondence,
we design an adaptive mechanism of forgetting factor. I.e.,
� = �1 when STS is the first, and � = �2 when it is the non-
first, here, �1 < �2 < 1. Since the noise variance stays the same
in non-first slots and more past sample information can be
used to estimate the noise variance. This proposed mechanism
can take advantage of the slow varying characteristic of noise
variance and enhance estimation accuracy.

After ↵i
n|n and �i

n|n are updated, the marginal posterior of �2
n

can be computed relying on marginalization concept.

p(�2
n|y0:n) =

Z
p(�2

n|x0:n, y0:n)p(x0:n|y0:n)dx0:n

⇡
PX

i=1

p(�2
n|xi

0:n, y0:n)!i
n

(19)

Finally, depending on unbiased estimation, the estimated
result of noise variance equals to the statistical expectation.

b�2
n = E(�2

n|y0:n) =
PX

i=1

�i
n|n

↵i
n|n � 1

!i
n, ↵

i
n|n > 1 (20)

C. Detection of PU State
N-P decision policy is a simple threshold policy that only

depends on the comparison of the observation at the current
slot with the calculated threshold. Specifically, after the noise
variance is estimated in real time, the threshold at the current
slot #n can be calculated for a target probability of false alarm
which is defined as p f = p(H1|H0).

#n =
p

2Mb�nerf�1(1 � 2p f ) (21)

The detection result of PU state bS n can be achieved using
N-P policy described as:

yn
H0
Q

H1
#n (22)

And then, the detection probability pd which is defined as
pd = p(H1|H1) can be calculated.

IV. Simulation Results
The actual SNR is set as S NR† and it can be calculated by:

S NR† = 10log
Ex

E�2
= 10log

1
MN

PN
n=1

PM
m=1 |xm,n|2

1
N

PN
n=1 �

2
n

(23)

And the nominal SNR is denoted by S NR0. As mentioned
earlier, when the noise uncertainty exists in practice, the actual
noise variance �2

n is distributed randomly around its nominal
value �2

0 , i.e., �2
n 2 ⌃ = [(1/⇢)�2

0, ⇢�
2
0], ⇢ > 1. As far as

the S NR† is concerned in (23), it will be randomly ranged in
[S NR0 � ", S NR0 + "] dB. Here, " = 10log⇢.

In this section, we illustrate the sensing performance of the
proposed SS method compared with covariance absolute value
(CAV) detection algorithm proposed in [5] and traditional
energy detection (ED) method with dynamic noise variance.
And then, we evaluate the e↵ects to estimation performance
caused by di↵erent system parameters.

A. Comparison of sensing performance
1) The detection performance is firstly described through

ROC curves in Fig.1, i.e., pd = p(H1|H1) versus p f =
p(H1|H0). Here, S NR† is set to be 0dB and " = 1dB. It
is obvious that the proposed algorithm can achieve higher
detection probability under the same probability of false alarm.
The specific causes may be grouped under two heads. Firstly,
based on the accurate real-time estimation of noise variance,
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0:n, y0:n) =
p(yn|�2

n, x
i
0:n, y0:n�1)p(xi

n|�2
n, x

i
0:n�1, y0:n�1)p(�2

n|xi
0:n�1, y0:n�1)

p(yn|xi
0:n, y0:n�1)p(xi

n|xi
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=
p(yn|�2
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i
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n|xi
0:n�1, y0:n�1)

R
p(yn|�2

n, x
i
0:n, y0:n�1)p(�2

n|xi
0:n�1, y0:n�1)d�2

n

/ p(yn|�2
n, x

i
0:n, y0:n�1)p(�2

n|n�1) / 1
p

2⇡M�2
n

exp
0
BBBBB@�

yn �PM
m=1 xi

n,m

2M�2
n

1
CCCCCA ⇥

 
1
�2

n

!↵i
n|n�1+1

exp
0
BBBBB@�
�i

n|n�1

�2
n

1
CCCCCA

/
 

1
�2

n

!⇣↵i
n|n�1+

1
2

⌘
+1

exp

2
6666664�
�i

n|n�1 +
⇣
yn �PM

m=1 xi
n,m

⌘
/ (2M)

�2
n

3
7777775

(16)

an accurate real-time threshold can be obtained which can be
used for N-P decision policy. By contrast, the threshold for ED
method is obtained relying on the nominal noise variance �2

0
and it can’t be accurate. Secondly, CAV method can suppress
the information uncertainty when there is high correlation
of transmitted signals in space or time. The correlation of
transmitted signals set in this correspondence does exist but is
not high enough, so the sensing performance of CAV method
is beyond ED method but still behind the proposed method.
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ED Method
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proposed method

Fig. 1. ROC curves of the proposed algorithm compared with CAV and ED

2) Next, we set the target p f = 0.1, and the detection
probabilities pd of di↵erent uncertainty parameters " under
increasing S NR† are compared in Fig.2 (The corresponding
actual average value of p f is shown in Table I). Here, " = 0, 1,
and 5dB due to the parameter setup in [5] and [10]. And the
x-axis in Fig.2 denotes the true value of SNR, i.e, S NR†.

TABLE I
Probabilities of false alarm

method
" 0dB 1dB 5dB

ED 0.1090 0.1117 0.1266
CAV 0.1000 0.1001 0.1001
proposed method 0.0928 0.0927 0.0939

From Table I and Fig.2, we can see that p f of ED exceeds
the target false alarm probability and pd of ED is lower than
other methods and very sensitive to noise uncertainty while p f
and pd of the CAV and proposed methods are not very sen-
sitive to noise uncertainty. Since the information uncertainty
of noise can be suppressed to the minimum by tracking the
noise variance accurately with the proposed algorithm. And the
validity of the CAV algorithm only relies on the assumption
that the signal samples are correlated.
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Fig. 2. Detection performance comparison under di↵erent noise uncertainty

B. Estimation performance with di↵erent parameters
1) In this section, we firstly evaluate the e↵ects of changing

forgetting factors to the estimation performance of noise
variance as shown in Fig.3. The estimation results are provided
for two realizations, i.e., realization1 {�1 = 0.98, �2 = 0.985}
and realization2 {�1 = 0.96, �2 = 0.965}. One can observe
from the results that the fluctuation of estimation are more
turbulent for smaller � but can track changes of the noise
variance more rapidly. On the other hand, smoother estimation
can be obtained by larger �, however, it will lead to a slower
response to changes. The reason is that larger forgetting factor
means that the information of current observation accounts for
a lower proportion of the whole utilized information, so it is
more di�cult to track changes rapidly.

0 500 1000 1500 20000
0.05

0.1
0.15

0.2
0.25

sensing−transmission slot index 

th
e 

va
lu

e 
of

 n
oi

se
 v

ar
ia

nc
e

 

 
true value
realization1
realization2

Fig. 3. Estimated noise variance for di↵erent forgetting factors �

2) And the mean-square error (MSE) performance of esti-
mated noise variance under di↵erent forgetting factors � is
shown in Fig.4. Five sets of forgetting factors are consid-
ered, i.e., realization1 {�1 = 0.94, �2 = 0.945}, realization2
{�1 = 0.96, �2 = 0.965}, realization3 {�1 = 0.98, �2 = 0.985},
realization4 {�1 = 0.99, �2 = 0.995} and realization5 {�1 = 1,
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�2 = 1}. It is seen that along with the increase of forgetting
factors, the MSE of realization3 is less than realization1 and
realization2. This is because the fluctuation of actual noise
variance set in this investigation is not sharp, the fluctuation
of estimation caused by smaller forgetting factors will increase
the estimation error. However, when the forgetting factors are
large enough such as the sets of realization4 and realization5,
the estimation performance will become less satisfactory since
it can’t track the changes of noise variance.
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Fig. 4. Estimation performance of noise variance under di↵erent �
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Fig. 5. Sensing performance of the proposed algorithm under di↵erent M

3) Then, we study the e↵ects on detection performance
caused by di↵erent sampling size M. And two typical con-
figurations of M are considered, i.e., M = 10 and 100 [7],
[18]. It is observed from Fig.5 that increasing sampling size
is an e↵ective way to enhance detection performance of all
detection methods. In addition, compared with ED method,
the superior detection performance of the proposed algorithm
still maintaines even though the sampling size increases.

C. Analysis of Computational Complexity

The CAV method requires about M2 multiplications when
computing the autocorrelations of received signal, which is
why its complexity is about O(M2) [5]. In contrast, ED method
has a lower complexity than O(M), since the decision threshold
can be implemented using a lookup table for Q�1

�2 (·) function
and be reused [19]. While the proposed detection algorithm
is independent of sampling size M and, therefore, we could
measure it by O(E) which is related to particle size P. To sum
up, the complexity of the proposed algorithm and ED method
can be regarded as the same order of magnitude and much
smaller than CAV when the sampling size M is large enough.

V. Conclusions
In this correspondence, we develop a novel SS algorithm for

CR systems with dynamic noise variance. By fully exploiting
the dynamic properties of PU state and noise variance, a
DSM is formulated and a sequential spectrum scheme is
designed by tracking the dynamic noise variance and PU states
jointly. Simulation results have been provided to validate the
satisfactory sensing performance of the proposed algorithm.
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