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A Decision Making Technique to Optimize
a Buildings’ Stock Energy Efficiency
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Abstract—This paper focuses on applying multicriteria deci-
sion making tools to determine an optimal energy retrofit plan
for a portfolio of buildings. We present a two-step decision
making technique employing a multiobjective optimization algo-
rithm followed by a multiattribute ranking procedure. The
method aims at deciding, in an integrated way, the optimal
energy retrofit plan for a whole stock of buildings, optimizing
efficiency, sustainability, and comfort, while effectively allo-
cating the available financial resources to the buildings. The
proposed methodology is applied to a real stock of public build-
ings in Bari, Italy. The obtained results demonstrate that the
approach effectively supports the city governance in making
decisions for the optimal management of the buildings’ energy
efficiency.

Index Terms—Building management, energy efficiency, multi-
attribute analysis, multicriteria decision making, multiobjective
optimization (MOO), optimization algorithms.

I. INTRODUCTION

THE current energy shortage around the world is the main
reason why energy efficiency is an important subject

of interest today [31]. The most viable option to counteract
this problem is reducing the current energy consumption [44].
While reducing the energy used in the industrial sector has
traditionally attracted the attention of researchers [39], recent
studies are focusing on methods and models for improving
buildings’ energy efficiency. In fact, the energy consump-
tion of buildings accounts for around 30% of all energy
consumed in advanced countries, while also exceeding the
energy consumption of the industrial and transportation sec-
tors in the EU and U.S. [51]. Therefore, enhancing energy
efficiency in the building sector is essential for the reduc-
tion of global energy use and promotion of environmental
sustainability. This emerging need has led international organi-
zations and governments to invest significant resources in the
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building renovation process and to establish restrictive govern-
mental policies [50]. However, in the building sector most of
the energy consumption is due to existing buildings [5], [53].
Therefore, a real reduction of emissions in the building sec-
tor can only be achieved by acting on the existing building
stocks. Accordingly, an effective alternative to increase build-
ing efficiency is developing building automation, control,
and management systems [7]. Consequently, the development
of specific application tools able to assist decision mak-
ers to reach a final decision among a set of alternative
actions to improve energy efficiency in existing buildings
is required.

To the best of the authors’ knowledge, the related litera-
ture clearly lacks efforts to propose decision tools aimed at
determining the optimal energy retrofit strategies for a whole
portfolio of buildings under multiple conflicting objectives.
To fill this gap, this paper presents a two-step decision sup-
port tool for determining the optimal energy retrofit plan
to optimize the energy efficiency of a stock of buildings.
The proposed approach is based on a two-step multicrite-
ria optimization model designed to take into account different
and conflicting decision criteria in the renovation plan and
the limited available financial resources for the given port-
folio of buildings. The presented methodology is applied
to an existing stock of public buildings located in the
municipality of Bari, Italy. The obtained results demonstrate
that the approach supports the city governance in mak-
ing optimal decisions for improving the buildings energy
efficiency.

The remainder of this paper is organized as follows.
Section II provides a literature overview on multicriteria deci-
sion techniques in buildings’ energy retrofit planning, position-
ing the paper contribution with respect to the related literature,
and showing its advancement. Section III presents the deci-
sion model and the optimization algorithms. Hence, Section IV
presents the case study and results. Finally, Section V provides
the concluding remarks and future research lines.

II. LITERATURE REVIEW AND PAPER POSITIONING

A. Related Works on Single-Building Energy Retrofit

Several research studies have been carried out to develop
and investigate different energy efficiency opportunities in
order to improve the energy performance of single buildings.
As technologies for energy efficiency improvement in build-
ings are well known [6], nowadays the main issue is to identify
which energy retrofit technology (or measure) could be used
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for a particular project and select the most effective and reli-
able ones in the long term. The traditionally used approach
is economical, privileging actions that, given the same ini-
tial investment, generate the highest energy savings [18]. This
approach, however, is somewhat limited, since it does not con-
sider other important aspects. In fact, when choosing among
a variety of measures, the decision maker (DM) (the build-
ing expert) has to deal with environmental, energy related,
financial, legal, and social factors, in order to find the best
possible compromise that satisfies the final occupant needs
and requirements [2]. As a result, a critical aspect in the
choice of building renovation or retrofit actions is the eval-
uation of alternative measures based on a set of criteria,
such as, e.g., energy consumption, environmental performance,
investment cost, operational cost, indoor environment quality,
security, social factors, etc. [42]. These criteria are generally
conflicting in nature, or they at least interrelate in a nonlinear
way. As a result, it is impossible to find a solution to the prob-
lem that is optimal against all criteria, and a feasible tradeoff
solution that satisfies the requirements of the building’s final
user/occupant/owner has to be sought for.

The common practice usually employs methods like
simulation [14], [37] for what-if analyses and, more gener-
ally, techniques that allow investigating only a limited number
of alternative options. In other words, in the context of multi-
criteria approaches, multiattribute decision making (MADM)
techniques are typically adopted. MADM is concerned with
choosing the best alternative in a given set of viable options—
without addressing the computation of alternative solutions
to be ranked. In the context of MADM approaches for sin-
gle building refurbishment for improved energy efficiency,
Roulet et al. [54] presented a multicriteria methodology based
on the so-called principal component analysis to provide
the DM with a rating of retrofit plans of the considered
building according to an extended list of criteria. In addi-
tion, Caccavelli and Gugerli [8] developed an MADM model
to help professionals solve problems associated with the
retrofitting of office buildings taking into account the degra-
dation of building elements, energy efficiency, and internal
environment comfort. A similar approach is proposed in [41],
where a multivariant design for the refurbishment of a build-
ing is used to rank the alternative solutions. However, in the
building energy retrofit context, the DM is faced with a poten-
tially infinite number of alternative measures, to be evaluated
according to a set of multiple conflicting criteria.

Due to the complexity of the recalled decision-making prob-
lems, especially in case of multiple objectives, techniques
based on multiobjective optimization (MOO) are suitable
candidates to solve these problems [44]. As a result, multi-
objective decision making (MODM) approaches, which refer
to a continuous decision space where alternatives are not
predetermined, are clearly more suitable than MADM tech-
niques for solving energy retrofit problems. In the context
of MODM approaches, Diakaki et al. [20], [21] develop
a multiobjective decision model that examines a potentially
infinite number of alternative measures, and simultaneously
minimizes three criteria: 1) the energy consumption of the
building; 2) the initial investment cost; and 3) the annual

carbon dioxide emission. Similarly, Asadi et al. [2] proposed
and solved via Tchebycheff programming an MOO model
to assist stakeholders in the definition of intervention mea-
sures aimed at minimizing the energy use in the building in
a cost effective manner. Moreover, Juan et al. [36] developed
a decision support system to assess existing office building
conditions and recommend an optimal set of sustainable ren-
ovation actions, considering a tradeoff between renovation
costs, improved building quality, and environmental impact.
Further, Malatji et al. [44] formulated a multiple objective
optimization model that maximizes energy savings and min-
imizes the payback period for a given initial investment.
In addition, Rysanek and Choudhary [55] considered a two-
criterion decision making technique taking into account on
the one hand energy and environmental concerns and on the
other hand financial aspects, including uncertainty on costs in
the model. Finally, Alanne [1] uses a multicriteria knapsack
model to determine the most feasible renovation actions in the
design of a refurbishment project.

B. Related Works on Building Stock Energy Retrofit

While all the studies recalled in the previous section develop
tools to assist the DM in making a decision when investing
in the energy efficiency retrofit of a given building, they can-
not solve the problem for a building stock. To the best of
the authors’ knowledge, only minor efforts have been devoted
in the related literature to propose decision tools aimed at
determining the optimal retrofit strategies for a portfolio of
buildings. Nevertheless, it is a well-recognized need, particu-
larly for organizations and public administrations, to efficiently
allocate the available budget among different buildings, estab-
lishing the optimal energy retrofit strategy of each building
in accordance to an integrated and holistic view of the entire
portfolio [37]. Indeed, in the presence of limited resources, the
DM is periodically faced with the dilemma of which building
to treat and at what level of upgrading (i.e., with what budget).
Hence, in order to achieve a near-optimal allocation of the
limited resources, objective and transparent decision support
tools are required. In this context, empirical methods are tra-
ditionally used to allocate the available budget to a stock of
buildings, using two main classes of approaches [52]. In the
first class, the DM invests a major part of the budget in the
few most valuable buildings and/or in those exhibiting urgent
problems, while the remaining budget is uniformly distributed
among the others. In the second class, the DM allocates an
equal amount of the budget to each building on the basis of
fairness. However, these approaches do neither allow mak-
ing decisions with an in-depth analysis of the building stock
characteristics nor considering other criteria than price. To
overcome these drawbacks of traditional empirical approaches,
few contributions have appeared in the related literature. For
instance, an optimization model using genetic algorithms is
presented in [52] to address the optimal budget allocation for
a stock of historical buildings, using interventions prioritiza-
tion and synergy. Moreover, a model for generating an optimal
planning of building retrofit for a portfolio of buildings is pro-
posed in [37]: several objective functions are considered but
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only in a single-objective way: cost, greenhouse gas emission,
and energy. Note that in both the mentioned works related to
the buildings portfolio case, the problem of retrofit strategy
determination is not approached by a multicriteria analysis,
so that solutions are optimal only from a single criterion
perspective.

C. Paper Contribution

The discussed related literature clearly shows two gaps in
the context of retrofit strategies for building stocks: on the one
hand, there is an evident lack of techniques that look at the
portfolio of existing buildings in an integrated way rather than
on a building by building basis; moreover, there is a lack of
strategies that allow a multicriteria intervention on a building
stock scale to ensure the integrated achievement of compet-
ing objectives to the whole building portfolio. In order to
fill the discussed gaps in the literature, this paper develops
a decision support technique that identifies an optimal set of
retrofit interventions in a building stock to improve the global
stock performance (e.g., energy efficiency, environmental sus-
tainability, building’s user/occupant/owner satisfaction, etc.),
within the given budget. In particular, the contribution of this
paper with respect to the related literature is twofold. First,
this paper defines and solves the problem of determining an
integrated strategy for the optimal energy efficient refurbish-
ment of a stock of buildings, maximizing the overall energy
efficiency performance, and optimizing the financial resource
allocation among buildings in the portfolio. With this regard,
the proposed approach allows managing buildings by differ-
ent priority weights, according to the DM needs. Second, the
presented multicriteria technique aims at providing the DM
with a set of optimal alternative solutions without requiring
any a priori articulation of criteria preference information.
As a result, differently from the related literature, the main
objective of the decision model is determining a set of opti-
mal retrofit actions for the entire buildings portfolio, allowing
the DM to analyze the various solutions and rank them in
accordance to his preferences.

III. TWO-STEP DECISION MAKING TECHNIQUE FOR THE

OPTIMAL RETROFIT OF BUILDINGS’ STOCK

The proposed decision making technique aims at helping
DMs select the optimal actions to take in order to improve
the performance of a building stock against a set of con-
flicting criteria within a given budget. Hence, the problem
statement may be described as follows. Given a set of buildings
B = {B1, . . . , Bk, . . . , BK}, a budget E, a set of conflict-
ing criteria � = {�1, . . . , �h, . . . , �H} for measuring the
stock energy efficiency and a set of possible retrofit actions
A = {A1, . . . , Aj, . . . , AJ}, determine the optimal building
stock overall action plan, that is: 1) the budget Ek—such that∑K

k=1 Ek ≤ E—to assign to each kth building Bk; 2) the binary
decision variables xjk—equal to 1 (0) if the jth action is (is not)
to be applied to the kth building; and 3) the action budget ejk—
such that

∑J
j=1 ejk = Ek—to assign to each jth action for the

kth building.

Fig. 1. Scheme of the proposed two-step decision making technique.

A scheme of the proposed two-step multicriteria decision
technique is shown in Fig. 1. All activities involved in the deci-
sion process may be ideally divided into two macro-phases:
a first part that comprises building status acquisition activities
as well as identification of convenient retrofitting measures
activities (the decision design dashed rectangle at the top
of Fig. 1), and a second phase which includes the actual
multicriteria analysis of the possible actions (the decision
making dashed rectangle at the bottom of Fig. 1).

A. Decision Design Phase of the Technique

The first phase of the decision process in Fig. 1, called
decision design, is performed by the DM in conjunction with
building operators and stakeholders. This phase of the decision
process aims at understanding and defining metrics and models
that can be used to simulate the impact of potential modifi-
cations on buildings’ performance. The decision design phase
includes three steps: 1) identification of criteria; 2) diagnosis;
and 3) characterization of retrofit actions.

1) Identification of Criteria: Primarily, since energy effi-
ciency and environmental sustainability are the overall goals
of the decision process, it is required to identify the spe-
cific criteria for characterizing and assessing buildings and
retrofitting actions (i.e., the building characteristics or qual-
ities that the DM is pursuing). In fact, in order to assess
the compliance of a building to the regulation, to evaluate
the efficiency of a building’s retrofitting action, or to assess
and classify the current state of buildings, it is important to
define a set of characteristics based on a predefined number
of criteria (namely, energy consumption, indoor environmental
quality, etc.). Beyond monetary costs, the literature suggests
a wide number of criteria to characterize the state of a build-
ing that can be grouped into the following macro-categories:
energy, environment, internal environment quality, sustainabil-
ity and others. Table I summarizes the main criteria which
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TABLE I
BUILDING CHARACTERIZATION CRITERIA

may be found in the related literature for the aforemen-
tioned categories. Hence, in this phase the DM selects in
the building characterization criteria listed in Table I the
set � of criteria to characterize the energy efficiency of the
buildings stock.

2) Diagnosis: The building diagnosis aims at evaluating the
general state of buildings in the stock with respect to the cri-
teria selected in Section III-A1, e.g., deterioration, functional
obsolescence, energy consumption, indoor environment qual-
ity, etc. Hence, the diagnosis consists in evaluating the current
state of each building in terms of the set of criteria defined by
the DM in the previous step. Let Ipre

hk be the resulting value
of the criterion �h on the kth building Bk, where the symbol
“pre” in apex indicates the indicator value is relative to the
ex-ante building status (i.e., preceding the implementation of
the retrofit actions).

Conducting the analysis on all buildings of the stock,
the result is the so-called stock multicriteria characterization
matrix of dimensions H × K, i.e., a matrix whose generic
element is a number evaluating the performance of the kth
building with respect to the hth criterion

Ipre = [
Ipre
hk

] ∧ h = 1, . . . , H, k = 1, . . . , K. (1)

Fig. 2 depicts a possible result of the diagnosis for a building
in the stock: each black dot represents the value before retrofit
for the specific criteria, while the gray regular polygon collects
the building target values for all criteria.

3) Characterization of Retrofit Actions: This task is aimed
at defining retrofitting actions that can potentially be executed
to improve the global performance of the buildings, with
their corresponding impact on building performance and

Fig. 2. Example of diagnosis results for a building of the stock.

costs. This step requires an applicability and feasibility study
that is conducted on a building-by-building basis. In fact,
each building in the stock may exhibit unique architec-
tural, technical, and/or structural characteristics, and cus-
tomized retrofit options must be individually investigated.
The retrofit measures may include: retrofitting of the build-
ing fabric, either construction or mechanical systems (e.g.,
wall insulation and HVAC systems, respectively); building
heating or cooling equipment (e.g., boiler replacement, ther-
mostatic radiator valves installation, etc.); replacement of
home/building appliances (e.g., installation of water tap aera-
tors) and lighting fixtures (e.g., electric lighting replacement).
Lists of retrofit measures examples are provided by vari-
ous researchers (see [43], [60]). We remark that operational
changes (e.g., modifications of operating hours, behavioral
changes such as running appliances when electricity prices
are lower, set-point optimization, etc.) are hereby disregarded
because these changes may be optimally determined on a sin-
gle building scale, i.e., they do not require a holistic approach
for the whole building stock.

The outcome of the evaluation of renovation and energy
efficiency measures is the list A of J identified actions to be
possibly implemented in the buildings. Note that each retrofit
action may concern either a simple retrofit measure (such as
window replacement or heating equipment replacement) or
a combination of measures regarding the same building ele-
ment (such as more than one measure on the building envelope,
more than one measure acting on the HVAC equipment or
lighting equipment). In this model we assume that each of the
action selected by the energy manager (simple or combined)
may be implemented to each building. Each determined action
is successively characterized from three perspectives: 1) the
application potential; 2) the cost; and 3) its payoff.

The application potential of an action is defined as the esti-
mation of a metric related to the action implementation. For
instance, in case of a thermal insulation work on external
walls, the application potential consists in the walls’ surface
extension, measured in square meters.

The cost of each action (simple or combined) is calcu-
lated by adding individual retrofit measure costs. The cost
of each individual measure is simply modeled in accordance
to a linear pricing model, as the product between the uni-
tary cost of the simple measure, that is expressed as unit of
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surface [AC/m2], unit of energy [AC/kWh], and so on, and the
related application potential. The cost for implementing the
jth action (simple or combined) on the kth building is denoted
as Cjk. Let Phjk be the payoff, namely the benefit (or detri-
ment) that the application of the specific action j (simple or
combined) is expected to produce on the beneficiary building.
Since an action could impact on different criteria, the estimate
of a payoff for each indicator is provided. For the kth building,
the jth action produces the payoff Phjk for the hth criterion.

The general procedure for estimating the payoff Phjk from
a retrofit project is based on the calculation of the difference
between the pre-retrofit value of the hth indicator predicted
from a model and the post-retrofit value of the indicator,
that is

Phjk = Ipre
hk − Ipost-j action

hk (2)

where
Ipre
hk is the value of the hth indicator derived from

a pre-retrofit simulation of the kth building;
Ipost-j action
hk is the value of the hth indicator after imple-

menting the retrofit action j predicted by sim-
ulation.

Note that, while the payoff of a given action Phjk is depen-
dent on the building to which it is applied, in the action cost
model the unitary cost of each individual measure is modeled
as an invariant with respect to buildings. In fact, although
buildings in the portfolio generally differ from each other,
the estimated action cost can be approximated to be invariant
in the stock, e.g., because buildings are located in the same
zone. Of course, this assumption may be suitably removed and
the model may be changed accordingly, by simply defining a
different unitary cost for each building.

B. Decision Making Phase of the Technique

The second phase of the decision process in Fig. 1, called
decision making, is a responsibility of the DM, i.e., the
building stock owner, facility manager, or investor. The deci-
sion making phase is constituted by two steps. The first
step (Section III-B1) consists in the definition of an MOO
problem. The solution of such a problem provides a set of
Pareto-optimal retrofit strategies, also called nondominated
solutions, defining the so-called Pareto frontier. The second
step (Section III-B2) refers to the selection of the best retrofit
alternative among the Pareto-optimal solutions.

1) Multiobjective Optimization Model: An MOO problem
is defined to determine the Pareto frontier collecting all pos-
sible optimal retrofit strategies. The decision model relies on
several decision variables reflecting the choices on actions.
To this aim, for each action j = 1, . . . , J and each building
k = 1, . . . , K the binary decision variables xjk have to be deter-
mined. Hence, matrix X of the J ×K decision variables of the
optimization model is constructed as follows:

X = [
xjk

] ∧ j = 1, . . . , J, k = 1, . . . , K. (3)

As previously remarked, we assume that each building may
be subject to a number of retrofit actions among all the
identified actions set A.

The H criteria objective functions of the problem are deter-
mined using the improvements of the identified performance
indicators obtained with the retrofit implementation. Note that,
for the sake of simplicity, all the indicators are assumed
to have a range whose upper level stands for poor perfor-
mance, while its lower level indicates excellent performance.
Hence, the MOO problem is concerned with the minimiza-
tion of all the indicators. Of course, if this hypothesis is not
verified for a given indicator, a maximization has to be oper-
ated with respect to that indicator and the problem may be
straightforwardly changed accordingly.

The application of retrofit actions to the kth building
provides the hth indicator related to the kth building with
a decrease equal to the estimated payoff, that is

Ihk = Ipre
hk −

J∑

j=1

xjk · Phjk, ∀h = 1, . . . , H,∀k = 1, . . . , K.

(4)

Considering all the improvements to each building, the
hth indicator value for the stock may be formulated as the
weighted average of indicators for all buildings

Ih = 1

K
·

K∑

k=1

gk ·
⎛

⎝Ipre
hk −

J∑

j=1

xjk · Phjk

⎞

⎠, ∀h = 1, . . . , H

(5)

where gk is a priority coefficient in the [0, 1] range associated
by the DM with the kth building. These given K building pri-
ority coefficients (g1, . . . , gk, . . . , gK) are normalized so that
the summation of all such coefficients is unitary. Obviously, in
case all the buildings have the same priority, these coefficients
are all equal to 1/K.

Since the minimization of the hth indicator in (5) is equiv-
alent to the maximization of the overall estimated payoff for
the hth indicator, the MOO problem may be defined as deter-
mining the J × K decision variables in X that maximize the
overall estimated payoffs for the H criteria

max
X

fh(X) =
K∑

k=1

gk ·
J∑

j=1

xjk · Phjk, ∀h = 1, . . . , H. (6)

Of course, the main constraint in the choice of the decision
variables lies in the financial resources’ limitation. Hence, the
following inequality has to be verified:

J∑

j=1

K∑

k=1

xjk · Cjk ≤ E. (7)

In addition, the following constraints for actions’ mutual
exclusion are introduced, indicating actions that cannot be
simultaneously implemented for technical reasons:

∑

j∈Mp

xjk ≤ 1, ∀k = 1, . . . , K,∀p = 1, . . . , P (8)

where Mp is the set of indices of the pth given group (also
called building element) with p = 1, . . . , P collecting mutually
exclusive actions.
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Solving the decision problem (6)–(8) allows determining the
actions to apply (i.e., the nonzero xjk variables), the budget
associated to each jth action for the kth building

ejk = xjk · Cjk (9)

and the budget associated to each kth building

Ek =
J∑

j=1

ejk. (10)

The decision problem (6)–(8) is a vector maximiza-
tion problem with binary variables, known as multiobjec-
tive knapsack problem (MOKP). This may be solved by
means of several techniques. We choose a simple augmented
ε-constraint (SAUGMECON) method [64], a variant of the
ε-constraint method that can be properly used to produce the
complete Pareto set of multiobjective integer programing prob-
lems. With SAUGMECON, (6)–(8) is initially rewritten as the
following single-objective problem:

max
X

fH(X) + δ ·
H−1∑

h=1

fh(X)

ρh

s.t. fh(X) ≥ εh, ∀h = 1, . . . , H − 1

and constraints (7) and (8) (11)

where εh (∀h = 1, . . . , H − 1) is the satisfaction level which
stipulates the minimum requirement on the hth constrained
objective; ρh (∀h = 1, . . . , H−1) is the range of the hth objec-
tive; δ is an adequately small number usually between 10−6

and 10−3 [64]. The first step in applying the SAUGMECON
method is to determine the range of objective functions which
are used as constraints (ρh with h = 1, . . . , H − 1). To do so,
we calculate the optimal (utopia) and pessimistic nadir values
of objective functions over the feasible space. The optimal
values may be obtained optimizing single objectives individu-
ally. Since the pessimistic values are not easily attainable, they
are usually estimated by inversely optimizing single objectives
individually. Subsequently, as a second phase, problem (11) is
repeatedly solved by parametrically varying the value of sat-
isfaction levels ε1, ε2, . . . , εh−1. These constrained objectives
have to start with the less restrictive values (pessimistic) and
gradually move to the more restricted values (utopia) with
unitary step. In accordance with the SAUGMECON method,
several innovative acceleration mechanisms may be used to
avoid redundant iterations and thus speed up the process of
searching for all the nondominated solutions [64]. Note that,
since in MOKP problems it is well known that the size of the
Pareto set is finite, it can be demonstrated that SAUGMECON
is suitable for generating the exact Pareto set for problems
such as (6)–(8) [64]. The only required condition is that the
objective function coefficients in (6) are integer (note that this
condition could be easily relaxed by transforming the problem
to have integer objective function coefficients by multiplying
with the appropriate power of 10).

Designating Xi
∗ as one of the determined Pareto-optimal

solutions, the Pareto solutions set is defined as follows:

�∗ = {
X∗

i

}
, i = 1, . . . , N�∗ (12)

where N�∗ is the cardinality of the set of Pareto-optimal
solutions �∗.

2) Multiattribute Optimization: After the MOO prob-
lem (6)–(8) is solved, the DM has to select the best retrofit
alternative among the determined Pareto-optimal solutions. In
order to choose among the determined solutions, different
approaches may be followed. Traditional methods base the
choice on expert knowledge or preference. However, select-
ing one of the alternatives may be a complex task if the
dimension of the solutions set is very large. Alternatively,
a second level optimization can be performed using an
MADM technique to provide a ranking of the obtained retrofit
strategies [29], [33], [63]. MADM deals with a finite “selec-
tion” or “choice” problem, that is, the problem of choosing
an option from a set of alternatives, which are character-
ized in terms of their attributes. MADM is a qualitative
approach due to the existence of the criteria subjectivity. It
requires information on the preferences among the instances
of an attribute, and the preferences across the existing
attributes [23], [56]. The DM may express or define a rank-
ing of the attributes in terms of importance/weights. The
aim of the MADM is to obtain the optimum alternative that
has the highest degree of satisfaction for all of the relevant
attributes [62].

The so-called technique for order preference by similarity
to ideal solution (TOPSIS) [32], known as one of the most
classical MADM methods and widely accepted for identifying
solutions from a finite set of alternatives, is used in this paper
to solve the MADM problem. TOPSIS is based on the idea that
the chosen alternative should have the shortest distance from
the positive-ideal solution and on the other side the farthest
distance from the negative ideal solution (NIS).

The TOPSIS method requires in input an N�∗ × Q deci-
sion matrix DM , where Q is the number of criteria used in
the solution ranking. Note that the ranking may be performed
on the basis of all or part of the H performance indicators
considered in the first part of optimization model (Section III-
B1) or by way of different criteria from the ones considered
to solve the MOO problem. In particular, the DM may regard
all the solutions of (6)–(8) as equally satisfactory and consider
a novel set of Q criteria to perform the ranking. As an alterna-
tive, the DM may analyze the determined solutions considering
additional Z criteria with respect to those considered in the pre-
vious steps (i.e., in this case Q = H + Z). Hence, the generic
element diq of the decision matrix DM , with i = 1, . . . , N�∗
and q = 1, . . . , Q, represents the qth performance value of the
ith MOO solution X∗

i of problem (6)–(8) with respect to the
Q criteria selected for classifying the N�∗ alternatives. The
method also requires cardinal attribute importance weights of
the alternatives with respect to the criteria. Hence, a weight
wq, with q = 1, . . . , Q, is associated by the DM to each of
the ranking criteria in order to model the importance degree
of the qth criterion in the ranking of the different retrofit con-
figurations. The ranking criteria weights are chosen so that the
summation of all such weights is unitary. TOPSIS consists of
the following steps [32].

Step 1 (Constructing the Normalized Decision Matrix):
Determine each element δiq of the N�∗ × Q normalized



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CARLI et al.: DECISION MAKING TECHNIQUE TO OPTIMIZE A BUILDINGS’ STOCK ENERGY EFFICIENCY 7

decision matrix � as follows:

δiq = diq
√∑N�∗

i=1 d2
iq

, i = 1, . . . , N�∗ , q = 1, . . . , Q. (13)

Step 2 (Constructing the Weighted Normalized Decision
Matrix): Determine the N�∗ ×Q weighted normalized decision
matrix �, whose element is computed as follows:

ωiq = δiq · wq, i = 1, . . . , N�∗,q = 1, . . . , Q. (14)

Step 3 (Determining the Ideal and Negative Ideal
Solutions): Determine the IS as the ideal solu-
tion with performance indicators given by the row
vector �max = [ωmax 1, . . . , ωmax q, ωmax Q], where
ωmax q = max(ω1q, . . . , ωiq, . . . ωN∗ q) with q = 1, . . . , Q.
Moreover, determine the NIS as the ideal solution
associated to performance indicators of the row vec-
tor �min = [ωmin 1, . . . , ωmin q, . . . , ωmin Q], where
ωmin q = min(ω1q, . . . , ωiq, . . . , ωN�∗ q) with q = 1, . . . , Q.

Step 4 (Calculating the Separation Distances): Calculate the
separation distance Smax i from the IS of each alternative X∗

i
with i = 1, . . . , N�∗ as follows:

Smax i =

√
√
√
√
√

Q∑

q=1

(
ωiq − ωmax q

)2
. (15)

Moreover, determine the separation distance Smin i of X∗
i

with i = 1, . . . , N�∗ from the NIS as follows:

Smin i =

√
√
√
√
√

Q∑

q=1

(
ωiq − ωmin q

)2
. (16)

Step 5 (Calculating the Relative Closeness of Alternatives
to the Ideal Solution): Determine the closeness Cli to the NIS
of each alternative X∗

i with i = 1, . . . , N�∗ as follows:

Cli = Smin i

Smax i + Smin i
. (17)

Step 6 (Ranking Alternatives): The ranked set of alternatives
is represented by the ordered set �̃ defined as

�̃ =
{

X∗
i1 , . . . , X∗

iN�∗

}
(18)

where all the elements of the set �∗ are arranged according
to the decreasing order of the closeness value Cli associated
to the ith solution for i = 1, . . . , N�∗ . Hence, X∗

i1
is the best

retrofit alternative and X∗
iN�∗ is the worst one.

IV. CASE STUDY

A. Problem Description

We apply the developed model to the case of the munici-
pality of Bari, the capital city of Apulia region, southern Italy.
Bari is currently engaged in a series of smart city initiatives
promoted by the EU and mainly dedicated to the reduction of
CO2 emissions and increase of the quality of life [10], [11].
The Bari Smart city program has as a main goal implementing
a creative, dynamic, and energy-efficient city, through a series
of initiatives. These include energy efficiency projects, urban

TABLE II
RESULTS OF BUILDINGS DIAGNOSIS

TABLE III
DESCRIPTION OF INDIVIDUAL RETROFIT MEASURES

planning, improvements for heating and lighting infrastruc-
ture and networks, intelligent buildings, introducing renewable
energy sources, and education campaigns. In particular, a spe-
cific initiative within the Bari smart city program focuses on
the design, development, and testing of a new tool support-
ing the public administration (PA) for the energy efficient
management of buildings occupied and governed by the PA.

Within this context, a real stock of K = 5 public buildings
(five school buildings identified as B1, B2, B3, B4, and B5)
located in Bari has been examined to study the effectiveness of
the decision model for building energy efficiency optimization
presented in the previous section.

B. Decision Design

Problem (6)–(8) is first specified considering three crite-
ria aimed simultaneously at energy and resource savings.
More precisely, after a joint analysis and walk-through sur-
veys conducted with technical experts, the following H = 3
performance indicators to minimize are considered.

1) Electrical energy consumption due to lighting and water
heating (I1).

2) Methane consumption due to heating (I2).
3) Water consumption (I3).
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TABLE IV
RETROFIT MEASURE APPLICATION POTENTIALS AND UNITARY COSTS

TABLE V
LIST OF THE ACTIONS CONSIDERED IN THE CASE STUDY

Second, the current status of each building in the portfo-
lio is estimated through various surveys and on-site measures.
Table II reports the outcomes of the diagnosis phase performed
for each building of the stock and accordingly reporting the
current value of each indicator. Third, considering the exist-
ing operating conditions of buildings, a feasibility study on
potential retrofitting intervention addressing both technical and
architectural constraints is carried out. In this case study, the
DM considers actions acting on the building envelope, and
on the replacement of HVAC, water, and lighting equipment.
Individual retrofit measures are described in Table III [17].
Table IV shows for each building the metric estimation related
to each simple action implementation as well as the unitary
cost of each action whose estimation is based on the list of
prices for building works in the Bari city area [40]. Table V
collects the findings of a feasibility study on the retrofitting
(individual or combined) actions that are applicable to the port-
folio for P = 4 building elements (groups). Further, Table VI
contains the matrix of payoffs with respect to the selected
criteria for each building.

The impact of each retrofit action on the discussed
indicators is estimated—with the help of a build-
ing technical expert—through the application of
energy performance assessment methods defined by
regulations [24], [26], [27], [35], [57], [58] and the use
of a series of data that have to be surveyed or measured in
advance on site on a building by building basis. In particular,
the input data used to perform the action characterization
phase for each building of the stock in terms of payoff can
be grouped into the following three categories.

1) Data related to context that is independent from spe-
cific building such as: climatic data (outside average
temperature, degree days, etc.), occupants’ data (human
metabolism, dressed person average temperature, indi-
vidual daily water requirement etc.).

2) Data related to building type (school, office, residen-
tial, etc.) that depends on the building intended use.

3) Data related to specific building such as: geographical
location (e.g., orientation), geometry (e.g., exterior walls
surface, windows surface, roof surface, etc.), structure
(e.g., building materials, internal thermal capacity, etc.),
and plants (e.g., heating, number of sinks, lighting).
Note that this category includes building characteristics
that are not impacted by retrofit actions (e.g., number
of occupants, etc.) and building characteristics that are
impacted (e.g., envelopes transmittance, external walls
solar irradiance, etc.).

Last, Table VII reports other MOO parameters, namely the
available budget and the building priority coefficients (note
that the buildings are all assigned the same importance).

C. Decision Making

The MOO problem described in Section III-B1 is stated and
implemented in the MATLAB environment with the Global
Optimization Toolbox. In particular, the single objective opti-
mization problem (11) used in the SAUGMECON resolution
method has been solved with the MATLAB built-in binary
integer programming solver based on a branch-and-bound
approach. Note that, in accordance with the scenario described
in the previous section, the single objective problem presents
70 binary variables and 16 inequality constraints.

Fig. 3(a) illustrates the profile of objective functions in the
Pareto frontier, which includes 11 points, and demonstrates
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TABLE VI
BUILDINGS PAYOFFS

TABLE VII
OTHER MOO PROBLEM PARAMETERS

TABLE VIII
MOO UTOPIA POINTS

that the decision criteria are conflicting. In fact, in the majority
of Pareto solutions, the maximization of an objective func-
tion typically corresponds to a low level assumed by the other
ones. Even though some solutions (e.g., solution 2) seem to
dominate others, the reader can note that all the computed
solutions are actually nondominated examining in Table X the
numerical values that indicators take in each Pareto solution.
Moreover, Table VIII reports the utopia points for which each
criterion is optimized, independently from the others. Also this
table concisely demonstrates the competitiveness of the deci-
sion criteria and the effectiveness of the proposed approach
in providing the DM with a set of alternative solutions that
present an optimal tradeoff between the various competing
criteria.

Fig. 3(b) shows the allocation of planned costs between
buildings in each of Pareto-optimal solutions, while
Fig. 3(c) illustrates the distribution of planned retrofit
actions between buildings in each of the Pareto-optimal solu-
tions. Given the prominent difference in the assignment of the
amount of candidate retrofit actions (and associated budget)

between buildings in one planned retrofit scenario with
respect to others, this demonstrates the importance, and
consequently the need, of an optimal allocation of budget
between buildings in the stocks.

The obtained Pareto-optimal solutions are subsequently
ranked implementing in MATLAB the multiattribute optimiza-
tion described in Section III-B2. To show the flexibility of the
proposed technique, we consider two alternatives, with the DM
using two different sets of ranking criteria according to the
following cases.

Case 1: The ranking is based on Q = 3 criteria that
are exactly coincident with the criteria adopted in
the MOO, i.e., electrical energy consumption (I1),
methane consumption (I2), and water consump-
tion (I3).

Case 2: A novel set of Q = 4 criteria is considered by
adding a further indicator, namely the occupants’
internal thermal comfort I4, to the previously
defined indicators I1, I2, and I3. The metric used
to assess thermal comfort is the so-called predicted
mean vote (PMV), based on Fanger’s model [28].
PMV is representative of what a large popula-
tion would think of a thermal environment, and
is used to assess thermal comfort in standards
such as ISO 7730 [34] and ASHRAE 55 [4]. It
ranges from −3 (too cold) to +3 (too warm),
and a PMV value of zero is expected to provide
the lowest percentage of dissatisfied people among
a population [3]. The internal comfort related to
the stock of buildings is assessed as the PMV of
that virtual building having internal thermal condi-
tions equal to the mean of the thermal conditions
of retrofitted buildings in the stock.

In both cases, the DM assigns the same importance to the
ranking criteria. The corresponding equal values of weights
assigned to the ranking criteria are reported in Table IX.

Obviously, in case 2 the characterization data that are in
input to the optimization problem have to be completed adding
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Fig. 3. Characteristics of Pareto-optimal solutions. (a) Objective function values normalized with respect to utopia points. (b) Allocation of planned costs
between buildings. (c) Distribution of planned retrofit actions between buildings.

TABLE IX
RANKING CRITERIA WEIGHTS

the evaluation of achieved occupants’ internal thermal com-
fort for each retrofit scenario based on assessment methods
defined by regulations [25]. Table X reports the value of the
selected indicators for each optimal solution summarizing all
the raw data available to the DM at the start of the analysis:
the decision matrix exhibits 11×3 elements in case 1 (i.e., the
first three columns of Table X) and 11 × 4 elements in case 2
(i.e., the whole Table X). Details on the intermediate results of
the method are here neglected for the sake of brevity. Indeed,
Table XI reports the final ranking of the 11 retrofit alternatives
in both cases, showing that in the two cases alternatives are
not ranked according to a similar order, i.e., adding the max-
imization of occupants’ comfort as a further criterion impacts
the ranking of optimal solutions. Hence, the retrofit alternatives
(except solution 1) that are previously top-ranked are not quite
as satisfactory also from the occupants’ comfort perspective,

TABLE X
PARETO OPTIMAL SOLUTIONS DECISION MATRIX

as long as the weight of such this indicator is comparable to
the weights of the other indicators. Obviously, as the weight
assigned to the comfort indicator decreases, the final rank-
ing approaches the ordering achieved in case 1. Tests that
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TABLE XI
PARETO OPTIMAL SOLUTIONS RANKING

TABLE XII
OPTIMAL ENERGY RETROFIT PLAN

prove this evident remark are omitted for the sake of brevity.
Finally, Table XII reports the detailed retrofit action plan for
the best solution by the four criteria (solution 1).

Last, as a general finding about the overall two-step decision
making tool, we remark that in all cases the total run time to
determine the Pareto-optimal solutions set and rank them is
lower than 1 s, on a PC equipped with a 2.4-GHz Intel Core
2 Duo CPU and 4 GB RAM.

D. Discussion of the Results

Applying the proposed method to the case study shows that
it exhibits several distinctive features in the context of deci-
sion tools for energy efficient refurbishment of a portfolio of
buildings. First, the method provides a decision support tool to
the building stock owner, facility manager, or investor in the
planning phase of the optimal retrofit integrated strategy. On
the one hand, thanks to the MOO problem solution, the tool

TABLE XIII
BUILDING INDICATORS IN OPTIMAL RETROFIT

BY SINGLE BUILDING PLANNING

TABLE XIV
PORTFOLIO GLOBAL PLANNING VERSUS SINGLE BUILDING PLANNING

is able to automatically evaluate a large amount of potential
renovation actions combinations, in the presence of conflict-
ing criteria and budget constraints. On the other hand, thanks
to the integration of the TOPSIS technique into the approach,
the tool enables the DM to select from the large set of alter-
natives only few (or just one) optimal solutions. Globally,
these two complementary characteristics constitute the most
important strength of the tool, that allow improving traditional
approaches based only on empirical generation of a few alter-
native retrofit scenarios which are then screened by the DM
for the final choice. Second, the proposed method is effective
in simultaneously obtaining the optimization of the identified
objectives and the optimal partition of the budget among the
buildings. To demonstrate this, a further analysis of the case
study is conducted. As a reference scenario, for each building
of the stock the best retrofit strategy is computed by solving
the MOO and the multiattribute optimization problems. We
assume that the portfolio contains just one building at a time
and use in constraint (7) an equally distributed budget between
all the buildings. In other words, a budget equal to E/5 is allo-
cated to each of the five buildings. Table XIII reports the values
of indicators (I1k, I2k, I3k, I4k) attained by the best retrofit
strategy for each building (k = 1, 2, 3, 4, 5). Subsequently,
the value of each indicator related to the stock is computed
as the weighted average of indicators related to buildings in
the stock. For the first indicators I1, I2, and I3 we use (5) set-
ting the building priorities indicated in Table VII, while for
the indicator I4 we consider the PMV of the ideal building
having internal thermal conditions equal to the mean of the
thermal conditions of retrofitted buildings in the stock. Results
are reported in the first row of Table XIV. Instead, the second
row of Table XIV reports the results obtained via the holistic
planning of the retrofit action in the entire stock. The results’



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

comparison demonstrates that the performance achieved for
each indicator with the holistic planning of the retrofit action
in the stock (second row in Table XIV) is better than that
achieved by individually determining the building retrofit plans
(first row in Table XIV). Obviously, a similar study may be
conducted for any other a priori budget distribution among
the buildings and for any other choice of the criteria prefer-
ences. Third and finally, we remark that the proposed decision
making technique is flexible and customizable. Different cri-
teria could be used for generating Pareto-optimal solutions
and ranking alternatives in accordance to the DM preferences.
A reduced set of criteria could be used to generate several
retrofit alternatives. At the same time, the final choice could be
evaluated in accordance with an extended set of criteria related
to further aspects the DM is interested in. Finally, the relative
importance of selected ranking criteria could also be changed
depending on the DM’s preferences by simply changing
weights.

V. CONCLUSION

This paper addresses the energy efficient renovation of
a portfolio of buildings. A two-step decision making technique
is presented, including a decision design phase and a decision
making phase. The underlying MOO problem allows making
decisions in an integrated way on a stock of buildings, consid-
ering preferences, conflicting criteria, as well as financial and
feasibility constraints. The model takes also into account rank-
ing criteria weights and/or building priority coefficients. The
final step, defining and solving a multiattribute optimization
problem, provides the DM with an effective tool for screen-
ing optimal solutions. It is important to note that, although
the decision making technique addresses the optimal energy
retrofit for a portfolio of existing buildings, its use is not
restricted to this specific context. Indeed, the model can also
be used in problems where retrofit interventions are sought
for with conflicting goals (e.g., reducing energy consumption,
maintaining required comfort and quality of life, protecting
the environment, and minimizing costs), e.g., in the case of
public street lighting.

The main limitations of the presented approach are related to
the assessment of the impact of each action on the selected cri-
teria as well as the definition of criteria weights. The definition
of a criterion, in fact, implies a non-negligible decision design
phase mainly oriented to estimating the impact of each action
on that criterion. This constitutes the most sensitive issue in the
proposed decision process, together with the nontrivial hypoth-
esis of perfect knowledge on model parameters (no inaccuracy
is considered). Furthermore, the method requires the definition
of criteria weights, which means the user has to be able to
provide his global cardinal scale of values. Sometimes this
does not completely make sense: either an ordinal impor-
tance ranking or a list of paired comparisons among criteria is
preferable.

Future research will be devoted to overcoming the iden-
tified limitations: first, extensions of the technique con-
sidering variable action costs with respect to buildings
and nonlinear payoffs formulation will be investigated;

second, fuzzy inference systems will be considered to deter-
mine the weights characterizing the ranking criteria in an
automated way depending on retrofit alternatives characteris-
tics; third, future work will also address modeling uncertainties
that affect the estimation of optimization model parame-
ters. A further research could also be devoted to aiding
the DM in selecting the raking criteria weights and build-
ing priority coefficients. Finally, the integration of simula-
tion in the decision technique may also be considered, to
perform what-if analyses of the determined retrofit actions
implementation.
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