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Abstract—Sparse representation has been widely exploited
to develop an effective appearance model for object tracking
due to its well discriminative capability in distinguishing the
target from its surrounding background. However, most of these
methods only consider either the holistic representation or the
local one for each patch with equal importance, and hence may
fail when the target suffers from severe occlusion or large-
scale pose variation. In this paper, we propose a simple yet
effective approach that exploits rich feature information from
reliable patches based on weighted local sparse representation
that takes into account the importance of each patch. Specifically,
we design a reconstruction-error based weight function with the
reconstruction error of each patch via sparse coding to measure
the patch reliability. Moreover, we explore spatio-temporal con-
text information to enhance the robustness of the appearance
model, in which the global temporal context is learned via
incremental subspace and sparse representation learning with a
novel dynamic template update strategy to update the dictionary,
while the local spatial context considers the correlation between
the target and its surrounding background via measuring the
similarity among their sparse coefficients. Extensive experimental
evaluations on two large tracking benchmarks demonstrate
favorable performance of the proposed method over some state-
of-the-art trackers.

Index Terms—Visual tracking; sparse representation; template
update; spatio-temporal context

I. INTRODUCTION

Visual tracking is an important research topic in computer
vision with wide applications in various fields, such as self-
driving cars, security and surveillance systems, intelligent
transportation vision based controls [1]. Visual tracking con-
tinually infers the states of an annotated (manually labeled or
detected in the first frame) target object in a video sequence.
Although visual tracking has long been studied for several
decades and much progress has been made in recent years [2]–
[18], it remains a challenging task to develop a robust track-
ing algorithm because the appearance of the tracked target
may suffer from severe variations caused by significant pose
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variation, complicated background clutter, drastic illumination
variation, etc.

An effective appearance model plays a key role in ensuring
the robustness of a tracking system, thereby attracting much
attention in recent years [9], [11]–[25]. Numerous effective
representations have been proposed to design the appearance
models that can be categorized into either generative [19],
[25]–[29] or discriminative models [11]–[18], [22], [30]–[38].
Generative models typically learn an appearance model to rep-
resent the target appearance and then use the model to search
for the image region with maximal similarity. Generally, the
representations for constructing generative appearance models
include GMMs [39], color histograms [40], subspace repre-
sentation [19], and sparse representation [22], [23], [25], [41],
[42]. In [39], Jepson et al. proposed a GMM based represen-
tation with an online expectation maximization algorithm to
overcome target appearance variations during tracking. In [40],
Adam et al. utilized a set of local image patch histograms
to represent a target object. In [19], Ross et al. proposed
an incremental subspace learning method to learn a subspace
representation that can adapt to the target appearance changes.
In [43], Kwon and Lee decomposed an observation model
into multiple basic observation models that are constructed
using the sparse principal component analysis. In [24] Wang
and Yeung developed a deep learning based tracker that uses
stacked de-noising auto-encoder to learn target presentations
from a large number of auxiliary images.

Discriminative models cast the tracking problem as a bina-
ry classification task, which employ different discriminative
features to train a classifier to separate the target from its
surrounding background. Avidan [30] first formulated visual
tracking as a binary classification problem, which integrated
an off-line SVM based classifier into an optical flow based
tracker. Collins et al. [44] proposed a feature selection method
to learn the most discriminative features online to separate
the target object from the background. Grabner et al. [45]
proposed an online boosting feature selection method for
tracking. Babenko et al. [46] proposed to employ positive and
negative bags to learn a multiple instance learning classifier
for visual tracking. Kalal et al. [47] improved the binary
classifier by considering the structured unlabeled data for
visual tracking. In [48], Hare et al. employed an online
structured output SVM classifier for robust tracking which
can alleviate the effect of wrongly labeling samples. Zhang et
al. [12] proposed a multi-expert restoration scheme to address
the drift problem in tracking. Recently, Henriques et al. [49]
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Fig. 1: Flowchart of the proposed weighted local sparse appearance model.

proposed a fast tracker which exploits the circulant structure
of the kernel matrix for kernalized correlation filters (KCF)
that can be efficiently solved by the fast Fourier transform
algorithm. Li and Zhu [14] improved the KCF tracker [49] by
integrating a scale adaptive scheme and color-naming features.
Ma et al. [13] employed features from a hierarchial layers of
convolutional neural networks (CNNs) to learn an effective
KCF representation for robust visual tracking.

Recently, sparse representations have been widely exploited
in visual tracking [23], [25], [50], [51], which can be catego-
rized into holistic and local sparse representation appearance
models. In [25], Mei and Ling exploited a holistic sparse
representation of the target appearance for visual tracking that
is learned via optimizing an `1 minimization problem. Li et
al. [52] extended this work using the orthogonal matching
pursuit algorithm to solve the optimization problem efficiently.
Bao et al. [50] further improved the efficiency via the ac-
celerated proximal gradient approach. However, these sparse
representation-based trackers take into account the holistic
templates of the targets, which are sensitive to severe partial
occlusion and pose variations. In [51], Liu et al. proposed
a local sparse appearance model that is integrated into the
mean shift algorithm to enhance tracking robustness. However,
this tracker is based on a static local dictionary obtained
from the first frame and has a high probability of failing in
dynamic scenes. In [23], Jia et al. presented a local sparse
appearance model that employs an alignment-pooling method
to combine the histograms of local sparse codings of each
patch, in which the dictionary is updated in an online man-
ner to handle target appearance variations, thereby achieving
favorable performance on some challenging scenes.

Although demonstrated success of the trackers based local
sparse appearance model [23], [25], [50], [51], their per-
formance on the recently tracking benchmark [53] is not
favorable. For example, as reported by the benchmark, the
AUC score of success plots of OPE for the ASLA tracker [23]
is just 0.434, which is much lower than the KCF based
trackers, e.g., 0.514 for KCF [49] and 0.567 for SAMF [14]
as reported in [14]. We note that the performance of ASLA
tracker still has plenty of room for improvement if we take into
account the importance of different local patches and attempt

to integrate the spatio-temporal context information. In this
paper, we propose a simple yet effective method by com-
bining the weighted local sparse model and spatio-temporal
context information. The proposed method is motivated by
the ASLA tracker [23], but takes into account the patch
importance to measure the reliability of each patch with a
reconstruction-error-based weight function of reconstruction
error. Furthermore, we employ the spatio-temporal context
information, which incorporates the global temporal context
via an incremental subspace and sparse representation learning
with a novel online template update strategy and the local
spatial context by taking into account the correlation between
the target and its surrounding background.

The contributions of this work are summarized as follows:
1) We propose a weighted local sparse model that takes into

account the reliability of each local patch and the spatio-
temporal context information, thereby well adapting to
target appearance variations in challenging cases.

2) We employ an adaptive template update strategy that
combines the incremental subspace learning and sparse
representation to update the dictionary with dynamic
templates, which makes our tracker effectively deal with
partial occlusion and the drifting problem.

3) Experiments on a large-scale tracking benchmark
demonstrate that the proposed tracker performs favor-
ably against several state-of-the-art methods.

II. METHODOLOGY

In this section, we first show how the local appearance
model of the target is generated by weighted local sparse
coding method. Next, we describe how to integrate spatio-
temporal context information for tracking. Finally, we present
the proposed algorithm in detail.

A. Weighted Local Sparse Appearance Model

In this work, we employ a local sparse representation with
a set of sparse coefficients to model the appearance of target
patches. Given a set of target templates T = [t1, t2, . . . , tn],
where ti denotes the image intensity vector of the tracked
target, we sample a set of overlapped local image patches
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Fig. 2: Illustration of temporal and spatial context constraints.

inside the target region by sliding a window with a fixed size.
These local patches are used to construct the dictionary that
encodes the local pathes inside the possible candidate regions,
i.e., D = [d1,d2, . . . ,dn×N ] ∈ Rd×(nN), where d denotes
the dimension of local patch vector, n is the number of target
templates and N is the number of sampled local patches inside
the target region. Each atom di in the dictionary D is achieved
by `2 normalization on the local image patch vector. Since
each atom in D represents a fixed part of the target object, D
collects all the structure information of the templates, which
shares the commonality of different templates, thereby being
robust to template variations.

Let Y = [y1,y2, . . . ,yN ] ∈ Rd×N denote the candidate
sample representation that we extract local patches inside it
and transform them into vectors in the same way. With the
overcomplete dictionary D and sparsity assumption, each local
patch yi can be represented by a linear combination of only
a few atoms in the dictionary by solving

min
αi

= ‖yi −Dαi‖22 + λ‖αi‖1, s.t.,αi � 0, (1)

where αi ∈ RnN is the sparse coefficient vector correspond-
ing to the local image patch yi. Here, solving (1) needs to
tune the parameter λ, which is nontrivial. Fortunately, we
can employ the simplex and sparse representation method
proposed by [54] to modify the constraint in (1) into the `1
ball constraint as αi � 0 and 1>αi = 1, and hence we do
not need to tune λ anymore.

The sparse coefficient vector αi is divided into several
segments according to their corresponding templates, i.e.,
αi = [α

(1)
i

>
,α

(2)
i

>
, . . . ,α

(n)
i

>
]>. In [23], all the segment

coefficient vectors are equally weighted to yield the represen-
tation zi for the patch yi

zi =
1

C

n∑
k=1

α
(k)
i , (2)

where C is a normalization constant. Since the template set
T contains the target object with some appearance variations,
the patches with less reconstruction errors with their sparse
codes in these templates should be weighted more than others
for more robust representation. To this end, for the patch
yi, we design a simple weight function with respect to its

reconstruction error

wi =
e−
‖yi−Dαi‖

2
2

σ∑N
i=1 e

− ‖yi−Dαi‖22
σ

, (3)

where σ is a constant that balances the patch weight.
Coincidentally, (3) can be directly derived from solving
minwi(

∑
i wi‖yi − Dαi‖22 + σwi logwi), which is similar

to the objective function of the agglomerative fuzzy K-Means
algorithm [55], where the left term is similar to the standard
K-Means algorithm with predefined center Dαi, and the right
term is added to maximize the negative objects-to-clusters
membership entropy in the clustering process, which can
simultaneously minimize the within cluster dispersion and
maximize the negative weight entropy to determine clusters
to contribute to the association of objects [56].

Then, the representation zi in (2) is reformulated as

zi = wi

n∑
k=1

α
(k)
i , i = 1, . . . , N, (4)

which differentially accounts for the reliability of each lo-
cal patch in the templates. All the vectors zi of the lo-
cal patches in a candidate region construct a square matrix
Z = [z1, z2, . . . , zN ]. Then, as [23], we employ an alignment-
pooling strategy to take the diagonal elements of the square
matrix Z as the pooled feature

v = diag(Z), (5)

where v denotes the pooled feature vector, which integrates
the appearance and spatial information from the candidate
target region, thereby encoding the structure information of
the target.

Figure 1 illustrates the flowchart of our proposed weighted
local sparse appearance model. Different from Jia et al.’s
model [23] that utilizes the same weight for each patch, the
proposed method weights the contaminated local patch less
while the reliable patch more, thereby mitigating the side
effect of noise introduced by target appearance variations.

B. Spatio-Temporal Context Integration

The temporal and spatial context information is important
for robust tracking [57]. The target appearance changes gradu-
ally between two consecutive frames due to the high frame rate
of current video sequences (about 25 frames per second), and
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all of the historical appearance variations have some influences
on the current appearance state estimation. Meanwhile, since
the target moves smoothly from one location to another lo-
cation, the spatial context presents strong correlation between
the target and its surrounding backgrounds. In this section,
we introduce how to incorporate the spatio-temporal context
information into our appearance model for robust tracking.

1) Global Temporal Context: As shown by Figure 2, we
collect the tracking results of the target object and then carry
out the incremental subspace learning method as [19], which
not only preserves the collected common observations, but
also well adapts to the appearance variations. We model the
estimated target by a linear combination of the PCA basis
vectors and additional trivial templates [25]

p = Uq + e = [U I][q e]>, (6)

where p represents the estimated target vector, U is the matrix
composed of eigenbasis vectors, q is the coefficients of the
eigenbasis vectors and e represents the pixels in p that are
corrupted. In [23], the sparsity constraints are enforced on
the estimation of both q and e. However, enforcing sparse
constraint on the coefficients q may result in losing useful
information for tracking because of the orthogonality of the
PCA basis matrix U. Therefore, we propose a new template
update formula by only enforcing sparse constraint on e
because the error caused by occlusion or noise often owns
sparse distribution

min
q,e
‖p−Uq− e‖22 + λ‖e‖1. (7)

To solve (7), we first fix e, and optimize q as

p← U>(p− e), (8)

and then, we fix p, and optimize e as [17]

e← sign(p−Uq) max(0, abs(p−Uq)− λ). (9)

We iteratively update (8) and (9) until convergence. Moreover,
the PCA basis matrix U is incrementally updated by the
incremental subspace learning method [19]. After obtaining
the solution q of (7), we have the representation of p as
p̃ = Uq. Then, we measure the similarity between the
reconstructed representation p̃ and the template in the template
set T as

ρi =
p̃>ti

‖p̃‖12‖ti‖12
, i = 1, . . . , n. (10)

If ρi < 0.65, i = 1, . . . , n, which means that the new tracking
result has small similarity with the template set, we don’t
update the set T. Otherwise, if ρi > 0.85, which means that the
current tracking result can be well represented by the template
set, so we don’t need to update the template set either. Only
when 0.65 ≤ ρi ≤ 0.85, i = 1, . . . , n, we use p̃ to update
the template set T by replacing one element therein. The
main steps of the template update algorithm are summarized
in Algorithm 1.

Algorithm 1 Template Update

Input: Observation vector of the target estimation p, PCA
eigenbasis vector matrix U, template set T

1) Solve (7) to yield q and e, and compute the recon-
struction representation p̃ = Uq ;

2) Compute ρi via (10);
3) if 0.65 ≤ ρi ≤ 0.85
4) Generate a sequence of numbers in an ascending order

and normalize them into [0, 1] as the probability for
template update, and generate a random number be-
tween 0 and 1 to select which template to be discarded,
and add p̃ to the end of the template set T;

5) end if
Output: New template set T.

2) Local Spatial Context: As shown by Figure 2 (b), the
local spatial context information is derived from the regions
surrounding the target object (here, we utilize five surrounding
patches including the target patch as local context informa-
tion). The works in [57], [58] show that the local context
information including supporters and distracters enhances the
robustness of the tracker, even when the target is partially
occluded. However, different from [58] that constructs com-
plex relative motion model between the target and auxiliary
objects and [57] that employs boosting method to construct
a strong classifiers to combine the weak correlation between
every contributor and the target, we propose a simple yet
effective method that explores the similarity between the target
appearance feature vt−1 computed via (5) in the current frame
and the i-th candidate context region appearance feature set
{vi,k

t }4k=0 to account for the local spatial context constraints

f it = e−(‖vt−1−vi,0t ‖
1
2−

∑4
k=1 ‖vt−1−vi,kt ‖

1
2). (11)

(11) measures the weak correlation between the target ap-
pearance and its local surrounding context region appearances,
which yields a high value if increasing the similarity between
the target and its center context region while reducing the sim-
ilarity with its surrounding context regions, thereby encoding
the structure context information to help discriminate target
from background.

C. Proposed Tracking Algorithm

The proposed tracking algorithm is formulated under a
particle filtering framework. Given the observation set o1:t =
{o1, . . . , ot} up to frame t, the target state variable st can be
computed via maximizing a posteriori estimation

ŝt = arg max
sit

p(sit|o1:t), (12)

where sit represents the state of the i-th sample. The poste-
rior probability p(st|o1:t) can be recursively inferred by the
Bayesian theorem

p(st|o1:t) ∝ p(ot|st)
∫
p(st|st−1)p(st−1|o1:t−1)dst−1, (13)
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Algorithm 2 WALSA based Tracking

Input: Target state ŝt−1, target appearance feature vt−1,
template set T, the PCA basis matrix U;

1) Sample m candidate particles {sit}mi=1 with the motion
model p(sit|ŝt−1);

2) For each particle sit, compute its observation model
p(ot|sit) by (14);

3) Estimate the optimal state ŝt by (12), and get its cor-
responding reconstruction representation p̃ via solving
(7), and compute ρi via (10);

4) if 0.65 ≤ ρi ≤ 0.85
5) Update the template set T via Algorithm 1;
6) Update the target appearance feature vt with the new

template set T
7) Update the PCA basis matrix U;
8) else
9) vt ← vt−1

10) end if
Output: Target state ŝt, updated target appearance feature
vt, updated template set T, updated PCA basis matrix U.

where p(st|st−1) represents the dynamic model while p(ot|st)
is the observation model. We assume that the target state pa-
rameters are independent as scalar Gaussian distributions and
model the motion as Brownian motion [19], i.e., p(st|st−1) =
N (st|st−1,Σ), where Σ = diag(σx, σy, σs). In tracking, the
posterior probability p(st|o1:t) in (13) is approximated by
a particle filter that m particles {sit}mi=1 are sampled with
corresponding importance weights {πi

t ∝ p(ot|sit)}mi=1, where
p(ot|sit) is the observation model that denotes the likelihood
of the observation ot at state sit that plays an important role in
visual tracking. In our method, we formulate the observation
model as

p(ot|sit) ∝ f it , (14)

where f it is computed by (11). The main steps of the proposed
algorithm are summarized in Algorithm 2.

III. EXPERIMENTS

A. Experimental Setup
Our algorithm is implemented in MATLAB that runs at 5

frames per second on an Intel Core i7 CPU machine with 8 G
RAM. The regularization parameter for λ is set to 0.01. We set
the variances of the affine parameters in the dynamic model
to {σx, σy, σs} = {6, 6, 0.01}, and the number of samples for
particle filter is set to 600. We manually label the location
of the target object in the first frame for each sequence, and
normalize each target image patch to 32×32 pixels and extract
16×16 local patches overlapped within the target region with
8 pixels as the sliding step. The parameters n and N for the
local appearance model are set to 10 and 9, respectively. We
utilize 20 eigenvectors for incremental subspace learning. All
the parameters are fixed for all experiments.

B. Evaluation Metrics
We evaluate the proposed WALSA algorithm on two large

tracking benchmark datasets [53], [59], termed as OTB50 and

OTB100, which contains 50 and 100 fully-annotated video
squences. To better evaluate the effectiveness of the proposed
tracker, we further add six most recent trackers including
DLT [24], KCF [49], DSST [60], TGPR [11], MEEM [12],
CNT [17] besides the 29 trackers within the benchmark. For
detailed analysis, the videos are categorized into 11 attributes
based on different challenging factors including out-of-plane
rotation (OPR), scale variation (SV), occlusion (OCC), low
resolution (LR), in-plane rotation (IPR), deformation (DEF),
background clutters (BC), illumination variation (IV), motion
blur (MB), fast motion (FM), and out-of-view (OV).

We employ the success plot and precision plot for quan-
titative evaluations, in which the success plot is defined on
the overlap ratio, i.e., S = area(BT

⋂
BG)/area(BT

⋃
BG)

with the tracked bounding box BT and the ground truth
BG. The area under curve (AUC) of each success plot is
used to rank the evaluated trackers. Meanwhile, the precision
plot demonstrates the percentage of frames whose tracked
locations are less than 20 pixels to the ground truth. We
employ the success plot and precision plot to indicate the one-
pass evaluation (OPE), and report the results of OPE for each
evaluated tracker.

We have observed from the experiments that the rankings
of different trackers on OTB50 and OTB100 are almost the
same, and hence in the following sections, for presentation
clarity, we only report the overall performance of the top 5
trackers on OTB100, and analyze the results on OTB50.

C. Quantitative Evaluations

1) Overall Performance: Figure 3 shows the over all per-
formance of the top 5 trackers on OTB100, and Figure 4
illustrates the overall performance of the top 10 trackers in
terms of success and precision plots, where the proposed
WALSA ranks first in terms of success rate and second based
on precision rate. In the success plot, the WALSA achieves the
AUC score of 0.580 that outperforms the runner-up MEEM
by 1.4%. Moreover, the WALSA outperforms the baseline
ASLA method [23] by a large margin (0.580 vs. 0.434), which
validates the effectiveness of the proposed weighted strategy.
Meanwhile, as shown by the precision score in the precision
plot, the WALSA algorithm obtains 0.794 which is competitive
to the top ranker MEEM (0.830), but significantly outperforms
ASLA by 29.8%. In addition, WALSA outperforms the CNN-
based trackers CNT [17] and DLT [24], which shows the
strong discriminative capability of the features extracted via
the weighted local sparse representation learning.

2) Attribute-Based Performance: We further compare the
trackers with 11 attributes to clearly analyze the strength and
weakness of the proposed algorithm. Figure 5 and Figure 6
show the success plots and precision plots with different
attributes, respectively. Among them, the proposed WALSA
tracker ranks within top 3 on all attributes in terms of success
rate and on 10 out of 11 attributes in terms of precision rate.
Specifically, as shown in the success plots, for the videos with
attributes of scale variation, occlusion, illumination variation,
motion blur, fast motion, and out of view, WALSA achieves
the top performance among all the evaluated trackers. For
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Fig. 3: Success plots and precision plots of OPE for the top 5 trackers on OTB100. The performance score for each tracker is the AUC
value that is shown in the legend. Meanwhile, the performance score of precession plot is at error threshold of 20 pixels. Best viewed on
color display.
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the videos with attributes of low resolution, out-of-plane,
deformation, background clutter, WALSA ranks second among
all trackers, and WALSA ranks third on the videos with the at-
tribute of in-plane rotation. Meanwhile, WALSA significantly
outperforms ASLA on all attributes in terms of both success
and precision rates.

D. Qualitative Comparisons

1) Scale Variation: Figure 7 shows some tracking results
in three challenging videos in which the targets suffer from
significant scale variations. The person in the david sequence
moves from a dark room to a bright area that causes his appear-
ance varies much due to illumination changes, pose variations,
and a large scale variation with respect to the camera. The
STRUCK, DLT and KCF undergo drift to background (e.g.,
#580, #680, #758). In the freeman3 video, a person appearance
varies much because of the pose variation and low resolution.

Moreover, the person suffers from large-scale variation when
he moves to the camera. The KCF, STRUCK, DLT, TGPR,
DSST, and MEEM drift away to the background (e.g., #299,
#360, #382), while the WALSA, CNT and ASLA perform well
on all frames. The person in the singer1 sequence moves far
way from the camera with a large-scale variation. The KCF,
TGPR, STRUCK, MEEM, and DSST works poorly while the
WALSA, CNT, ASLA perform well. The WALSA deals scale
variation well due to its adopted alignment-pooling strategy.

2) Deformation: Figure 8 shows the results in three chal-
lenging sequences that the targets suffer from severe de-
formation. The target in the singer2 sequence suffers from
illumination variations and significant deformation. Only the
WALSA, CNT, TGPR and KCF perform well at all frames.
In the bolt sequence, several persons simultaneously appear in
the scene that undergo rapid appearance variations because of
shape deformation and fast motion. Only the WALSA, CNT
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Success plots of OPE − in−plane rotation (31)
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Success plots of OPE − out−of−plane rotation (39)
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Success plots of OPE − scale variation (28)
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Success plots of OPE − occlusion (29)
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Success plots of OPE − deformation (19)
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Success plots of OPE − background clutter (21)
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Success plots of OPE − illumination variation (25)
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Success plots of OPE − motion blur (12)
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Success plots of OPE − fast motion (17)
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Success plots of OPE − out of view (6)
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Fig. 5: Success plots of videos with different attributes on OTB50. Best viewed on color display.

and KCF enable to track the targets stably well. The SCM,
ASLA, TGPR, STRUCK and SCM drift to the background at
the beginning frames (e.g., #15, #55). In the david3 video,
the target has large appearance variations because of non-
rigid body deformation. Besides, the target appearance changes
much when the person turns around. The SCM and STRUCK
lose tracking the target after frame #140. The ASLA and DSST
drift to the background when the target turns around. Only the
WALSA, CNT, TGPR and KCF perform well on all frames.

3) Occlusion: Figure 9 shows some sampled tracking re-
sults of three sequences with target having heavy occlusions.
The target in the jogging-1 sequence is heavily occluded
by the lamp post (e.g., #76). Only the WALSA, CNT and
MEEM enable to re-detect the target when it reappears in
the screen (e.g., #81, #151). In the suv sequence, the vehicle
undergoes heavy occlusion from dense tree branches (e.g.,
#515m #550, #680). The TGPR, STRUCK, MEEM and KCF
cannot perform well (e.g., #680). In the woman sequence,
although the target is occluded for a long duration (e.g., #115,
#295), the WALSA performs well at most frames, whereas the
ASLA perform poorly on this sequence (e.g., #145).

4) Illumination Changes: Figure 10 demonstrates some
sampled tracking results in three videos including targets un-
dergoing large illumination changes. A moving car in the car4
sequence passes underneath a bridge, thereby causing drastic
illumination changes. The WALSA performs well despite the
large illumination changes at frames #240, #405. The MEEM

TABLE I: Effect of setting different values of parameter λ in (7).

λ 0.005 0.008 0.01 0.05 0.1
AUC score 0.562 0.56 0.58 0.575 0.578

and KCF suffer from some drift when drastic illumination
variation occurs as illustrated by frame #240. In the skating1
sequence, the target undergoes drastic light changes and rapid
pose variations (e.g., #175, #205, #335). The CNT, STRUCK,
and WALSA performs consistently well from the beginning
frame to the end. In the trellis sequence, the target appearance
has significant variations in pose. The DLT and ASLA drift
away to the background at frames #305, #405. The WALSA,
CNT, and STRUCK enable to stably track the target with much
more better accuracy than the TGPR, KCF, DSST and MEEM
methods.

E. Ablative Study

We propose three variants of WALSA to further validate
the effectiveness of its key components: one only utilizes
the weighted local appearance model without spatio-temporal
context, one does not include the temporal context, and
another one does not include the spatial context. We take
the ASLA as the baseline tracker. Figure 11 demonstrates
the results of OPE on the benchmark dataset. The results
show that without considering spatio-temporal context, the
AUC score of WALSA reduces by 12.1%. Meanwhile, the
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Precision plots of OPE − deformation (19)
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Fig. 6: Precision plots of videos with different attributes on OTB50. Best viewed on color display.

WALSA without spatial context reduces the AUC score by
6.6% while by 4.1% without temporal context, which shows
that the temporal context is more important than the spatial
context. In addition, even without spatio-temporal context, the
WALSA outperforms the ASLA by 2.5%, which validates the
effectiveness of the weighted strategy in WALSA.

Table I lists the results of setting different values of pa-
rameter λ in (7). We set λ = 0.005, 0.008, 0.01, 0.05, 0.1,
and report the AUC score of success plot for each setting.
We observe that the proposed method is not sensitive to this
parameter and achieves best performance when λ = 0.01.

IV. CONCLUSIONS

In this paper, we have presented a simple yet effective
approach that explores rich feature information from reliable
patches based on the weighted local sparse representation.
Specifically, we designed a weight function with the recon-
struction error of each patch via sparse coding to measure the
patch reliability. Moreover, we explored the spatio-temporal
context information to enhance the robustness of the appear-
ance model, in which the global temporal context is learned via
incremental subspace and sparse representation learning with a
novel dynamic template update strategy, while the local spatial
context considers the correlation between the target and its
surrounding background via measuring the similarity among
their sparse coefficients. Extensive experimental evaluations
on the large tracking benchmarks demonstrated favorable

performance of the proposed method over some state-of-the-
art trackers.
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Fig. 1: Flowchart of the proposed weighted local sparse appearance model.

Fig. 9: Qualitative results of the 10 trackers over sequences jogging-1, suv and woman, in which the targets undergo heavy occlusion. Best
viewed on color display.
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Fig. 1: Flowchart of the proposed weighted local sparse appearance model.

Fig. 10: Qualitative results of the 10 trackers over sequences car4, skating1 and trellis, in which the targets undergo severe illumination
changes. Best viewed on color display.



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2839916, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
uc

ce
ss

 r
at

e

Success plots of OPE

 

 

WALSA [0.580]
WALSA without Temporal Context [0.539]
WALSA without Spatial Context [0.514]
WALSA withot Spatio−Temporal Context [0.459]
ASLA [0.434]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

ci
si

on

Precision plots of OPE

 

 
WALSA [0.794]
WALSA without Spatial Context [0.756]
WALSA without Temporal Context [0.749]
WALSA withot Spatio−Temporal Context [0.589]
ASLA [0.532]

Fig. 11: Success plots and precision plots of OPE for WALSA with different components on OTB50. The ASLA is taken as a baseline. Best
viewed on color display.


