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Abstract—Metric learning plays a fundamental role in the
fields of multimedia retrieval and pattern recognition. Recently,
an online multi-kernel similarity (OMKS) learning method has
been presented for content-based image retrieval (CBIR), which
was shown to be promising for capturing the intrinsic non-
linear relations within multimodal features from large-scale data.
However, the similarity function in this method is learned only
from labeled images. In this paper, we present a new framework
to exploit unlabeled images and develop a semi-supervised OMKS
algorithm. The proposed method is a multi-stage algorithm
consisting of feature selection, selective ensemble learning, active
sample selection and triplet generation. The novel aspects of our
work are the introduction of classification confidence to evaluate
the labeling process and select the reliably labeled images to train
the metric function, and a method for reliable triplet generation,
where a new criterion for sample selection is used to improve
the accuracy of label prediction for unlabelled images. Our
proposed method offers advantages in challenging scenarios, in
particular, for a small set of labeled images with high-dimensional
features. Experimental results demonstrate the effectiveness of
the proposed method as compared with several baseline methods.

Index Terms—Image retrieval, metric learning, similarity
learning, multi-kernel learning, semi-supervised, OMKS, S-
SOMKS.

I. I NTRODUCTION

W ITH the rapid growth of multimedia data such as
images and videos, measuring the similarity between

visual objects becomes an increasingly important task in a
variety of applications including classification, clustering and
retrieval [1–3]. Conventionally, this can be achieved by using
pre-defined functions, such as the Euclidean distance and co-
sine similarity. With these functions, however, the underlying
distribution of the data is often implicitly assumed. As a result,
the complex intrinsic structures within the data may not be
well captured by these functions.

To address this problem, an increasing amount of effort has
been made to learn an appropriate metric directly from the
data, for applications such as content-based image retrieval
(CBIR), which is our focus here. In the pioneering work by
Xing et al [4], metric learning is formulated as a convex
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optimization problem with a set of similarity and dissimilarity
constraints, where a global Mahalanobis distance is learned
by keeping similar pairs of objects close to each other while
dissimilar pairs apart from each other [5]. This earlier work has
inspired the development of a number of methods for learning
global linear metrics, such as the information-theoretic method
[6, 7], nearest neighbor classification method [8], Laplace
regularized metric learning (LRML) [9], and more recently,
the geometric mean metric learning (GMML) method [10].

These global metric learning techniques, however, are often
limited for large-scale problems due to their high computa-
tional complexity. They may also suffer from the issue of
the so-called curse of dimensionality [11]. To overcome these
limitations, a number of algorithms have been presented for
learning local metrics [12–16], which are deemed to be more
flexible for capturing the variations across multiple feature
spaces, and offering better performance, as compared with
global metrics. However, the local metrics tend to be prone
to the problem of overfitting [5].

The aforementioned algorithms aim to learn linear metrics
which may have limitations in characterising the relations
between the different modalities in multi-modal data, since
they often have non-linear relations, and are in different spaces
and dimensions. To address these issues, multiple kernel tech-
niques have been introduced [17–20], by mapping the images
to a high-dimensional feature space with a nonlinear kernel
matrix. In [17], an optimal ensemble of kernel transformations
is learned for integrating features of multiple modalities into
a unified space. However, it is computationally expensive, and
consequently not applicable to high-dimensional and large-
scale datasets. In [18], a multi-modal distance metric learning
framework is proposed by projecting data from different
modalities into a latent feature space based on the multi-
wing harmonium model. In [19], a weighted kernel embedding
technique is presented for metric learning, which is shown
to be flexible in combining multiple features. Using multiple
kernel techniques, the complementary nature of different fea-
tures extracted from an image can be better exploited. For this
reason, multi-kernel learning techniques are also considered in
our work.

In applications with large-scale data, however, the algo-
rithms discussed above are often limited in their scalability.
The computational complexity and memory requirement of
these algorithms may increase significantly when dealing
with large-scale data [5]. To address this challenge, online
techniques have been proposed in e.g. [21–23]. In [23], an
online multiple kernel similarity learning (OMKS) algorithm
is presented, where a flexible nonlinear proximity function
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with multiple kernels is learned in a supervised manner
and applied to visual search. In [21], an online multimodal
deep similarity learning (OMDSL) framework is proposed to
improve multimedia similarity search by integrating multi-
ple deep networks with a scalable online scheme. In [22],
an online multi-modal distance metric learning (OMDML)
scheme is proposed, where the optimal metrics are learned
in individual modality space and the weights for combining
different modalities are obtained with a joint formulation.
These algorithms rely overwhelmingly on the availability of
labeled data in their training. In practice, however, labelling
data by human is time consuming and costly. In addition, the
labels provided by different labellers are not always consistent
and could be noisy. Therefore, it is highly desirable if the
large-scale unlabelled data could be directly used in metric
learning.

The use of unlabelled data in metric learning has been
considered in previous work e.g. [9, 24, 25]. However, these
methods were proposed for learning global Mahalanobis met-
rics, but not for local metrics. In this paper, inspired by
the OMKS algorithm in [23], we propose a novel multi-
stage semi-supervised online multi-kernel similarity (SSOMK-
S) learning framework for using the unlabelled data in metric
learning. More specifically, we present a new method for triplet
generation to allow the incorporation of the unlabelled data
in the OMKS algorithm. An important challenge in the use
of unlabelled data comes from the risk associated with the
unreliability and noise in the training samples. To counter this
problem, a new active sample selection method based on the
concept of margin is proposed for measuring the classification
confidence. This leads to a new method for reliable triplet
generation where the labeling process is evaluated in order
to select the reliably labeled images for learning the metric
function. To our knowledge, such an idea has not yet been
exploited in metric learning.

The remainder of this paper is organized as follows. Section
II briefly summarises the baseline OMKS algorithm in [23].
In Section III, we introduce our proposed SSOMKS learning
framework which is a multi-stage method including feature
selection, selective ensemble learning, active sample selection,
and triplet generation. Section IV presents experimental results
on both qualitative and quantitative analysis, including the
evaluation of each stage of the proposed method and its
comparison with several baseline methods. We conclude the
paper with an outlook for future work in Section V.

II. T HE OMKS LEARNING METHOD

In this section, we give a brief introduction to the OMKS
algorithm presented in [23].

Suppose there is a kernelκ(·, ·) and the corresponding
Hilbert spaceH, and consider a linear operatorL: H 7→ H
that maps a functionf ∈ H to another oneL[f ] ∈ H. Assume
there is a collection ofm kernel functionsK = {κi : χ×χ→
R, i = 1, . . . ,m}. A similarity function for visual search is
defined as

f(q, p) =
m
∑

i=1

θiSi(q, p) =
m
∑

i=1

θi〈κi(q, ·), Li[κi(p, ·)]〉Hκi

(1)

where q ∈ χ is a query image, andp ∈ χ is an
image in the pooling set to be retrieved.Si(q, p) =
〈κi(q, ·), Li[κi(p, ·)]〉Hκi

is the similarity function based on
the linear operatorLi. The goal is to learn the weights{θi}mi=1

and the linear operators{Li}
m
i=1 simultaneously.

Given a set ofT triplets{(pt, p
+
t , p

−
t )}

T
t=1 wherept should

be more similar top+t than top−t , the objective function that
needs to be optimised is given as follows

min
θ∈△

min
{Li}m

i=1

1
2

m
∑

i=1

θi‖Li‖
2
HS+C

T
∑

t=1
ℓ(f(pt, p

+
t )−f(pt, p

−
t ))

(2)
where ‖ · ‖HS is the Hilbert Schmidt norm of the linear
operator,C ≥ 0 is the loss parameter,ℓ(z) is the hinge loss
and△ is defined as

△ = {θ ∈ Rm
+ |θT em = 1} (3)

To solve the problem (2), online learning techniques are
introduced. In particular, for kernelκi, the corresponding
weight θi and linear operatorLi are updated inT iterations.
That is, when thetth triplet (pt, p

+
t , p

−
t ) arrives, the weight

θi(t − 1) and linear operatorLt−1,i in kernelκi are updated
to obtainθi(t) andLt,i, respectively.

Starting withL0,i = I, Lt,i for the tth triplet is updated as

Lt,i = Lt−1,i + τt,iZt (4)

whereh ∈ H, Zt[h](·) = κ(pt, ·)(h(p
+
t )− h(p−t )) ∈ L (L =

{L : H 7→ H, L is a linear operator} is the space including
linear operators inH) andτt,i is computed as

τt,i = min{C,
max{0,1−SLt−1,i

(pt,p
+

t )+SLt−1,i
(pt,p

−

t )}

κ(pt,pt)(κ(p
+

t ,p
+

t )−2κ(p+

t ,p
−

t )+κ(p−

t ,p
−

t ))
} (5)

Then, the weight of kernelκi is updated as

θi(t) = θi(t− 1)βzi(t) (6)

whereβ ∈ (0, 1) is a discounting parameter which is used
to penalize the kernel that makes incorrect predictions in
each iteration, andzi(t) equals to 1 whenSLt−1,i

(pt, p
+
t ) −

SLt−1,i
(pt, p

−
t ) ≤ 0, and 0 otherwise.

The OMKS algorithm is a supervised algorithm trained with
labelled data. The triplet generation does not consider the use
of unlabeled data. To address this issue, we propose a new
semi-supervised multi-stage learning framework, by extending
the OMKS algorithm to the scenario where only a small
amount of training data is labelled while the majority of the
data are unlabeled, as discussed next.

III. PROPOSEDSEMI-SUPERVISEDOMKS LEARNING

METHOD

Our new framework of SSOMKS is a multi-stage method
consisting of feature selection, selective ensemble learning,
active sample selection, and triplet generation. The key con-
tribution in this framework is a new method for generating the
triplets, as well as a new approach for controlling the potential
risk in using unlabelled data with active sample selection based
on the concept of margin.

The diagram of the proposed method is shown in Fig. 1.
First, feature selection is performed to obtain discriminative
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Fig. 1. Flow chart of the semi-supervised online multiple kernel similarity framework for image retrieval. For each image in the dataset, we extract 9 types of
features (e.g., SIFT, PHOG, etc.) and then select several dimensions in each modality. Then, we learn metrics (e.g., DCA, LRML, etc.) as well as classifiers
(e.g., random forest, subspace, etc.) for each modality with labeled training set. Specifically, we apply the learned metrics for constructing the nearest neighbor
classifier. To select appropriate classifiers, selective ensemble learning is performed on validation set. Unlabeled training set is viewed as test data. By searching
the nearest and farthest class of these images with the selected classifiers, we obtain unlabeled-labeled-labeled triplets. Unlabeled-unlabeled-unlabeled triplets
can be generated by finding the nearest and farthest samples, while labeled-labeled-labeled triplets are produced by supervision information of labeled training
set. For the first two types of triplets, we also make the first attempt to perform active sample selection with margin. Please refer to Section IV for details.

feature space. Then, ensemble learning is introduced to train
the classifiers for each type of features, and the classifiers that
offer better classification performance are selected. Third, an
active sample selection method is proposed to ensure that the
samples with correctly predicted labels are used. Finally, the
triplets with these selected samples are generated to perform
metric learning for visual search. The details of each stage are
discussed below.

A. Feature Selection

High-dimensional multiple features extracted from images
may contain redundant information. Feature selection is help-
ful for choosing the discriminative dimensions in the feature
space. Here, we apply the Multi-Cluster Feature Selection
(MCFS) [26] method, as it is computationally efficient and
also independent of the choice of classifiers.

Given an image training setX = {x1,x2, . . . ,xN},xi ∈
R

D of N images withD dimensions inK clusters. Suppose
we want to selectd dimensions and the number of nearest
neighbors is set asp. For each imagexi, we construct ap
nearest neighbor graph by finding itsp nearest neighbors and
form an edge betweenxi and its neighbors. We define the
weight matrixW on the graph and a diagonal matrixD based
on W , Dii =

∑

j Wij . The graph LapalcianL = D −W .
Solve the generalized eigen-problem [27]

Ly = λDy (7)

Let Y = [y1, . . . ,yK ] be the topK eigenvectors correspond-
ing to the smallest eigenvaluesλ = [λ1, . . . , λK ]. For each

cluster, we solve the equivalent formulation of LASSO using
Least Angle Regression (LARs) algorithm [28] by specifying
the cardinality asd

min
ak

‖yk −XTak‖
2

s.t. ‖ak‖1 = d
(8)

Then we getK sparse coefficient vectors{ak}
K
k=1 ∈ R

D. The
MCFS score for each featurej is computed as

MCFS(j) = max
k

|ak,j | (9)

We obtain the topd features according to the ranking.

B. Selective Ensemble Learning

Following feature selection, classification is performed to
predict the labels of unlabelled samples. Here, ensemble learn-
ing is employed due to its advantage over a single classifier in
its generalization ability to unseen data [29]. The performance
of ensemble learning algorithms may vary. It was shown that
ensembling many of the available learners can be better than
ensembling all of them [30]. Therefore, selective ensemble
learning is introduced to remove the under-performed learners.
Here, we adopt the Margin based Pruning (MP) [31] algorithm
to select proper classifiers. An advantage with the MP algo-
rithm is that the distribution of the sample intervals can be
further optimised during the process of ensemble selection.
The MP procedure is discussed as follows.

SupposeX = {x1,x2, . . . ,xN} is the training image set,
h1, . . . , hL are the base classifiers,yi is the true class label of
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xi, and ŷij (j = 1, 2, . . . , L) is the classification decision of
xi estimated by the classifierhj . The margin ofxi is defined
as

m(xi) =
L
∑

j=1

wjΛij (10)

wherewj is the weight ofhj, Λij =

{

1, if yi = ŷij
−1, if yi 6= ŷij

For xi ∈ X, its classification loss is defined as

l(xi) = [1−m(xi)]
2 (11)

The loss of classification is computed as

l(X) =
N
∑

i=1

l(xi) = ‖u−Dw‖22 (12)

where u = [1, · · · , 1]TN×1,w = [w1, · · · , wL]
T
L×1,D =

{Λij}N×L.
The L2-norm regularization is added to the loss function

[32]
Fw = ‖u−Dw‖22 + λ‖w‖2 (13)

The weightswj (j = 1, 2, . . . , L) can be obtained by minimiz-
ing Fw using open software packages such as [33]. Then, the
classifiershsj (sj = 1, 2, . . . , L) are ranked in terms of the de-
scending order of the weightswj (j = 1, 2, . . . , L). After this,
we compute the average precisionψj with {hs1, hs2, . . . , hsj}.
Finally, {hs1, hs2, . . . , hsB} are the selected classifiers with
B = max

j∈{1,...,L}
ψj .

C. Sample Selection with Classification Confidence

For unlabelled data, the labels predicted by voting in the
above section may not be reliable. As a result, the triplet
could be wrongly generated, which can have negative impact
on both the computational efficiency and learning performance
of metric learning. To address this problem, we propose a new
technique to select samples, based on the concept of margin,
which has been previously used to measure the confidence of
classification. If a trained model gives a large margin, it will
have a higher degree of confidence and reliability. Inspired by
the work in [34–37], we introduce the concept of classification
confidence to sample selection. Our method is based on three
hypotheses. First, each selected classifier has considerable
classification ability, which means it is better than random
guess. Second, the accuracy is positively related to the votes
of the largest class. Third, the accuracy is positively related to
the margin between the first and the second largest class.

Assume theL classifiers are independent, whereL = 2k+1
is odd. LetXi be a variable indicating whether the classifica-
tion by theith classifier is correct or not. If the prediction accu-
racy of each classifier isp, then we haveXi ∼ Bernouli(p),
and the number of correct classifications with the ensemble

majority voting method isY =
L
∑

i=1

Xi∼binomial(L, p) [38].

The majority vote accuracy is

Pmajority(L) =
L
∑

i=k+1

(

L

i

)

pi(1− p)L−i (14)

It has been shown that the sequence{Pmajority(2k+1)}
strictly increase whenp > 0.5 [39]. In addition,

limk→∞ Pmajority(2k+1) = 1, and the prediction accuracy of
the ensemble voting method converges to 1 whenp > 0.5.
As the probability for the largest number of votes may be
smaller than half, Equation (14) is the lower bound of the
actual probability.

Suppose there areNu unlabeled training images,B clas-
sifiers andK classes. We introduce a parameterc to balance
between the maximum and the margin, and define the criterion
for selection ascmax+(1− c)margin. We denote the voting
accuracy of validation images with theseB classifiers as
Accv. After ranking theNu images in a descending order of
cmax+(1−c)margin, we select the topNu∗Accv unlabeled
images to generate triplets.
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Fig. 2. Voting results of samples in Class 1. Each classifier outputs a label for
each sample. The final predicted class is the one which gets the most votes.
Sample 1 and 4 fall into Class 1, while sample 2 and 3 fall into Class 5.

Fig. 2 gives an example of the voting results for four
unlabeled samples from Class 1. We observe that only sample
1 and 4 are correctly classified. Two incorrectly labeled
samples will be introduced with all classifiers. The accuracy on
validation set is 37.5%. Thus we may select 2 out of 4 samples
with relevant strategies. If we adopt themax criterion, then
sample 1 and 3 are chosen, introducing one mistake. If we
use themargin or max +margin criterion, then sample 1
and 4 are selected without a mistake. This illustrates that our
sample selection strategy can improve classification accuracy.

D. Triplet Generation

To exploit a certain unlabeled imagexi for metric learning,
it is necessary to find its nearest neighborxj and farthest
imagexk to generate the triplet(xi,xj,xk).

Given an unlabeled samplexi, the triplets can be divided
into two types, i.e., unlabeled-labeled-labeled and unlabeled-
unlabeled-unlabeled ones according to whetherxj and xk

are labeled or not. For the former, we first labelxi with
the selected base classifiers. The farthest class is the one to
which the farthest sample found with learned metrics belongs.
Then,xjs can be the labeled training samples that belong to
the same class withxi, whereasxks are the labeled training
samples that belong to its farthest class. For the latter, we
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are required to find the nearest and farthest samples toxi

in unlabeled training set. Without supervision information, we
consider exploiting the learned metrics. Therefore,xjs are the
nearest unlabeled samples whilexks are the farthest unlabeled
ones obtained by the metrics.

E. Summary of the Proposed SSOMKS Learning Framework

The implementation steps of the proposed SSOMKS method
are summarised in Algorithm 1. It can be seen that the
proposed SSOMKS differs from the OMKS algorithm in the
process on how the triplet is generated. In the proposed method
both the labeled and unlabeled images are used to learn a
metric, while in the baseline OMKS method, only the labeled
images are considered.

Algorithm 1 The SSOMKS algorithm
Input:

Labeled training set withM modalitiesDl = {Dl
j}

M
j=1;

Unlabeled training setDu = {Du
j }

M
j=1;

Validation setDv = {Dv
j }

M
j=1;

Trade-off parameterc;
Output:

f(q, p);
1: for j = 1 to M do
2: Feature selection from thejth modality Dl

j (Section
III-A ), then we get the labeled, unlabeled training set
and validation setDsl

j , Dsu
j , Dsv

j ;
3: Learn metrics and train classifiers withDsl

j ;
4: end for
5: Select classifiers withDsv (Section III-B );
6: Vote forDsu, computemax andmargin for each sample;
7: RankDsu in a descending order ofcmax+(1−c)margin,

then perform sample selection (Section III-C );
8: Exploit the selected samples to generate triplets (Section

III-D );
9: Input these triplets to the OMKS framework;

10: Outputf(q, p).

In constrast to [23], where a theoretical analysis is presented
for the OMKS method, we do not yet have a theoretical
proof for the convergence property of the proposed SSOMKS
method. However, a simulation study is provided in Section
IV-A for the analysis of its convergence.

IV. EXPERIMENTS

In this section, we evaluate the performance of SSOMKS
and compare it with several baseline methods. We first intro-
duce the experimental setting and then show the results as well
as the analysis to these results.

A. Experimental Setting

1) Datasets and Experiment:We conduct the experiments
on image datasets including Corel [40], ImageCLEF1, Indoor2,

1http://imageclef.org/.
2http://web.mit.edu/torralba/www/indoor.html.

Caltech2563, Flickr4 and Oxford Buildings5. We pick 10,
20 and 50 classes in Caltech256 to form three subsets, i.e.
Caltech10, Caltech20 and Caltech50, respectively. In other
datasets, we pick 10 classes. For each dataset, the number
of images for each class equals the number of images of the
class that has the minimum size in its sample set. We select
half of the images for training, 10% for validation, 10% for
query, and the remaining 30% for retrieval evaluation. The
experiment is performed on a machine with 3.40 GHz Intel
processor, 8 GB memory, and the Matlab software.

2) Descriptors and Kernels:Both global and local feature
descriptors are extracted to represent images. The global fea-
tures we tested include: (1) color histogram (256 dimensions
for gray images and 768 dimensions for color images); (2)
GLCM coefficients (16 dimensions); (3) Local Binary Pattern
(59 dimensions); and (4) GIST features (512 dimensions). The
local features we used include: (1) SIFT; (2) dense-SIFT; (3)
SURF; (4) Geometric Blur; and (5) PHOG (680 dimensions).
We set the vocabulary size as 200 to represent Bag-of-Words
(BOW) features except for the PHOG descriptor. Since CNN is
effective for image content representation and is trained with
color images, we extract DCNN feature (4096 dimensions)
using CaffeNet, except for the dataset ImageCLEF. Then
we apply PCA to each type of features and retain the first
50 principle components. The full dimension of the original
features is retained if it is smaller than 50.

Based on these features, we construct 4 kernels [23]:
RBF kernel: κ(x, x′) = exp(− ‖x−x′‖2

rσ2 ), where the pa-
rameter r is the mean of the pairwise distance andσ ∈
{10−2, 2 ∗ 10−2, 4 ∗ 10−2} is the scale parameter.

Cosine similarity: κ(x, x′) = 〈x,x′〉
‖x‖2‖x′‖2

. To ensure the
similarity value in the range of [0, 1], we adoptκ(x, x′) =

0.5 〈x,x′〉
‖x‖2‖x′‖2

+ 0.5.
3) Base Classifiers:We perform the feature selection al-

gorithm MCFS on each feature and select 50 dimensions.
All dimensions are kept if the original feature is less than
50. To make predictions for unlabeled training images, we
construct a series of base classifiers for each kind of feature,
i.e. AdaboostM1 [41] + CART [42], discriminative analysis
[43], random forest [44], subspace as well as nearest neighbor
with Euclidean distance, RCA [6], DCA [40], LRML [9] and
SERAPH [15] metrics.

TABLE I
PARAMETER SETTING OF SSOMKS

Parameter d k num λ C β

Value 50 20 50 10000 [0,1] (0,1)

4) Evaluation Criteria: For each query image, we can rank
all of the test images according to their similarities. Here
we use the mean Average Precision (mAP) to evaluate the
performance of retrieval. Given a query and itsR retrieved
images, the Average Precision is defined as

AP = 1
L

R
∑

r=1
prec(r)δ(r) (15)

3http://www.vision.caltech.edu/ImageDataSets/Caltech256/.
4http://press.liacs.nl/mirflickr/mirdownload.html.
5http://www.robots.ox.ac.uk/vgg/data/oxbuildings/index.html.
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Fig. 3. Retrieval performance vs. parameterC and β for the Indoor dataset.
The solid lines represent the first round of parameter tuning and dashed
lines represent the second round. In each round, first we fix parameterC

while tuningβ, and then we fix parameterβ while tuning parameterC. The
algorithm converges after two rounds. Noticing that the curves in the right
column are not smooth, and this seems to suggest that the algorithm converges
to a local optimum.

whereL is the size of the relevant images in the retrieved set,
prec(r) is the precision at therth position, andδ(r) represents
whether therth retrieved image is relevant to the query or
not. δ(r) = 1 when they are relevant;δ(r) = 0, otherwise.
The mAP is defined based on the average AP values of all the
queries.R is set as the number of images for each class in
the pooling set.

5) Compared Methods and Parameter Setting:We compare
SSOMKS with the following state-of-the-art metric learning
algorithms. For each metric, we concatenate all types of
features, and then report the retrieval result.
• DCA: An efficient supervised metric learning scheme

which can exploit both positive and negative constraints [40].
• LRML: A semi-supervised distance metric learning tech-

nique that integrates both labeled and unlabelled samples into
an effective graph regularization framework [9].
• OASIS: A supervised online dual approach that learns a

bilinear similarity measure over sparse representations [45].
• EMR: A scalable graph-based manifold ranking algorithm

for image retrieval [46].
• ITML: An information-theoretic method which minimizes

the differential relative entropy between two multivariate
Gaussians with constraints [7].
• DML-eig: An efficient eigenvalue optimization framework

for metric learning [16].
• OMKS: An efficient online metric learning algorithm

which learns a flexible nonlinear proximity function with
multiple kernels for improving visual search [23].
• SERAPH: An information-theoretic metric learning ap-

proach that does not rely on the manifold assumption [15].
• HDS: A deep learning framework to learn hash codes and

image representations in a point-wise manner [47].
Table I shows the parameter setting of SSOMKS. It was ob-

served that MCFS performs well when the number of selected
features is smaller than 50 [26]. Therefore, we setd as 50. The
parameterk of kNN in LRML controls the number of nearest
neighbors linked in a KNN graph. Commonly, it is tuned in 5-
20. As the number of labeled images per class is greater than
20, we setk as 20. For ensemble learning methods including
Adaboost, random forest and subspace, we setnum as 50.
The trade-off parameterλ in MP is used to avoid overfitting.
By tuning it in {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}
on the validation set, we set it as 10000. The choices ofC

andβ follow from OMKS.
Fig. 3 gives an example of parameter tuning. We only tune

several key parameters and set all the remaining to default
values. In particular, we set the regularization parametersγs,
γd as 1 due to the lack of prior information and vary the
parameterk of kNN in LRML in the range of 5-20. We set the
number of the landmarks pickedp in EMR as 50 after tuning

TABLE II
THE CLASSIFICATION ACCURACY(%) ON COREL, IMAGECLEFAND INDOOR DATASETS WHEN THE TRAINING RATIO IS20%.

Datasets Triplets MP MP+margin MP+max MP+max+margin

Corel unlabeled-labeled-labeled 54.67 71.01 76.81 75.36

unlabeled-unlabeled-unlabeled 54.67 60.71 69.05 69.05

ImageCLEF unlabeled-labeled-labeled 85.00 94.06 93.07 94.06

unlabeled-unlabeled-unlabeled 82.50 81.13 81.13 81.13

Indoor unlabeled-labeled-labeled 50.00 60.00 60.00 57.78

unlabeled-unlabeled-unlabeled 58.89 62.22 64.44 62.22
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(b) Gray histogram (ImageCLEF)
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Fig. 4. The clustering performance comparison in terms of NMI versus the number of selected dimensions.
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Fig. 5. Performance comparison of different methods on threedatasets with varying labeling rates.
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Fig. 6. Performance comparison of nine different features onthree datasets with varying labeling rates.

it on the validation set. For DML-eig, we tune the parameter
k in kNN from 1 to the number of the labeled training images
per class minus one. All these intervals are chosen as in their
released source codes. As for HDS, we use the trained network
due to the limited number of labeled images.

B. Performance Analysis

In this section, we conduct a series of experiments on feature
selection, classifier and feature analysis, classifier selection,
sample selection as well as performance comparisons between
the proposed method and other methods.

1) Feature Selection:We compare MCFS [26] with P-
CA, Laplacian score (LS) [48], discriminative least squares
regression (DLSR) [49], CfsSubetEval + GreedyStepwise
(CSE+GS) and the original ones (i.e. without feature se-
lection). The feature selection methods select the dimension
d = 10, 20, . . . , 100, 120, . . . , 200 (15 sets), except CSE+GS,

which can search the optimal number automatically. We per-
form k-means with the selected features for clustering and use
the normalized mutual information (NMI) for evaluation.

Fig. 4 shows the plots of clustering performance versus
the number of selected dimensions. In general, PCA offers
performance comparable with the original features without
performing feature selection. It is clear that MCFS performs
well in most cases, while CSE+GS has a poor performance
due to the lack of supervision information. It can be seen that
MCFS significantly outperforms the original ones with SIFT
features. This can be attribute to its strong ability in selecting
discriminative information in high-dimensional feature spaces.

2) Classifier and Feature Analysis:Fig. 5 shows the voting
accuracy of each classifier versus the labeling rate, which
represents the proportion of labeled images in the training set.
For unlabeled-labeled-labeled triplets, it is clear that the per-
formance of the subspace and random forest is lower than that
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TABLE III
THE PERFORMANCE COMPARISON IN TERMS OF MAP (9 AND 10 TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON COREL DATASET
WITH LABELING RATE EQUALS TO 10%, 15%, 20%, 25%AND 30%. HDSUSESDCNN FEATURE EXTRATED BY ITSELF. THE BEST AND THE SECOND

BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS

-max -max+margin -margin

10%

mAP-9 0.1589 0.1597 0.1604 0.1378 0.0427 0.1284 0.1078 0.0626 0.0280 0.0413 0.0419 0.0579

mAP-10 0.3883 0.3881 0.3886 0.3837 0.0855 0.2011 0.1413 0.2997 0.2618 0.3166 0.0529 0.0255 0.4368

time(s) 99.77 97.90 98.15 67.38 0.40 0.60 2.96 3.02 21.68 336.46 0.41 1.04

15%

mAP-9 0.1541 0.1535 0.1541 0.1374 0.0427 0.1320 0.1065 0.0576 0.0428 0.0697 0.0419 0.0486

mAP-10 0.3924 0.3924 0.3924 0.3872 0.0855 0.2842 0.1368 0.3078 0.2732 0.2773 0.0529 0.0799 0.4401

time(s) 377.80 377.80 377.80 137.78 0.52 0.61 3.06 3.07 26.80 311.47 0.43 2.24

20%
mAP-9 0.1561 0.1561 0.1571 0.1452 0.0427 0.1280 0.0965 0.0600 0.0389 0.0424 0.0419 0.0638

mAP-10 0.3980 0.3980 0.3980 0.3915 0.0855 0.3093 0.1354 0.3093 0.3071 0.2516 0.0529 0.2042 0.4435

time(s) 1330.55 1330.55 1289.27 522.66 0.34 0.88 4.56 2.14 144.84 274.28 0.43 4.42

25%
mAP-9 0.1628 0.1624 0.1642 0.1535 0.0427 0.1274 0.0860 0.0602 0.0565 0.0426 0.0419 0.0651

mAP-10 0.4032 0.4032 0.4032 0.3986 0.0855 0.3054 0.1406 0.3128 0.3044 0.2582 0.0529 0.2602 0.4470

time(s) 3892.07 3892.07 3892.07 1787.16 0.45 0.59 2.89 1.98 22.18 373.87 0.37 6.86

30%

mAP-9 0.1665 0.1651 0.1644 0.1607 0.0427 0.1287 0.0882 0.0427 0.0429 0.0654 0.0419 0.0658

mAP-10 0.4102 0.4102 0.4102 0.3978 0.0855 0.3077 0.1402 0.3116 0.3116 0.2553 0.0529 0.2359 0.4513

time(s) 8789.79 8164.26 8164.26 5443.61 0.41 0.59 2.94 1.74 22.21 377.62 0.41 10.24

average rank

mAP-9 1.8 2.2 1.4 3.6 9.4 4.6 5.6 7.8 10 9 10.8 7.2

mAP-10 1.2 1.4 1 2.4 8.6 4.6 7.6 3.6 5 5.4 9.8 7.8 –

time 10.4 9.8 9.8 8.4 1.4 2.8 5 4.6 6.8 8.8 1.4 4.8

of other classifiers. In contrast, nn+DCA and AdaboostM1
+ CART consistently exhibit significant advantages, which is
partly due to the utilization of supervision information as well
as error adaptive adjustment.

Fig. 6 shows the voting accuracy of each feature versus
the labeling rate. It can be observed that the performance
for each specific feature is data dependent. For instance, the
color histogram outperforms almost all the other features on
the Corel dataset, however, it has poor performance on other
datasets, which is caused by the single color of the background
(i.e. the sunrise is golden, the sky is blue and so on) in Corel.
In contrast, as a kind of local features, SIFT is more sensitive
to subtle variation in the complex scene, thus having excellent
performance on the ImageCLEF and Indoor datasets.
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Fig. 7. The obtained weights by different features and classifiers.

We learn the weight of each feature-classifier pair by min-
imizing (13), and then report the results in Fig. 7. Generally

speaking, it is much easier for the feature-classifier pairs to
find the farthest class than the correct class. Therefore, we may
observe that these pairs get comparative weights in searching
the farthest class. Intuitively, pairs having better performance
receive larger weights. We can see that on the ImageCLEF
dataset, the weights of AdaboostM1 + CART and nn+DCA
are much larger, while those of subspace and random forests
are close to zero in terms of unlabeled-labeled-labeled triplets,
which is consistent with the results in Fig. 5.

3) Selective Ensemble Learning Analysis:The process of
selective ensemble with different labeling rates is shown
in Fig. 8. Intuitively, it is not necessary to exploit all the
classifiers for achieving the optimal performance because a
part of them may not be necessary. For unlabeled-labeled-
labeled triplets, the required number of classifiers is closely
related to the complexity of the scene. For instance, the
best performance can be obtained with fewer than 50 base
classifiers on the Corel and ImageCLEF datasets. However,
due to the complicated background in the Indoor dataset,
almost all the classifiers are needed when the labeling rate
equals 20%. In general, for a certain dataset, the optimal
number of fused classifiers decreases with the increase in the
labeling rate.

4) Sample Selection Evaluation:Fig. 9 summarizes the
performance comparison of different strategies. On the whole,
the introduction of sample selection significantly improves the
performance. Commonly, voting achieves a higher accuracy
than using the best one. As the distribution of the decision-
making on the test and validation set may differ, MP does not
always outperform using all the samples. The performance
of a certain strategy is data dependent. For instance, as
for unlabeled-unlabeled-unlabeled triplets, MP+max performs
better than MP+margin on the Corel dataset when the labeling
rate is 10%, while the latter performs better on the Indoor
dataset when the labeling rate is 20%.
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TABLE IV
THE PERFORMANCE COMPARISON IN TERMS OF MAP (9 TYPES OF FEATURES) AND TIME COST (9 TYPES OF FEATURES) ON IMAGECLEFDATASET WITH

LABELING RATE EQUALS TO 10%, 15%, 20%, 25%AND 30%. HDSUSESDCNN FEATURE EXTRATED BY ITSELF. THE BEST AND THE SECOND BEST

RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS

-max -max+margin -margin

10%
mAP 0.5067 0.5076 0.5058 0.4391 0.0636 0.3754 0.2711 0.0876 0.0307 0.0666 0.0560 0.0507 0.3959

time(s) 126.04 120.09 123.77 51.61 5.96 0.64 3.00 2.69 20.10 352.67 0.38 1.48

15%
mAP 0.5022 0.5053 0.5004 0.4455 0.0636 0.3951 0.2327 0.0636 0.0674 0.0710 0.0561 0.0837 0.4118

time(s) 446.33 446.92 446.47 134.52 3.46 0.53 2.95 3.24 27.25 311.18 0.37 2.85

20%
mAP 0.4977 0.5027 0.5120 0.4709 0.0636 0.3978 0.2797 0.0636 0.0332 0.0622 0.0561 0.0985 0.4362

time(s) 1746.00 1973.75 1805.92 587.50 0.36 0.49 3.11 1.43 21.06 242.25 0.38 4.24

25%
mAP 0.4735 0.4680 0.4647 0.4728 0.0636 0.4025 0.2682 0.0636 0.0453 0.0573 0.0561 0.1058 0.4535

time(s) 5993.47 5991.07 5982.98 2088.27 0.42 0.60 3.50 1.43 35.65 300.29 0.39 7.11

30%
mAP 0.5001 0.5051 0.4865 0.4887 0.0636 0.4105 0.2688 0.0636 0.0907 0.0630 0.0561 0.0948 0.4702

time(s) 13298.61 13328.16 13288.83 5735.21 0.41 0.57 3.07 2.09 42.22 306.59 0.39 10.66

average rank
mAP 2 1.6 3 3.4 8.8 5 6 8.4 10.2 8.8 10.4 7.8 –

time 10.6 11 10.2 8.4 3.4 2.6 4.8 4.2 6.8 8.8 1.2 4.8
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Fig. 8. The performance comparison in terms of classificationaccuracy versus the number of fused classifiers.

The classification accuracy under a much smaller training
ratio is listed in Table II. It is clear that the performance is
still acceptable with a relatively small training ratio, especially
when sample selection is adopted. The performance is also
data-dependent. In particular, a higher accuracy is obtained for
ImageCLEF, which is a gray medical dataset having simpler
background structure.

5) Performance Comparisons:Tables III-VI summarize the
comparison results on the nine datasets, where mAP-9 means
mAP with 9 kinds of features, while mAP-10 means adopting
DCNN feature as well. Tables III-V imply that SSOMKS
significantly outperforms other algorithms with 9 features,
while as the labeling rate increases, the supervised algorithm
DCA gradually shows its superiority. In the beginning, S-
SOMKS improves the most, around 15% over the OMKS.
With the increase in labeling rate, the improvement decreases.
Comparing mAP-9 with mAP-10, it is clear that the utilization
of DCNN feature obtains significant improvement. In fact, the
performance differences become smaller with better image

representation. From Table VI, the deep learning method
HDS does not reveal superiority in that the generalization
capability is limited without parameter tuning. In terms of
computational efficiency, the Euclidean metric takes the least
time. Owing to the massive triplets production as well as
the time-consuming multiple kernel learning, the time cost of
OMKS/SSOMKS grows rapidly as the labeling rate increases,
whereas the test process only takes a few seconds. Several
techniques such as distributed parallel learning [50] and mini-
batch processing [51] could be applied to further reduce the
time cost. Furthermore, as 50% is a relatively high ratio,
we can also reduce the proportion of the training set. The
average ranks of mAP demonstrate that our proposed method
outperforms most of the baseline methods.

Finally, we randomly pick up several query images and
compare the top 5 ranked images retrieved with different
metric learning algorithms. Fig. 10 shows the qualitative
comparisons of six distinct queries obtained by four diverse al-
gorithms, including OMKS, SSOMKS-max, SSOMKS-margin
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TABLE V
THE PERFORMANCE COMPARISON IN TERMS OF MAP (9 AND 10 TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON INDOOR DATASET
WITH LABELING RATE EQUALS TO 20%, 30%, 40%, 50%AND 60%. HDSUSESDCNN FEATURE EXTRATED BY ITSELF. THE BEST AND THE SECOND

BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Labeling Rate Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS

-max -max+margin -margin

20%
mAP-9 0.1641 0.1671 0.1652 0.1440 0.0525 0.0937 0.0893 0.0525 0.0276 0.0504 0.0430 0.0261

mAP-10 0.4461 0.4461 0.4460 0.4424 0.1162 0.3107 0.1460 0.3877 0.3559 0.3337 0.0580 0.0300 0.3754

time(s) 68.89 69.57 67.95 48.52 0.38 0.47 2.67 0.82 14.34 249.81 0.39 1.11

30%

mAP-9 0.1738 0.1740 0.1760 0.1601 0.0525 0.1183 0.0876 0.0525 0.0197 0.0504 0.0430 0.0299

mAP-10 0.4561 0.4561 0.4561 0.4514 0.1162 0.3604 0.1410 0.3925 0.3245 0.3009 0.0580 0.0488 0.3919

time(s) 220.76 222.51 222.33 154.36 0.52 0.50 2.92 0.84 171.21 284.96 0.41 2.76

40%

mAP-9 0.1727 0.1741 0.1737 0.1673 0.0525 0.1253 0.0887 0.0525 0.0214 0.0401 0.0430 0.0289

mAP-10 0.4517 0.4517 0.4517 0.4467 0.1162 0.3372 0.1463 0.3878 0.3265 0.2729 0.0580 0.0687 0.4121

time(s) 809.55 862.23 933.52 655.34 0.50 0.66 2.71 1.09 13.99 275.14 0.42 3.59

50%

mAP-9 0.1701 0.1721 0.1740 0.1683 0.0525 0.1235 0.1023 0.0525 0.0533 0.0504 0.0430 0.0310

mAP-10 0.4513 0.4513 0.4513 0.4491 0.1162 0.3698 0.1623 0.4063 0.2873 0.3139 0.0580 0.0668 0.4397

time(s) 2410.37 2410.37 2410.37 2174.43(16) 0.36 0.57 2.74 0.96 13.27 279.14 0.41 6.29

60%
mAP-9 0.1630 0.1611 0.1644 0.1621 0.0525 0.1245 0.1026 0.0525 0.0367 0.0496 0.0430 0.0309

mAP-10 0.4551 0.4551 0.4551 0.4519 0.1162 0.3840 0.1623 0.3967 0.3854 0.2236 0.0580 0.0663 0.4512

time(s) 7817.64 7817.64 7817.64 6509.28 0.34 0.56 2.77 0.82 16.21 297.96 0.42 12.21

average rank

mAP-9 2.8 2 1.4 3.8 7.2 5 6 7.2 9.8 8.4 9 10.6

mAP-10 1 1 1.2 2.2 8.2 4.8 7.2 3.2 5 5.8 9.8 9.6 –

time 9.8 10.6 10.2 8.4 1.6 2.8 5.4 4 7.2 9.6 1.6 5.6
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Fig. 9. The performance comparison of six different strategies in terms of classification accuracy with different labeling rates on three datasets.

and SSOMKS-max+margin. From the visual results, it can be
observed that SSOMKS retrieves more relevant images than
OMKS. For example, for query 1, SSOMKS obtains 4 relevant
images, while OMKS only obtains 1. For query 2, SSOMKS
obtains the entire relevant images, while OMKS only obtains
3. Overall, SSOMKS outperforms OMKS in image retrieval
due to the utilization of unlabeled images.

V. CONCLUSIONS AND FUTURE WORK

We have presented a semi-supervised online multi-kernel
similarity (SSOMKS) learning framework to learn a local
metric in image retrieval when the supervision information is
limited. We have focused on the use of supervision information
to estimate the labels of the unlabeled images. The main new
aspect of our work lies in the use of classification confidence
to evaluate the labeling process and select the reliably labeled

images to train the metric function. Experiments with real-
world tasks have shown the effectiveness of the proposed
method.

Our work is different from the current trend that encourages
learning a globally linear metric and focuses on fully super-
vised kernel similarity learning. Based on the characteristics in
visual tasks, we have analyzed why it is necessary to introduce
unlabeled images to metric learning. We have proposed a
new method for reliable triplet generation, and also designed
a criterion for triplet selection to improve the accuracy and
efficiency in similarity learning. The proposed method for
triplet generation could also be used in other algorithms that
take triplets as their inputs.

Although online approaches are more scalable than the
batch processing techniques, they suffer from high compu-
tational cost in projections. To further improve the efficiency,
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TABLE VI
THE PERFORMANCE COMPARISON IN TERMS OF MAP (10TYPES OF FEATURES) AND TIME COST (10 TYPES OF FEATURES) ON PUBLIC , CALTECH10,
CALTECH20, CALTECH50, FLICKR , AND OXFORD DATASETS, RESPECTIVELY. HDS USESDCNN FEATURE EXTRATED BY ITSELF. THE BEST AND THE

SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINED, RESPECTIVELY

Datasets Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean DCA LRML SERAPH OASIS ITML EMR DML-eig HDS

-max -max+margin -margin

Public
mAP 0.2054 0.2054 0.2054 0.1943 0.0657 0.1460 0.0828 0.1626 0.1306 0.1155 0.0325 0.0995 0.2293

time(s) 599.98 572.79 572.79 376.71 0.54 0.75 7.57 4.61 15.69 385.58 0.96 1.24

Caltech10
mAP 0.6074 0.6086 0.6083 0.5990 0.1683 0.4492 0.2546 0.4509 0.4296 0.3628 0.0957 0.0389 0.4513

time(s) 119.48 119.76 124.14 61.91 0.38 0.63 2.95 1.69 19.56 236.13 0.39 2.87

Caltech20
mAP 0.4357 0.4357 0.4357 0.4140 0.1013 0.3595 0.2813 0.3706 0.3048 0.1914 0.0210 0.2388 0.3340

time(s) 1884.22 1884.22 1884.22 612.09 0.68 1.43 15.96 14.27 16.40 309.45 1.74 2.53

Caltech50
mAP 0.3750 0.3750 0.3750 0.3566 0.0618 0.3038 0.0696 0.2620 0.1376 0.1080 0.0075 0.1822 0.2532

time(s) 7642.19 7642.19 7642.19 2465.86 1.60 7.59 100.74 70.52 27.99 569.88 8.73 4.28

Flickr
mAP 0.2356 0.2356 0.2356 0.2160 0.0821 0.1889 0.0931 0.1829 0.1161 0.0912 0.0494 0.1283 0.1000

time(s) 1423.16 1423.16 1423.16 860.09 0.36 0.56 4.22 2.32 17.18 274.52 0.56 2.18

Oxford
mAP 0.1690 0.1689 0.1689 0.1554 0.1052 0.1572 0.1244 0.1381 0.1275 0.0817 0.0711 0.0333 0.1421

time(s) 922.33 979.09 925.55 579.08 0.36 0.54 3.01 3.72 16.76 306.90 0.41 1.21

average rank
mAP 1.33 1.17 1.33 2.67 9.17 3.83 7.67 4 5.83 7.83 10.33 7.17 –

time 9.83 10.17 10.17 8.5 1 2.5 5.83 5 6.5 8.67 2.67 3.67

Fig. 10. Qualitative comparison of image similarity search results on the Corel data set by different algorithms. For each block, the first image is the query,
and the results from the first line to the fourth line represents OMKS, SSOMKS-max, SSOMKS-margin and SSOMKS-max+margin, respectively. The ground
truth for the queries are as follows: 1 (sky, jet, plane), 2 (field, horses, mare, foals), 3 (tails, snow, coyote, light), 4 (water, tree, ships, sunset), 5 (mountain,
sun, clouds, tree), 6 (sky, water, monument). The dots in red represent the images of the same semantic theme with the queries, and squares in yellow represent
the images from different semantic themes.

reducing the number of projections and performing distributed
learning could be considered. In the future, we will explore the
potentials of the techniques such as mini-batch and adaptive
sampling for computationally efficient metric learning.
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