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Abstract—Metric learning plays a fundamental role in the optimization problem with a set of similarity and dissimilarity
fields of multimedia retrieval and pattern recognition. Recently, constraints, where a global Mahalanobis distance is learned

an online multi-kernel similarity (OMKS) learning method has i i ; : ;
been presented for content-based image retrieval (CBIR), which by keeping similar pairs of objects close to each other while

was shown to be promising for capturing the intrinsic non- Q|SS|_m|Iar pairs apart from each other [5]. This earlier work hgs
linear relations within multimodal features from large-scale data. inspired the development of a number of methods for learning
However, the similarity function in this method is learned only global linear metrics, such as the information-theoretic method
from labeled images. In this paper, we present a new framework [6, 7], nearest neighbor classification method [8], Laplace

to exploit unlabeled images and develop a semi-supervised OMKS ; ; i
algorithm. The proposed method is a multi-stage algorithm regularized metric learning (LRML) [9], and more recently,

consisting of feature selection, selective ensemble learning, activethe geometric mean.metrlc .Iearnlng (GMML) method [10].
sample selection and triplet generation. The novel aspects of our T hese global metric learning techniques, however, are often
work are the introduction of classification confidence to evaluate limited for large-scale problems due to their high computa-
the labeling process and select the reliably labeled images to train tional complexity. They may also suffer from the issue of

the metric function, and a method for reliable triplet generation, the so-called curse of dimensionality [11]. To overcome these
where a new criterion for sample selection is used to improve '

the accuracy of label prediction for unlabelled images. Our Ilmltgtlons, a ”“mt?er of algorlthms have been presented for

proposed method offers advantages in challenging scenarios, inl€arning local metrics [12-16], which are deemed to be more

particular, for a small set of labeled images with high-dimensional flexible for capturing the variations across multiple feature

features. Experimental results demonstrate the effectiveness of spaces, and offering better performance, as compared with

the proposed method as compared with several baseline methods.g|oba| metrics. However, the local metrics tend to be prone
to the problem of overfitting [5].

Index Terms—Image retrieval, metric learning, similarity The aforementioned algorithms aim to learn linear metrics
learning, multi-kernel learning, semi-supervised, OMKS, S- \hich may have limitations in characterising the relations
SOMKS. . - . . .

between the different modalities in multi-modal data, since
they often have non-linear relations, and are in different spaces
. INTRODUCTION and dimensions. To address these issues, multiple kernel tech-
nigues have been introduced [17-20], by mapping the images

.ITH the raplq growth of m_ultlmed|q Qata} such a%o a high-dimensional feature space with a nonlinear kernel
images and videos, measuring the similarity between ;. . ;
. . : : : - Mmatrix. In [17], an optimal ensemble of kernel transformations
visual objects becomes an increasingly important task in. a . . . e
X o . . =7 . is learned for integrating features of multiple modalities into
varl_ety of applications 'T‘C'“d'”g (_:Iassmcatlon, _clustermg a_na unified space. However, it is computationally expensive, and
retrieval [1-3]. Conventionally, this can be achieved by usm(%nsequently ot applica;ble to high-dimensional and Iérge—
pre-defined functions, such as the Euclidean distance and ¢o- . . . X
) L . X . scale datasets. In [18], a multi-modal distance metric learning
sine similarity. With these functions, however, the underlymﬁamework is proposed by proiecting data from different
distribution of the data is often implicitly assumed. As a result brop Y Proj 9

the complex intrinsic structures within the data may not bné_odahues into a latent feature space based on the multi-

. wing harmonium model. In [19], a weighted kernel embedding
well captured by these functions. : : ) ; C
. . . technique is presented for metric learning, which is shown
To address this problem, an increasing amount of effort has

been made to learn an appropriate metric directly from 1 be flexible in combining multiple features. Using multiple

data, for applications such as content-based image retrieb%‘nel techniques, the complementary nature of different fea-

L : . tures extracted from an image can be better exploited. For this
(CBIR), which is our focus here. In the pioneering work b . . . i .
; . T eason, multi-kernel learning techniques are also considered in
Xing et al [4], metric learning is formulated as a convex
our work.
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with multiple kernels is learned in a supervised mann&here ¢ € x is a query image, anp € x is an

and applied to visual search. In [21], an online multimoda@inage in the pooling set to be retrieved;(q,p) =

deep similarity learning (OMDSL) framework is proposed t@x;(q, ), Li[si(p, -)])#,, is the similarity function based on

improve multimedia similarity search by integrating multithe linear operatof;. The goal is to learn the weigh{g, } ™,

ple deep networks with a scalable online scheme. In [22Jnd the linear operatofsL;}7*, simultaneously.

an online multi-modal distance metric learning (OMDML) Given a set ofl’ tl‘lp|etS{(pt,pt ,p; )}, wherep; should

scheme is proposed, where the optimal metrics are learredmore similar tg;" than top, , the objective function that

in individual modality space and the weights for combiningeeds to be optimised is given as follows

different modalities are obtained with a joint formulation.

These algorithms rely overwhelmingly on the availability of min min 3 15,1 Ls |%5+C ZE( Foe,p5) = (e 07)

labeled data in their training. In practice, however, Iabellmg AL i=1 ?)

Janels provided by ifferent abellers are ot ahiays conaistalere | - s s the.Hilbert Schmidt norm of the linear
4 S ; ) erator,C' > 0 is the loss parametef(z) is the hinge loss

and could be noisy. Therefore, it is highly desirable if thSndA is defined as

large-scale unlabelled data could be directly used in metric

learning. A ={0eR7|0Te, =1} ©))

The use of unlabelled data in metric learning has been . ) )
considered in previous work e.g. [9, 24, 25]. However, these 10 solve the problem (2), online learning techniques are

methods were proposed for learning global Mahalanobis méitroduced. In particular, for kernek;, the corresponding
fics, but not for local metrics. In this paper, inspired b eight§; and linear operatof; are updated irf" iterations.

the OMKS algorithm in [23], we propose a novel multi-1nat iS, when theth triplet (P, py) arrives, the weight

stage semi-supervised online multi-kernel similarity (SSOMK: (f —1) @nd linear operato£,_,; in kernelr; are updated
and L, ;, respectively.

S) learning framework for using the unlabelled data in metrl@ OPt&ind:(t)
learning. More specifically, we present a new method for triplet Starting withLo; = I, Ly, for the ¢th triplet is updated as
generation to aIIow_ the incorporation of the unlapelled data Lii=Li1i+ 1% (4)
in the OMKS algorithm. An important challenge in the use
of unlabelled data comes from the risk associated with tM&ereh € H, Zi[h](-) = k(ps,-)(h(pi) — h(p;)) € £ (L =
unreliability and noise in the training samples. To counter thid : H — H, L is a linear operator} is the space including
problem, a new active sample selection method based on #Rgar operators irt) and ; is computed as
concept of margin is proposed for measuring the classification max{0,1-Sr,_; , (pe.p{ )+Sr,_; ; (Pe.py )} 5
confidence. This leads to a new method for reliable triplet 7t.i = min{C, ~(pe.p0) (R (07 i )—2r(py by )+ Dy Py ))} )
generation where the labeling process is evaluated in orq@{
to select the reliably labeled images for learning the metric
function. To our knowledge, such an idea has not yet been 0;(t) = 0;(t — 1)3%® (6)
exploited in metric learning.

The remainder of this paper is organized as follows. Secti
Il briefly summarises the baseline OMKS algorithm in [23].
In Section Ill, we introduce our proposed SSOMKS learnin

framework which is a multi-stage method including featur
The OMKS algorithm is a supervised algorithm trained with

selection, selective ensemble learning, active sample selectlo olled data. The triolet tion d i der th
and triplet generation. Section IV presents experimental res F‘B ed data. The triplet generation does not consider the use
unlabeled data. To address this issue, we propose a new

on both qualitative and quantitative analysis, including tHe
gmi-supervised multi-stage learning framework, by extending

2 OMKS algorithm to the scenario where only a small
amount of training data is labelled while the majority of the
data are unlabeled, as discussed next.

en, the weight of kernet; is updated as

Where s € (0,1) is a discounting parameter which is used
to penalize the kernel that makes incorrect predictions in
ach iteration, and;(t) equals to 1 wherbz, , . (p:,p;) —

th . (pe,p;) <0, and O otherwise. '

evaluation of each stage of the proposed method and
comparison with several baseline methods. We conclude
paper with an outlook for future work in Section V.

II. THE OMKS LEARNING METHOD

In this section, we give a brief introduction to the OMKS  !!l- PROPOSEDSEMI-SUPERVISEDOMKS LEARNING
algorithm presented in [23]. METHOD

Suppose there is a kernel(-,-) and the corresponding Our new framework of SSOMKS is a multi-stage method
Hilbert space?, and consider a linear operatht # — H consisting of feature selection, selective ensemble learning,
that maps a functiorf € H to another ond.[f] € H. Assume active sample selection, and triplet generation. The key con-
there is a collection ofn. kernel functionsC = {x; : x x x — tribution in this framework is a new method for generating the

R,i = 1,...,m}. A similarity function for visual search is triplets, as well as a new approach for controlling the potential

defined as risk in using unlabelled data with active sample selection based
m m on the concept of margin.

flg,p) = z; 0:5i(a,p) = Z; 0i(rilq,-), Lilri(p, ), The diagram of the proposed method is shown in Fig. 1.

(1) First, feature selection is performed to obtain discriminative
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Fig. 1. Flow chart of the semi-supervised online multipleniersimilarity framework for image retrieval. For each image in the dataset, we extract 9 types of

features (e.g., SIFT, PHOG, etc.) and then select several dimensions in each modality. Then, we learn metrics (e.g., DCA, LRML, etc.) as well as classif
(e.g., random forest, subspace, etc.) for each modality with labeled training set. Specifically, we apply the learned metrics for constructing the nearest neig
classifier. To select appropriate classifiers, selective ensemble learning is performed on validation set. Unlabeled training set is viewed as test data. By sear
the nearest and farthest class of these images with the selected classifiers, we obtain unlabeled-labeled-labeled triplets. Unlabeled-unlabeled-unlabeled t
can be generated by finding the nearest and farthest samples, while labeled-labeled-labeled triplets are produced by supervision information of labeled tra
set. For the first two types of triplets, we also make the first attempt to perform active sample selection with margin. Please refer to Section IV for details

feature space. Then, ensemble learning is introduced to tralaster, we solve the equivalent formulation of LASSO using
the classifiers for each type of features, and the classifiers thaast Angle Regression (LARs) algorithm [28] by specifying
offer better classification performance are selected. Third, #re cardinality asi
active sample selection method is proposed to ensure that the

samples with correctly predicted labels are used. Finally, the

triplets with these selected samples are generated to perform sit. |laxll =d
metric learning for visual search. The details of each stage
discussed below.

min |lyr, — X agl|?
a

(8)

&fen we getK sparse coefficient vectofs, } X, € RP. The
MCEFS score for each featugeis computed as

A. Feature Selection MCFS(j) = max |ag,;| (9)

High-dimensional multiple features extracted from imag&ge optain the topl features according to the ranking.
may contain redundant information. Feature selection is help-

ful for choosing the discriminative dimensions in the feature ) )
space. Here, we apply the Multi-Cluster Feature Selectifh Selective Ensemble Learning
(MCFS) [26] method, as it is computationally efficient and Following feature selection, classification is performed to
also independent of the choice of classifiers. predict the labels of unlabelled samples. Here, ensemble learn-
Given an image training seX = {x1,x2,...,xN},@; € ingis employed due to its advantage over a single classifier in
RP of N images withD dimensions inK clusters. Suppose its generalization ability to unseen data [29]. The performance
we want to select/ dimensions and the number of nearegif ensemble learning algorithms may vary. It was shown that
neighbors is set ag. For each imager;, we construct & ensembling many of the available learners can be better than
nearest neighbor graph by finding fisnearest neighbors andensembling all of them [30]. Therefore, selective ensemble
form an edge betweem; and its neighbors. We define thelearning is introduced to remove the under-performed learners.
weight matrixW on the graph and a diagonal matifixbased Here, we adopt the Margin based Pruning (MP) [31] algorithm
onW, D;; = Zj Wi;;. The graph Lapalciadl = D — W. to select proper classifiers. An advantage with the MP algo-
Solve the generalized eigen-problem [27] rithm is that the distribution of the sample intervals can be
further optimised during the process of ensemble selection.

Ly = ADy (7) The MP procedure is discussed as follows.
LetY = [y1,...,yx] be the topK eigenvectors correspond- SupposeX = {x1,x2,...,xzy} iS the training image set,
ing to the smallest eigenvalues = [\y,...,\k]. For each hq,...,h. are the base classifierg, is the true class label of
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x;, andg; (j = 1,2,...,L) is the classification decision of limy oo Prajority(2k+1) = 1, and the prediction accuracy of
x; estimated by the classifiér;. The margin ofx; is defined the ensemble voting method converges to 1 when 0.5.

as . As the probability for the largest number of votes may be
m(z;) = 3wl (10) smaller than _h_alf, Equation (14) is the lower bound of the
j=1 actual probability.
_ _ 1if y; = di; Suppose there ar&u unlabeled training images3 clas-
wherew; is the weight ofh;, A;; = { 71 i g; ”) ;J sifiers andK classes. We introduce a parameteéo balance
Forz; € X, its classification loss is defined as between the maximum and the margin, and define the criterion
for selection agmazx + (1 — ¢)margin. We denote the voting
Wz:) = [1 —m(z:)]? (11) accuracy of validation images with thesg classifiers as
The loss of classification is computed as Acco. After ranking theNv images in a descending order of
N emaz+(1—c)margin, we select the tofVu* Accv unlabeled
UX) =Y Il(x;) = ||u — Dw]|?2 (12) images to generate triplets.
i=1
Where u = [1, o 1]%X1, w = [wl, . ,wL]le, D _ Histogram of voting on sample 1 " Histogram of voting on sample 2
{Aij}NxL- . : 0
The L2-norm regularization is added to the loss functio e
[32] g 8 ‘g 6
Fy = |lu — Dwlf3 + Al|w|» 3 :
The weightsw; (j = 1,2,..., L) can be obtained by minimiz- 2 ’
ing F, using open software packages such as [33]. Then,t & 2 ¢ oo | ° e daegory | C
classifiersh,; (sj = 1,2,..., L) are ranked in terms of the de- | Histogram of voting on sample 3 Histogram of voting on sample 4
scending order of the weights; (j = 1,2, ..., L). After this, 1
we compute the average precisipnwith {hs1, heo, ..., hs;}. 2
Finally, {hs1, hs2,...,hsp} are the selected classifiers with glz 3
B = max ;. . s
JE{L,..y L} 4
C. Sample Selection with Classification Confidence e e e s e 2T T s 2 3 s T4

. ) . category category
For unlabelled data, the labels predicted by voting in the
above section may not be reliable. As a result, the tripl€ig. 2. Voting results of samples in Class 1. Each classifigouia a label for
could be Wrongly generated, which can have negative imp@ f:h sample. The final predicted class is the one which gets the most votes.

. - . ample 1 and 4 fall into Class 1, while sample 2 and 3 fall into Class 5.
on both the computational efficiency and learning performance

of metric Iearning. To address this prObIem, we propose a neV\Fig_ 2 gives an examp|e of the Voting results for four
technique to select samples, based on the concept of margiflabeled samples from Class 1. We observe that only sample
which has been previously used to measure the confidence ofnd 4 are correctly classified. Two incorrectly labeled
classification. If a trained model gives a large margin, it wikamples will be introduced with all classifiers. The accuracy on
have a higher degree of confidence and reliability. Inspired Rylidation set is 37.5%. Thus we may select 2 out of 4 samples
the work in [34-37], we introduce the concept of classificatiofith relevant strategies. If we adopt theaz criterion, then
confidence to sample selection. Our method is based on thggpnme 1 and 3 are chosen, introducing one mistake. If we
hypotheses. First, each selected classifier has considergfle themargin or max 4+ margin criterion, then sample 1
classification ability, which means it is better than randogind 4 are selected without a mistake. This illustrates that our

guess. Second, the accuracy is positively related to the voiggnple selection strategy can improve classification accuracy.
of the largest class. Third, the accuracy is positively related to
the margin between .the first qnd the second largest class. Triplet Generation
Assume thd. classifiers are independent, whdre= 2k+1 ) _ _ . .
is odd. LetX; be a variable indicating whether the classifica- 1° €XPloit a certain unlabeled image for metric learning,
tion by theith classifier is correct or not. If the prediction accul 1S necessary to find its nearest neighber and farthest
racy of each classifier i, then we haveX; ~ Bernouli(p), Magezs to generate the triplef;, ;, ). »
and the number of correct classifications with the ensemble®VeNn an unlabeled sample;, the triplets can be divided
o , hod i L i ) into two types, i.e., unlabeled-labeled-labeled and unlabeled-
majority voting method 'SY:Z; Xi~binomial(L, p) [38]. njapeled-unlabeled ones according to whetherand

The majority vote accuracy is are labeled or not. For the former, we first labkel with
I the selected base classifiers. The farthest class is the one to
Prajorityn) = 3 (N)p'(1 —p)t (14) which the farthest sample found with learned metrics belongs.
i=k+1 Then,z;s can be the labeled training samples that belong to

It has been shown that the sequen®,.jority2r+1)} the same class with;, wherease,s are the labeled training
strictly increase whenp > 0.5 [39]. In addition, samples that belong to its farthest class. For the latter, we
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are required to find the nearest and farthest samples;to Caltech258, Flickr* and Oxford Buildings. We pick 10,

in unlabeled training set. Without supervision information, w20 and 50 classes in Caltech256 to form three subsets, i.e.

consider exploiting the learned metrics. Therefargs are the Caltech10, Caltech20 and Caltech50, respectively. In other

nearest unlabeled samples whilgs are the farthest unlabeleddatasets, we pick 10 classes. For each dataset, the number

ones obtained by the metrics. of images for each class equals the number of images of the
class that has the minimum size in its sample set. We select

E. Summary of the Proposed SSOMKS Learning FrameonPQIf of the images for training, 10% for validation, 10% for
' qguery, and the remaining 30% for retrieval evaluation. The

The implementation steps of the proposed SSOMKS methggheriment is performed on a machine with 3.40 GHz Intel
are summarised in Algorithm 1. It can be seen that thgscessor, 8 GB memory, and the Matlab software.
proposed SSOMKS differs from the OMKS algorithm in the 2) pescriptors and KernelsBoth global and local feature
process on how the triplet is generated. In the proposed methR@criptors are extracted to represent images. The global fea-
both the labeled and unlabeled images are used to leargyfs we tested include: (1) color histogram (256 dimensions
metric, while in the baseline OMKS method, only the labelegr gray images and 768 dimensions for color images): (2)

images are considered. GLCM coefficients (16 dimensions); (3) Local Binary Pattern
i i (59 dimensions); and (4) GIST features (512 dimensions). The
Algorithm 1 The SSOMKS algorithm local features we used include: (1) SIFT; (2) dense-SIFT; (3)

Input: SURF; (4) Geometric Blur; and (5) PHOG (680 dimensions).
Labeled training set witth/ modalitiesD' = {D}}1,;  we set the vocabulary size as 200 to represent Bag-of-Words
Unlabeled training seD* = {D¥} )L ; (BOW) features except for the PHOG descriptor. Since CNN is
Validation setD" = {Dy}1}L,; effective for image content representation and is trained with
Trade-off parametet; color images, we extract DCNN feature (4096 dimensions)
Output: using CaffeNet, except for the dataset ImageCLEF. Then
f(g:p); we apply PCA to each type of features and retain the first

1: for j=1to M do 50 principle components. The full dimension of the original

2:  Feature selection from thgth modality D} (Section features is retained if it is smaller than 50.

lI-A’), then we get the labeled, unlabeled training set Based on these features, we construct 4 kernels [23]:

and validation seD$!, Ds*, D3"; RBF kernel: x(z,z') = exp(—%), where the pa-

3 Learn metrics and train classifiers wifh'; rameterr is the mean of the pairwise distance andc
4: end for {1072,2x 107,410~ %} is the scale parameter.
5. Select classifiers witD*" (Section 11I-B); Cosine similarity: x(z,2') = m To ensure the
6: Vote for D**, computenaz andmargin for each sample; similarity value in the range of [0, 1], we adopfz,2’) =
7. RankD™" in a descending order efnax+(1—c)margin, 5 _(z2) | 5

then perform sample selectioBgction 11I-C); 351" 45&” Classifiers\We perform the feature selection al-
8: Exploit the selected samples to generate tripl8&ction gorithm MCFS on each feature and select 50 dimensions.

H-D); All dimensions are kept if the original feature is less than
o: Input these triplets to the OMKS framework; 50. To make predictions for unlabeled training images, we
10: Output f(q,p). construct a series of base classifiers for each kind of feature,

i.e. AdaboostM1 [41] + CART [42], discriminative analysis
In constrast to [23], where a theoretical analysis is preskni{43], random forest [44], subspace as well as nearest neighbor
for the OMKS method, we do not yet have a theoretica¥ith Euclidean distance, RCA [6], DCA [40], LRML [9] and
proof for the convergence property of the proposed SSOMKZEERAPH [15] metrics.
method. However, a simulation study is provided in Section

IV-A for the analysis of its convergence. TABLE |
y 9 PARAMETER SETTING OF SSOMKS

IV. EXPERIMENT Parameter| d k | num A C 5
S Value 50 | 20 50 10000 | [0,1] | (0,1)

In this section, we evaluate the performance of SSOMKS
and compare it with several baseline methods. We first intro-4) Evaluation Criteria: For each query image, we can rank
duce the experimental setting and then show the results as v@llof the test images according to their similarities. Here
as the analysis to these results. we use the mean Average Precision (mAP) to evaluate the

performance of retrieval. Given a query and Rsretrieved

. . images, the Average Precision is defined as
A. Experimental Setting g g

R
1) Datasets and ExperimeniMe conduct the experiments AP = 1 % prec(r)é(r) (15)
on image datasets including Corel [40], ImageCLHRdooOP, r=1

i Shttp://www.vision.caltech.edu/lmagBPataSets/Caltech256/.
1http://|magec_:lef.org/. _ 4http://press.liacs.nl/mirflickr/mirdownload.html.
Zhttp://web.mit.edu/torralba/www/indoor.html. Shttp://www.robots.ox.ac.uk/vgg/data/oxbuildings/index.html.
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04415 bilinear similarity measure over sparse representations [45].
beta=0.01 . . . .
oaarll = —. betot 01 o.El\/IR. A sc_:alable graph-based manifold ranking algorithm
for image retrieval [46].
0.4405 . . . . e
% % e ITML: An information-theoretic method which minimizes
0.44 the differential relative entropy between two multivariate
0.1}[ —— c=0.001 0.4395 Gaussians with constraints [7].
ol == ce0.01 0.439 ¢ DML-eig: An efficient eigenvalue optimization framework
0 oo ' 0 0995 001 for metric learning [16].

e OMKS: An efficient online metric learning algorithm
Fig. 3. Retrieval performance vs. parameterand § for the Indoor dataset. \which learns a flexible nonlinear proximity function with

The solid lines represent the first round of parameter tuning and das . . . .
lines represent the second round. In each round, first we fix pararﬁbten%%ltlple kernels for improving visual search [23].

while tuning 3, and then we fix parametet while tuning paramete€'. The e SERAPH: An information-theoretic metric learning ap-

algorithm converges after two rounds. Noticing that the curves in the rigptroach that does not rely on the manifold assumption [15]_
column are not smooth, and this seems to suggest that the algorithm converg

to a local optimum. e HDS: A deep learning framework to learn hash codes and
image representations in a point-wise manner [47].

Table | shows the parameter setting of SSOMKS. It was ob-
whereL is the size of the relevant images in the retrieved seferved that MCFS performs well when the number of selected
prec(r) is the precision at theth position, andi(r) represents features is smaller than 50 [26]. Therefore, wedsas 50. The
whether therth retrieved image is relevant to the query oparamete: of kNN in LRML controls the number of nearest
not. §(r) = 1 when they are relevanti(r) = 0, otherwise. neighbors linked in a KNN graph. Commonly, it is tuned in 5-
The mAP is defined based on the average AP values of all th@ As the number of labeled images per class is greater than
queries.R is set as the number of images for each class 2D, we setk as 20. For ensemble learning methods including
the pooling set. Adaboost, random forest and subspace, wenget as 50.

5) Compared Methods and Parameter Settifige compare The trade-off parametex in MP is used to avoid overfitting.
SSOMKS with the following state-of-the-art metric learnin@®y tuning it in {10=%,1073,1072,107%,1, 10,102, 103, 10%}
algorithms. For each metric, we concatenate all types ofi the validation set, we set it as 10000. The choice§ of
features, and then report the retrieval result. and s follow from OMKS.

e DCA: An efficient supervised metric learning scheme Fig. 3 gives an example of parameter tuning. We only tune
which can exploit both positive and negative constraints [4Qeveral key parameters and set all the remaining to default
e LRML: A semi-supervised distance metric learning techvralues. In particular, we set the regularization parameggrs
nique that integrates both labeled and unlabelled samples infoas 1 due to the lack of prior information and vary the

an effective graph regularization framework [9]. parametek; of KNN in LRML in the range of 5-20. We set the

e OASIS: A supervised online dual approach that learnsraumber of the landmarks pickedin EMR as 50 after tuning

TABLE Il
THE CLASSIFICATION ACCURACY(%) ON COREL, IMAGECLEFAND INDOOR DATASETS WHEN THE TRAINING RATIO 1S20%.

Datasets Triplets MP MP+margin | MP+max | MP+max+margin
Corel unlabeled-labeled-labeled | 54.67 71.01 76.81 75.36
unlabeled-unlabeled-unlabeled 54.67 60.71 69.05 69.05
ImageCLEF unlabeled-labeled-labeled | 85.00 94.06 93.07 94.06
unlabeled-unlabeled-unlabeled 82.50 81.13 81.13 81.13
Indoor unlabeled-labeled-labeled | 50.00 60.00 60.00 57.78
unlabeled-unlabeled-unlabeled 58.89 62.22 64.44 62.22
28 36
= All Features N\ i
® i 3“ 1 2
LS
“ et N L M
22 30 / *
g g g
g 20 g 28 g
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Fig. 4. The clustering performance comparison in terms of NMI versus the number of selected dimensions.
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Fig. 5. Performance comparison of different methods on tdegasets with varying labeling rates.
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Fig. 6. Performance comparison of nine different featureshoee datasets with varying labeling rates.

it on the validation set. For DML-eig, we tune the parametavhich can search the optimal number automatically. We per-
k in KNN from 1 to the number of the labeled training image®rm k-means with the selected features for clustering and use
per class minus one. All these intervals are chosen as in thiie normalized mutual information (NMI) for evaluation.

released source codes. As for HDS, we use the trained networjg 4 shows the plots of clustering performance versus

due to the limited number of labeled images. the number of selected dimensions. In general, PCA offers
performance comparable with the original features without
B. Performance Analysis performing feature selection. It is clear that MCFS performs

In this section, we conduct a series of experiments on feat%)‘gn in most cases, while CSE+GS has a poor performance
selection, classifier and feature analysis, classifier selectigh€ {0 the lack of supervision information. It can be seen that
sample selection as well as performance comparisons betw FS S|gn|f|cantly outpe_rforms tl]e original ones .W'th SIF.T
the proposed method and other methods. atures This can be attribute to its strong ability in selecting
1) Feature Selection:We compare MCFS [26] with P- discriminative information in high-dimensional feature spaces.

CA, Laplacian score (LS) [48], discriminative least squares 2) Classifier and Feature Analysi$iig. 5 shows the voting

regression (DLSR) [49], CfsSubetEval + GreedyStepwisecuracy of each classifier versus the labeling rate, which
(CSE+GS) and the original ones (i.e. without feature seepresents the proportion of labeled images in the training set.
lection). The feature selection methods select the dimensieor unlabeled-labeled-labeled triplets, it is clear that the per-
d =10,20,...,100,120,...,200 (15 sets), except CSE+GS, formance of the subspace and random forest is lower than that
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TABLE Il
THE PERFORMANCE COMPARISON IN TERMS OF KIP (9AND 10 TYPES OF FEATURE$AND TIME COST (10 TYPES OF FEATURE$ ON COREL DATASET
WITH LABELING RATE EQUALS TO 10%, 15%, 20%, 25%ND 30%. HDSUSESDCNN FEATURE EXTRATED BY ITSELFE THE BEST AND THE SECOND
BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINEDRESPECTIVELY

Labeling Rate| Metric SSOMKS SSOMKS SSOMKS | OMKS | Euclidean| DCA LRML | SERAPH | OASIS | ITML EMR DML-eig HDS
-max -max+margin | -margin

mAP-9 0.1589 0.1597 0.1604 0.1378 0.0427 | 0.1284 | 0.1078| 0.0626 | 0.0280 | 0.0413 | 0.0419| 0.0579

10% mAP-10 | 0.3883 0.3881 0.3886 0.3837 0.0855 | 0.2011| 0.1413| 0.2997 | 0.2618 | 0.3166 | 0.0529 | 0.0255 | 0.4368
time(s) 99.77 97.90 98.15 67.38 0.40 0.60 2.96 3.02 21.68 | 336.46 | 0.41 1.04
mAP-9 0.1541 0.1535 0.1541 0.1374 0.0427 | 0.1320 | 0.1065| 0.0576 | 0.0428 | 0.0697 | 0.0419 | 0.0486

15% mAP-10 0.3924 0.3924 0.3924 0.3872 0.0855 0.2842 | 0.1368 0.3078 0.2732 | 0.2773 | 0.0529 0.0799 0.4401
time(s) 377.80 377.80 377.80 137.78 0.52 0.61 3.06 3.07 26.80 | 311.47| 0.43 2.24
mAP-9 0.1561 0.1561 0.1571 0.1452 0.0427 | 0.1280 | 0.0965 | 0.0600 | 0.0389 | 0.0424 | 0.0419 | 0.0638

20% mAP-10 0.3980 0.3980 0.3980 0.3915 0.0855 0.3093 | 0.1354 0.3093 0.3071 | 0.2516 | 0.0529 0.2042 0.4435
time(s) 1330.55 1330.55 1289.27 | 522.66 0.34 0.88 4.56 2.14 144.84 | 274.28 | 0.43 4.42
mAP-9 0.1628 0.1624 0.1642 0.1535 0.0427 | 0.1274| 0.0860 | 0.0602 | 0.0565 | 0.0426 | 0.0419 | 0.0651

25% mAP-10 | 0.4032 0.4032 0.4032 0.3986 0.0855 | 0.3054 | 0.1406 | 0.3128 | 0.3044 | 0.2582 | 0.0529 | 0.2602 | 0.4470
time(s) 3892.07 3892.07 3892.07 | 1787.16 0.45 0.59 2.89 1.98 22.18 | 373.87| 0.37 6.86
mAP-9 0.1665 0.1651 0.1644 0.1607 0.0427 | 0.1287 | 0.0882 ( 0.0427 | 0.0429 | 0.0654 | 0.0419 | 0.0658

30% mAP-10 0.4102 0.4102 0.4102 0.3978 0.0855 0.3077 | 0.1402 0.3116 0.3116 | 0.2553 | 0.0529 0.2359 0.4513
time(s) 8789.79 8164.26 8164.26 | 5443.61 0.41 0.59 2.94 1.74 22.21 | 377.62 0.41 10.24
mAP-9 1.8 2.2 14 3.6 9.4 4.6 5.6 7.8 10 9 10.8 7.2

average rank | mAP-10 12 1.4 1 2.4 8.6 4.6 7.6 3.6 5 5.4 9.8 7.8 -
time 10.4 9.8 9.8 8.4 14 2.8 5 4.6 6.8 8.8 14 4.8

of other classifiers. In contrast, nn+DCA and Adabobkt speaking, it is much easier for the feature-classifier pairs to
+ CART consistently exhibit significant advantages, which ind the farthest class than the correct class. Therefore, we may
partly due to the utilization of supervision information as welbbserve that these pairs get comparative weights in searching
as error adaptive adjustment. the farthest class. Intuitively, pairs having better performance

Fig. 6 shows the voting accuracy of each feature versteceive larger weights. We can see that on the ImageCLEF
the labeling rate. It can be observed that the performandataset, the weights of Adabodktl + CART and nn+DCA
for each specific feature is data dependent. For instance, & much larger, while those of subspace and random forests
color histogram outperforms almost all the other features @me close to zero in terms of unlabeled-labeled-labeled triplets,
the Corel dataset, however, it has poor performance on otlérich is consistent with the results in Fig. 5.
dgtasets, Whiph i_s caused by the sipgle color of the bapkgrountgl;) Selective Ensemble Learning AnalysiEhe process of
(i-e. the sunrise is golden, the sky is blue and so on) in Corgljective ensemble with different labeling rates is shown
In contrast, as a k|_nd of local features, SIFT is more sensitiye Fig. 8. Intuitively, it is not necessary to exploit all the
to subtle variation in the complex scene, thus having excellgissifiers for achieving the optimal performance because a
performance on the ImageCLEF and Indoor datasets. part of them may not be necessary. For unlabeled-labeled-

labeled triplets, the required number of classifiers is closely
ImageCLEF (near, unlabeled-unlabeled-unlabeled) Corel (far, unlabeled-labeled-labeled) . .
related to the complexity of the scene. For instance, the

’ best performance can be obtained with fewer than 50 base
classifiers on the Corel and ImageCLEF datasets. However,
due to the complicated background in the Indoor dataset,
almost all the classifiers are needed when the labeling rate
equals 20%. In general, for a certain dataset, the optimal

SIFT
dense-SIFT

o oy N e N et number of fused classifiers decreases with the increase in the
eatures nn+ features " adBS w1 .

classifiers classifiers Iabellng rate.
ImageCLEF (near, unlabeled-labeled-labeled) Indoor (far, unlabeled-unlabeled-unlabeled)

x10°

4) Sample Selection EvaluatiorFig. 9 summarizes the
performance comparison of different strategies. On the whole,
the introduction of sample selection significantly improves the
performance. Commonly, voting achieves a higher accuracy
than using the best one. As the distribution of the decision-
making on the test and validation set may differ, MP does not
always outperform using all the samples. The performance
of a certain strategy is data dependent. For instance, as
Fig. 7. The obtained weights by different features and diassi for unlabeled-unlabeled-unlabeled triplets, MP+max performs

better than MP+margin on the Corel dataset when the labeling

We learn the weight of each feature-classifier pair by mimate is 10%, while the latter performs better on the Indoor
imizing (13), and then report the results in Fig. 7. Generallyataset when the labeling rate is 20%.

PSS m Fores
S s
] ‘i’%‘%& analysis

classifiers

classifiers
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TABLE IV
THE PERFORMANCE COMPARISON IN TERMS OF WP (9 TYPES OF FEATURE$AND TIME COST (9 TYPES OF FEATURE3 ON IMAGECLEFDATASET WITH
LABELING RATE EQUALS TO 10%, 15%, 20%, 25%ND 30%. HDSUSESDCNN FEATURE EXTRATED BY ITSELFE THE BEST AND THE SECOND BEST
RESULTS ARE SHOWN IN BOLD AND UNDERLINED RESPECTIVELY

Labeling Rate| Metric | SSOMKS SSOMKS SSOMKS | OMKS Euclidean | DCA LRML | SERAPH | OASIS | ITML EMR DML-eig HDS
-max -max+margin| -margin
10% mAP 0.5067 0.5076 0.5058 0.4391 0.0636 0.3754 | 0.2711 0.0876 0.0307 | 0.0666 | 0.0560 0.0507 0.3959
time(s) 126.04 120.09 123.77 51.61 5.96 0.64 3.00 2.69 20.10 | 352.67 0.38 1.48
15% mAP 0.5022 0.5053 0.5004 0.4455 0.0636 0.3951 | 0.2327 0.0636 0.0674 | 0.0710 | 0.0561 0.0837 0.4118
time(s) 446.33 446.92 446.47 134.52 3.46 0.53 2.95 3.24 27.25 | 311.18 0.37 2.85
20% mAP 0.4977 0.5027 0.5120 0.4709 0.0636 0.3978 | 0.2797 0.0636 0.0332 | 0.0622 | 0.0561 0.0985 0.4362
time(s) 1746.00 1973.75 1805.92 587.50 0.36 0.49 3.11 1.43 21.06 | 242.25| 0.38 4.24
25% mAP 0.4735 0.4680 0.4647 0.4728 0.0636 0.4025 | 0.2682 0.0636 0.0453 | 0.0573 | 0.0561 0.1058 0.4535
time(s) 5993.47 5991.07 5982.98 | 2088.27 0.42 0.60 3.50 1.43 35.65 | 300.29 0.39 7.11
30% mAP 0.5001 0.5051 0.4865 0.4887 0.0636 0.4105 | 0.2688 0.0636 0.0907 | 0.0630 | 0.0561 0.0948 0.4702
time(s) | 13298.61 13328.16 13288.83 | 5735.21 0.41 0.57 3.07 2.09 42.22 | 306.59 0.39 10.66
mAP 2 1.6 3 3.4 8.8 5 6 8.4 10.2 8.8 10.4 7.8 -
average rank .
time 10.6 11 10.2 8.4 3.4 2.6 4.8 4.2 6.8 8.8 1.2 4.8
Corel (unlabeled-labeled-labeled) ImageCLEF (unlabeled-labeled-labeled) Indoor (unlabeled-labeled-labeled)
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Fig. 8. The performance comparison in terms of classificatioturacy versus the number of fused classifiers.

The classification accuracy under a much smaller trainimgpresentation. From Table VI, the deep learning method
ratio is listed in Table Il. It is clear that the performance i8IDS does not reveal superiority in that the generalization
still acceptable with a relatively small training ratio, especiallgapability is limited without parameter tuning. In terms of
when sample selection is adopted. The performance is atsamputational efficiency, the Euclidean metric takes the least
data-dependent. In particular, a higher accuracy is obtained fione. Owing to the massive triplets production as well as
ImageCLEF, which is a gray medical dataset having simplére time-consuming multiple kernel learning, the time cost of
background structure. OMKS/SSOMKS grows rapidly as the labeling rate increases,

5) Performance Comparisondables I11-VI summarize the Whereas the test process only takes a few seconds. Several
comparison results on the nine datasets, where mAP-9 metaghiniques such as distributed parallel learning [50] and mini-
mAP with 9 kinds of features, while mAP-10 means adoptingatch processing [51] could be applied to further reduce the
DCNN feature as well. Tables Ill-V imply that SSOMKStime cost. Furthermore, as 50% is a relatively high ratio,
significantly outperforms other algorithms with 9 featuregye can also reduce the proportion of the training set. The
while as the labeling rate increases, the supervised algoritarerage ranks of mAP demonstrate that our proposed method
DCA gradually shows its superiority. In the beginning, Soutperforms most of the baseline methods.

SOMKS improves the most, around 15% over the OMKS. Finally, we randomly pick up several query images and
With the increase in labeling rate, the improvement decreasesmpare the top 5 ranked images retrieved with different
Comparing mAP-9 with mAP-10, it is clear that the utilizatiormetric learning algorithms. Fig. 10 shows the qualitative
of DCNN feature obtains significant improvement. In fact, theomparisons of six distinct queries obtained by four diverse al-
performance differences become smaller with better imagerithms, including OMKS, SSOMKS-max, SSOMKS-margin
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TABLE V
THE PERFORMANCE COMPARISON IN TERMS OF MP (9 AND 10 TYPES OF FEATURE$AND TIME COST (10 TYPES OF FEATURE$ ON INDOOR DATASET
WITH LABELING RATE EQUALS TO 20%, 30%, 40%), 50%ND 60%. HDSUSESDCNN FEATURE EXTRATED BY ITSELFE THE BEST AND THE SECOND
BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINEDRESPECTIVELY

Labeling Rate| Metric SSOMKS SSOMKS SSOMKS OMKS Euclidean| DCA LRML | SERAPH | OASIS | ITML EMR DML-eig HDS
-max -max+margin| -margin
mAP-9 0.1641 0.1671 0.1652 0.1440 0.0525 | 0.0937 | 0.0893 | 0.0525 | 0.0276 | 0.0504 | 0.0430 | 0.0261
20% mAP-10 0.4461 0.4461 0.4460 0.4424 0.1162 0.3107 | 0.1460 | 0.3877 | 0.3559 | 0.3337 | 0.0580 | 0.0300 | 0.3754
time(s) 68.89 69.57 67.95 48.52 0.38 0.47 2.67 0.82 1434 | 24981 | 0.39 1.11
mAP-9 0.1738 0.1740 0.1760 0.1601 0.0525 | 0.1183 | 0.0876 | 0.0525 | 0.0197 | 0.0504 | 0.0430 | 0.0299
30% mAP-10 0.4561 0.4561 0.4561 0.4514 0.1162 0.3604 | 0.1410 | 0.3925 | 0.3245 | 0.3009 | 0.0580 | 0.0488 | 0.3919
time(s) 220.76 222.51 222.33 154.36 0.52 0.50 2.92 0.84 171.21 | 284.96 | 0.41 2.76
mAP-9 0.1727 0.1741 0.1737 0.1673 0.0525 | 0.1253 | 0.0887 | 0.0525 | 0.0214 | 0.0401 | 0.0430| 0.0289
40% mAP-10 0.4517 0.4517 0.4517 0.4467 0.1162 0.3372 | 0.1463 | 0.3878 | 0.3265 | 0.2729 | 0.0580 | 0.0687 | 0.4121
time(s) 809.55 862.23 933.52 655.34 0.50 0.66 2.71 1.09 13.99 | 275.14| 0.42 3.59
mAP-9 0.1701 0.1721 0.1740 0.1683 0.0525 | 0.1235| 0.1023 | 0.0525 | 0.0533 | 0.0504 | 0.0430 | 0.0310
50% mAP-10 0.4513 0.4513 0.4513 0.4491 0.1162 0.3698 | 0.1623 | 0.4063 | 0.2873 | 0.3139 | 0.0580 | 0.0668 | 0.4397
time(s) 2410.37 2410.37 2410.37 | 2174.43(16) 0.36 0.57 2.74 0.96 13.27 | 279.14| 041 6.29
mAP-9 0.1630 0.1611 0.1644 0.1621 0.0525 | 0.1245| 0.1026 | 0.0525 | 0.0367 | 0.0496 | 0.0430 | 0.0309
60% mAP-10 0.4551 0.4551 0.4551 0.4519 0.1162 0.3840 | 0.1623 | 0.3967 | 0.3854 | 0.2236 | 0.0580 | 0.0663 | 0.4512
time(s) 7817.64 7817.64 7817.64 6509.28 0.34 0.56 2.77 0.82 16.21 | 297.96 | 0.42 12.21
mAP-9 2.8 2 14 3.8 7.2 5 6 7.2 9.8 8.4 9 10.6
average rank | mAP-10 1 1 1.2 2.2 8.2 4.8 7.2 3.2 5 5.8 9.8 9.6 -
time 9.8 10.6 10.2 8.4 1.6 2.8 5.4 4 7.2 9.6 1.6 5.6
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Fig. 9. The performance comparison of six different stragdn terms of classification accuracy with different labeling rates on three datasets.

and SSOMKS-max+margin. From the visual results, it can limages to train the metric function. Experiments with real-
observed that SSOMKS retrieves more relevant images thaarld tasks have shown the effectiveness of the proposed
OMKS. For example, for query 1, SSOMKS obtains 4 relevamethod.

images, while OMKS only obtains 1. For query 2, SSOMKS o, \york i different from the current trend that encourages

obtains the entire relevant images, while OMKS only obtaing, ing 4 globally linear metric and focuses on fully super-
3. Overall, SSOMKS outperforms OMKS in image retrievalise  kernel similarity learning. Based on the characteristics in

due to the utilization of unlabeled images. visual tasks, we have analyzed why it is necessary to introduce
unlabeled images to metric learning. We have proposed a
V. CONCLUSIONS AND FUTURE WORK new method for reliable triplet generation, and also designed

We have presented a semi-supervised online multi-kerr?efr?te”on_for _triple'g selectiqn to improve the accuracy and
similarity (SSOMKS) learning framework to learn a IocaFfﬂ(l:'enCy n s_|m|lar|t3|/ Ielarmng. The _propr(])sedl me_tEOd f?]r
metric in image retrieval when the supervision information i&iPI€t generation could also be used in other algorithms that

limited. We have focused on the use of supervision informatidke triplets as their inputs.

to estimate the labels of the unlabeled images. The main newAlthough online approaches are more scalable than the
aspect of our work lies in the use of classification confident@tch processing techniques, they suffer from high compu-
to evaluate the labeling process and select the reliably labetational cost in projections. To further improve the efficiency,
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TABLE VI
THE PERFORMANCE COMPARISON IN TERMS OF WP (10TYPES OF FEATURE$AND TIME COST (10 TYPES OF FEATURE$ON PuBLIC, CALTECH10,
CALTECH20, CALTECH50, FLICKR, AND OXFORD DATASETS RESPECTIVELY HDS USESDCNN FEATURE EXTRATED BY ITSELF THE BEST AND THE
SECOND BEST RESULTS ARE SHOWN IN BOLD AND UNDERLINELRESPECTIVELY

Datasets Metric | SSOMKS SSOMKS SSOMKS | OMKS | Euclidean| DCA | LRML | SERAPH | OASIS | ITML EMR | DML-eig HDS
-max -max+margin | -margin
Public mAP 0.2054 0.2054 0.2054 0.1943 0.0657 | 0.1460 | 0.0828 | 0.1626 | 0.1306 | 0.1155| 0.0325| 0.0995 | 0.2293
time(s) 599.98 572.79 572.79 376.71 0.54 0.75 7.57 4.61 15.69 | 385.58 | 0.96 1.24
Caltech10 mAP 0.6074 0.6086 0.6083 0.5990 0.1683 | 0.4492 | 0.2546 | 0.4509 | 0.4296 | 0.3628 | 0.0957 | 0.0389 | 0.4513
time(s) 119.48 119.76 124.14 61.91 0.38 0.63 2.95 1.69 19.56 | 236.13| 0.39 2.87
Caltech20 mAP 0.4357 0.4357 0.4357 0.4140 0.1013 | 0.3595| 0.2813 | 0.3706 | 0.3048 | 0.1914 | 0.0210 | 0.2388 | 0.3340
time(s) | 1884.22 1884.22 1884.22 | 612.09 0.68 1.43 15.96 14.27 16.40 | 309.45| 1.74 2.53
Caltechs0 mAP 0.3750 0.3750 0.3750 0.3566 0.0618 | 0.3038 | 0.0696 | 0.2620 | 0.1376 | 0.1080 | 0.0075| 0.1822 | 0.2532
time(s) | 7642.19 7642.19 7642.19 | 2465.86 1.60 7.59 | 100.74 70.52 27.99 | 569.88| 8.73 4.28
Flickr mAP 0.2356 0.2356 0.2356 0.2160 0.0821 | 0.1889 | 0.0931| 0.1829 | 0.1161 | 0.0912 | 0.0494 | 0.1283 | 0.1000
time(s) | 1423.16 1423.16 1423.16 | 860.09 0.36 0.56 4.22 2.32 17.18 | 27452 | 0.56 2.18
Oxford mAP 0.1690 0.1689 0.1689 0.1554 0.1052 | 0.1572| 0.1244| 0.1381 | 0.1275| 0.0817 | 0.0711| 0.0333 | 0.1421
time(s) 922.33 979.09 925.55 579.08 0.36 0.54 3.01 3.72 16.76 | 306.90 | 0.41 121
mAP 1.33 1.17 1.33 2.67 9.17 3.83 7.67 4 5.83 7.83 10.33 7.17 -
average ranki— —
time 9.83 10.17 10.17 8.5 1 25 5.83 5 6.5 8.67 2.67 3.67

Fig. 10. Qualitative comparison of image similarity searebults on the Corel data set by different algorithms. For each block, the first image is the query,
and the results from the first line to the fourth line represents OMKS, SSOMKS-max, SSOMKS-margin and SSOMKS-max+margin, respectively. The grou
truth for the queries are as follows: 1 (sky, jet, plane), 2 (field, horses, mare, foals), 3 (tails, snow, coyote, light), 4 (water, tree, ships, sunset), 5 (mount:
sun, clouds, tree), 6 (sky, water, monument). The dots in red represent the images of the same semantic theme with the queries, and squares in yellow rep
the images from different semantic themes.
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