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Abstract– Prior-image-based reconstruction (PIBR) methods 

have demonstrated great potential for radiation dose reduction in 

computed tomography (CT) applications. PIBR methods take ad-

vantage of shared anatomical information between sequential 

scans by incorporating a patient-specific prior image into the re-

construction objective function, often as a form of regularization. 

However, one major challenge with PIBR methods is how to opti-

mally determine the prior image regularization strength which 

balances anatomical information from the prior image with data 

fitting to the current measurements. Too little prior information 

yields limited improvements over traditional model-based itera-

tive reconstruction (MBIR), while too much prior information can 

force anatomical features from the prior image not supported by 

the measurement data, concealing true anatomical changes. In this 

work, we develop quantitative measures of the bias associated with 

PIBR. This bias exhibits as a fractional reconstructed contrast of 

the difference between the prior image and current anatomy, 

which is quite different from traditional reconstruction biases 

which are typically quantified in terms of spatial resolution or ar-

tifacts. We have derived an analytical relationship between the 

PIBR bias and prior image regularization strength and illustrated 

how this relationship can be used as a predictive tool to prospec-

tively determine prior image regularization strength to admit spe-

cific kinds of anatomical change in the reconstruction. Because 

bias is dependent on local statistics, we further generalized shift-

variant prior image penalties which permit uniform (shift-invari-

ant) admission of anatomical changes across the imaging field-of-

view (FOV). We validated the mathematical framework in phan-

tom studies and compared bias predictions with estimates based 

on brute force exhaustive evaluation using numerous iterative re-

constructions across regularization values. The experimental re-

sults demonstrate that the proposed analytical approach can pre-

dict the bias-regularization relationship accurately, allowing for 

prospective determination of the prior image regularization 

strength in PIBR.  Thus, the proposed approach provides an im-

portant tool for controlling image quality of PIBR methods in a 

reliable, robust, and efficient fashion.      

I. INTRODUCTION 

EQUENTIAL CT studies are prescribed in many clinical appli-

cations including lung nodule surveillance, wherein multiple 

scans are performed over a period of time to identify phenotypic 

changes for indeterminate nodules or to find new nodules [1], 

[2]. The cumulative radiation dose of sequential CT studies is a 

concern for both clinical practitioners and patients. Model-

based iterative reconstruction (MBIR) has demonstrated im-

proved image quality for low-dose CT lung cancer screening in 

the clinic, as compared to the analytical filtered back-projection 

(FBP) methods. [3], [4] The improved trade-off between dose 
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and image quality from MBIR arises from more accurate mod-

eling of projection data and measurement statistics as well as 

the integration of additional prior knowledge. [5]–[7] However, 

most MBIR treats each scan in sequence of CT studies as an 

individual isolated data set, neglecting a great amount of shared 

anatomical information between study time points.  

Prior-image-based reconstruction (PIBR) provides an oppor-

tunity to use the same accurate system modeling of MBIR while 

incorporating a high-quality patient-specific prior image into 

the reconstruction of subsequent low-dose scans for additional 

advantages. Several studies have suggested that various PIBR 

methods can further reduce data fidelity requirements or im-

prove image quality for low-dose CT [8]–[21]. For example, the 

prior image constrained compressed sensing (PICCS) algorithm 

[10] has been used in interventional imaging [11] and cardiac 

imaging [12] to reduce angular sampling requirements. The 

prior image registration, penalized likelihood estimation 

(PIRPLE) approach uses rigid [13] or deformable registration 

[14] within a joint registration-reconstruction framework to in-

corporate information from prior images that are not already 

aligned with the current data. The Reconstruction of Difference 

(RoD) method [16] has been used to directly estimate contrast 

enhancement by using a non-contrast enhanced image as a prior 

image to facilitate dose reduction in perfusion imaging. [17]  

All these methods use compressed sensing strategies like 

ℓ1-norms (or similar norms) to enforce sparsity in a domain 

based on the difference between prior image and current anat-

omy. Other PIBR methods have alternatively used approaches 

based on dictionary learning [7], nonlocal means [18], [19], and 

Markov random fields. [20], [21]  

While PIBR methods are powerful tool for noise reduction, 

one challenge with them is how to control the amount of infor-

mation integrated from the prior image so that one reliably ob-

tains consistent and artifact-free reconstructions. In particular, 

too little integration prior information would yield little benefit 

over traditional MBIR, while too much prior information can 

force the PIBR image to resemble the prior image too closely – 

potentially obscuring features and concealing important ana-

tomical changes. The balance between prior image information 

and current measurements is typically controlled by some form 

of regularization parameter associated with the objective func-

tion. Proper tuning of this parameter is critical to achieving 

good imaging performance. 

S 
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The challenges and opportunities that PIBR affords are illus-

trated in Fig. 1. This figure illustrates the use of the PIRPLE 

approach in lung nodule surveillance wherein a high quality 

prior CT image volume (no nodule) is used to improve the re-

construction of a very low exposure (2 mAs total) CT acquisi-

tion (with nodule). [14] With proper selection of the regulariza-

tion parameter (𝛽𝑃=103) a significant exposure reduction over 

current low-dose clinical protocols (i.e., ~20-30 mAs [22]) is 

achieved. However, too little prior image regularization and the 

solution reduces to classic MBIR with lower image quality. Too 

much regularization and the solution replicates the prior image. 

In practice, one can determine the regularization parameter 

via a trial-and-error process by performing a series of image re-

constructions with different regularization parameter values 

(i.e., exhaustive search). Then, one can select the parameter 

value whose corresponding reconstruction optimizes a certain 

quality metrics relative to a known truth image [13], [14] or 

simply has the best visual appearance [18]. However, there are 

several challenges with such an exhaustive search approach. 

First, the optima found via exhaustive search do not necessarily 

generalize to other imaging scenarios. That is, PIBR methods, 

as a class within MBIR, generally possess object-, data-, and 

location-dependent image properties.[23] Thus, optimal param-

eters for a particular object, x-ray technique, or anatomical lo-

cation do not necessarily translate when the diagnostic target or 

technique is changed. [24] This suggests that an independent 

optimization may need to be performed for each scenario. One 

can attempt this by performing an exhaustive search; however, 

this can be extremely time-consuming due to a large number of 

iterative reconstructions. In MBIR efficient parameter sweeps 

have been effected using a path seeking algorithm [25] to gen-

erate a series of images with different regularization strengths 

via a single iterative reconstruction. Such methods could poten-

tially be applied to PIBR.  

Even with efficient searches, there is a more fundamental 

problem of how to assess image quality in PIBR without a 

known truth image. Ordinary MBIR methods require parameter 

tuning that is also potentially complex. However, classic MBIR 

approaches tend to exhibit a familiar noise-bias tradeoffs where 

bias can be measured using metrics of spatial resolution. Bias 

in PIBR is more complex with traditional spatial resolution and 

noise tradeoffs as well as biasing of specific features and ana-

tomical structures from the prior image. Thus, due to the clas-

sical MBIR dependencies on data, object, and location, as well 

as additional dependency on the prior image, and lack of suita-

ble image quality metrics that fully encompass performance, 

PIBR parameter selection remains a challenge. 

Several research efforts has been devoted to analyze and un-

derstand PIBR performance as well as the parameter selection. 

Lee et al. [26] developed an adaptive PICCS method which 

could detect mismatched regions between the prior image and 

the current anatomy during reconstruction process to avoid ad-

verse effects of prior image. In [27], an image domain decom-

position called information source mapping was proposed 

wherein a PIBR image separated into two additive elements 

comprised of features supported by measurement data and fea-

tures from the prior image. Such maps may guide the selection 

of regularization parameters; however, the decomposition re-

quires (computationally expensive) conjugate gradient (CG) es-

timation of each component and the information gained is ret-

rospective – requiring initial reconstructions. Related work in 

[24] used similar analysis of PIBR and to approximate recon-

struction behavior for specific changes between the prior image 

and the current data. That is, given specification of a specific 

feature difference between the prior image and the current data, 

an efficient parameter search was applied to guarantee accurate 

reconstruction of that feature. Although this methodology of-

fered a substantial speedup (20-fold) over a traditional exhaus-

tive search approach, the computational load is still high.  

In this work, we identify a new bias metric based on the re-

constructed contrast of specific changes between the prior im-

age and the current data. We focus analysis on a specific PIBR 

method – PIRPLE [13] – to find a closed-form analytic expres-

sion relating prior image regularization strength and specific 

levels of bias. This analysis enables prediction of the bias-reg-

ularization relationship in PIBR images without explicit itera-

tive reconstruction in advance. We use this relationship for pro-

spective prediction and control of image properties for con-

sistent behavior across different imaging conditions. Similarly, 

because the analysis is location-dependent, we explore shift-

variant regularization strategies to enforce shift-invariant image 

properties across the imaging FOV. The proposed approach is 

validated in two simulation studies to illustrate its ability to ac-

curately predict and control the PIBR performance. A prelimi-

nary derivation and application of this idea was presented in 

[28]. This work is a more thorough introduction, development, 

and validation of the proposed image property prediction and 

prospective regularization design methodology.  

Fig. 1. An illustration of the challenges and opportunities of using PIBR. The reference true current anatomy is shown at left. The remaining images show PIRPLE 

reconstruction across a range of regularization strengths (𝛽𝑃) of 2 mAs follow-up data where an emulated pulmonary nodule has appeared. If  𝛽𝑃 is too low, image 

quality suffers and if  𝛽𝑃 is too high, the reconstruction reproduces the prior image which has no nodule. 
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II. METHODS AND MATERIALS 

A. PIRPLE framework 

The PIRPLE approach [13] is a PIBR method that integrates 

a patient-specific prior image into a statistically motivated ob-

jective function. Specifically, the PIRPLE objective function 

can be written as: 

   ˆ arg max ;
PR

R P

pp

R R P P Pp p
L y         Ψ Ψ T      (1) 

The first term L denotes the data fidelity term which is a log-

likelihood function derived from a Poisson noise model, and y 

is a vector of x-ray measurements over detector elements and 

projection angles. The second term is a standard roughness pen-

alty where 𝚿𝑅  denotes a pairwise voxel difference operator 

(e.g., first order neighbors). The third term is a prior image pen-

alty term that encourages similarity between the prior image, 

𝜇𝑃 and the reconstruction 𝜇̂. Because the prior image is not nec-

essarily aligned with the current data, a transformation operator 

T may be applied to permit rigid [13] or deformable [14] regis-

tration. An additional sparsifying operator 𝚿𝑃 may be applied; 

however, in many cases the anatomical changes between the 

prior image and current anatomy is already sparse. Leveraging 

a total variation roughness penalty and a convex, sparsifying 

prior image penalty, one typically chooses 𝑝𝑅 = 𝑝𝑃 = 1. (In 

practice, one can also approximate a 𝑙1  norm using a Huber 

function with a small 𝛿 value). [13], [14]. Two regularization 

parameters 𝛽𝑅  and 𝛽𝑃  control the relative strengths of the 

roughness and prior image penalties, respectively.  

For analysis in this work, we will adopt the following simpli-

fied PIRPLE objective with 𝑙1 norms and without registration 

and without the additional sparsifying operator 𝚿𝑃:  

 
1 1

1 1
ˆ arg max ; R R P PL y         Ψ       (2) 

The objective function in (2) can be solved iteratively with var-

ious optimization algorithms. For reconstructions in this work, 

we choose the ordered subsets separable paraboloidal surro-

gates (OS-SPS) [29] algorithm because of its ability for paral-

lelizable image updates.  

B. Closed-form approximation of the PIRPLE objective 

It is difficult to analyze the estimator in (2) directly due to the 

nonlinearities of both log-likelihood function and two regulari-

zations. Previous research efforts have found approximations 

for the estimator which admit closed-form solution [24], [27]. 

Specifically, the log-likelihood function in (2) can be approxi-

mated by a weighted least-squares term using a second-order 

Taylor expansion [5]. Similarly, the  𝑙1 norm (or a Huber func-

tion approximation) in (2) can also be approximated by a quad-

ratic function [24], [27]. Consider the following set of expres-

sions:  
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        (3)  

The  𝑙1 norm of a vector x, ‖𝑥‖1
1, is approximately equal to the 

Huber function, f(xi), and may be approximated with a quadratic 

function g(xi) as illustrated in Fig. 2. Specifically, we choose an 

operating point,i , about which to form a weighted quadratic 

approximationixi
2 that is matched in value at xii . The 

quadratic fit is made individually for each element (i) in the 

vector. The entire vector expression may be written compactly 

using a diagonal weighting 𝐃{𝜅(𝜏)}, that is a function of the set 

of all operating points about which the approximation is made. 

Thus, the objective function in (2) can be approximated with 

a sum of three weighted 2-norms: 
2 2 2

ˆ arg min
R P

R R P Pl          
W D D

A Ψ      (4) 

where the vector of line integral measurements, l, and is ob-

tained from log-transformation of normalized measurement 

data y. The system matrix, A, represents the linear projection 

operator. Each 2-norm in (4) is weighted differently with 𝐖 =
𝐃{𝑦}, a diagonal matrix with the measurements 𝑦 along the di-

agonal;  𝐃𝑅 = 𝐃{𝜅(𝚿𝑅𝜇̃)}  a weighting associated with the 

roughness penalty and 𝐃𝑃 = 𝐃{𝜅(𝜇̃ − 𝜇𝑃)} a weighting associ-

ated with the prior image penalty.  

Note that the operating point, 𝜏, for the quadratic approxima-

tions to the regularization terms is written as a function of the 

argument of the original norm and a particular image estimate 

𝜇̃. For the approximation in (3) to be accurate, 𝜇̃ should be cho-

sen to be close to the PIRPLE solution 𝜇̂, so that the weighted 

2-norm penalties in (4) match the 𝑙1 norm penalties in (2) at the 

particular image volume of interest.  

Since all terms in (4) have a quadratic form, one may write 

the following closed-form solution: 

   
1

ˆ T T T

R R R R P P P P Pl    


   A WA Ψ D Ψ D A W D       (5) 

The approximation in (5) is critical and enables the following 

analytic development. 

C. Determination of 𝛽𝑃 in a PIRPLE reconstruction 

The regularization parameter 𝛽𝑃 in (2) controls amount of in-

formation from the prior image to include in the PIRPLE recon-

struction. A small 𝛽𝑃 constrains the amount of information in-

tegrated from the prior image and yields limited or no improve-

ments over standard MBIR. In contrast, a large 𝛽𝑃 encourages 

strong similarity with the prior image potentially obscuring true 

anatomical changes. Understanding the balance between too lit-

tle and too much prior information is the key to determining 𝛽𝑃.  

Previous studies [24] analyzing PIRPLE performance have 

been undertaken using combinations of exhaustive reconstruc-

tion and approximations for computational efficiency. These 

studies considered how the change between the prior image and 

Fig. 2. Approximation of the Huber function  f  with a quadratic function g at 

an operating point τi for two different situations. Finding a suitable operating 

point τi is critical for the approximation. 
 

(b) (a) 
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the current anatomy was reflected in the PIRPLE reconstruc-

tion. In particular, the relationship between the size, shape, and 

contrast of the anatomical change was quantified. Contrast was 

found to play a major role, and when anatomical changes were 

poorly represented, it was with reduced contrast. Consider ob-

servations within the context of a lung nodule surveillance sce-

nario where PIRPLE is used to image a nodule which was not 

present in a prior CT exam but that appears in a follow-up study. 

We presume a high quality pre-registered prior image and a low 

exposure follow-up scan such that the only anatomical change 

between scans is the single nodule. As regularization strength  

𝛽𝑃 is varied, the reconstructed contrast of the nodule also varies 

with the general trends illustrated in Fig. 3.  Specifically, for 

low 𝛽𝑃  there is a broad area of reliable reconstruction of the 

nodule contrast. For intermediate 𝛽𝑃 there is an abrupt transi-

tion where the contrast of the nodule drops quickly, and then 

for high 𝛽𝑃 the nodule disappears completely. 

This nonlinear behavior of PIRPLE suggests a few things. 

First, the bias associated with a prior image penalty can be de-

scribed as the fraction of actual change contrast that appears in 

the PIRPLE reconstruction. Second, analysis of this nonlinear 

behavior should be focused on the abrupt transition region since 

there is no one-to-one correspondence between the recon-

structed contrast and 𝛽𝑃 value in the flat plateau regions.  

Thus, mathematically, we may identify the transition region 

as where a reconstructed change (Δ𝜇̂) is estimated with half of 

the true contrast change, e.g. 𝜇̂ = 𝜇𝑃 + Δ𝜇/2. Similarly, we 

may find the corresponding 𝛽𝑃
∗  that would achieve the half con-

trast condition. While the regularization strength that achieves 

a half contrast reconstruction is useful in identifying the transi-

tion region between “good” and “bad” reconstructions, one 

may, more generally, consider where the PIBR achieves an ar-

bitrary fractional contrast with 𝜇̂ = 𝜇𝑃 + 𝛾Δ𝜇  ( 0 < 𝛾 < 1 ). 

The acceptable level of fractional contrast, 𝛾, is a design param-

eter that must be decided based on clinical/diagnostic task. In 

this work, we will provide illustrative design examples for iden-

tifying the transition region where 𝛾 = 1/2, recognizing this 

may not be most appropriate selection for particular diagnostic 

tasks. Although the roughness penalty is also an important ele-

ment of PIRPLE reconstruction, consider the simpler case 

where regularization is dominated by the prior image data (e.g., 

𝛽𝑅 ≈ 0). Based on the closed-form solution in (5) and seeking 

the reconstruction with fractional reconstructed contrast, 𝛾, we 

may write the following relation: 

𝜇𝑃 +  𝛾Δ𝜇 = (𝐀T𝐖𝐀 + 𝛽𝑃𝐃𝑃)
−1(𝐀T𝐖𝑙 + 𝛽𝑃𝐃𝑃𝜇𝑝).  (6) 

Recognizing that the line integral estimates should be 𝑙 ≈
𝐀(𝜇𝑃 + Δ𝜇), one can substitute l in (6) and make the following 

manipulations: premultiply both sides to eliminate the matrix 

inverse, cancel terms containing 𝜇𝑃, and isolate 𝛽𝑃 term, so that 
(𝐀T𝐖𝐀 + 𝛽𝑃𝐃𝑃)(𝜇𝑃 +  𝛾Δ𝜇) = 𝐀T𝐖𝐀(𝜇𝑃 + Δ𝜇) + 𝛽𝑃𝐃𝑃𝜇𝑃 

                 𝛾𝐀T𝐖𝐀Δ𝜇 + 𝛾𝛽𝑃𝐃𝑃Δ𝜇 = 𝐀T𝐖𝐀Δ𝜇        

𝛽𝑃𝐃𝑃Δ𝜇 =
(1−𝛾)

𝛾
𝐀T𝐖𝐀Δ𝜇                    (7) 

With 𝐃𝑃 = 𝐃{𝜅(𝜇̃ − 𝜇𝑃)} and assuming that 𝛿 ≈ 0, we choose 

an approximation point 𝜇̃ = 𝜇𝑃 + 𝛾Δ𝜇  (the same fractional 

contrast reconstruction target 𝜇̂) to obtain:  

                            𝐃𝑃 ≈ 𝐃{
1

|𝜇̂−𝜇𝑃|
} = 𝐃 {

1

|𝛾∆𝜇|
}. 

Thus, (7) yields the following analytical relationship between 

the prior image regularization and reconstructed contrast bias:  

𝛽𝑃1⃗ = (1 − 𝛾)𝐃−1{𝑠𝑖𝑔𝑛(Δ𝜇)}𝐀T𝐖𝐀Δ𝜇            (8) 

If one wants to guarantee a change contrast (𝛾) in the PIRPLE 

reconstruction, (8) suggests that we can quickly compute a spe-

cific 𝛽𝑃
∗  that achieves that goal. Since (8) is a vector equation, 

we expect that the prior image regularization design only holds 

locally for the particular change Δ𝜇. If we consider a nonnega-

tive change Δ𝜇(𝑗)  to be centered at location j (a negative 

change adds a minus to the right-hand side), we can use the fol-

lowing simplified relationship in a design objective: 

𝛽𝑃
∗  1⃗ = (1 − 𝛾)𝐀T𝐖𝐀Δ𝜇(𝑗)                      (9) 

which includes dependence on the imaging geometry (𝐀), data-

dependence (through 𝐖 = 𝐃{𝑦} ), change-dependence (Δ𝜇 ), 

and location-dependence (j) of the bias properties in PIRPLE. 

We note that (9) is a vector equation in which we are seeking a 

scalar optima. There is unlikely to be scalar value that satisfies 

(9) for all vector elements; however, it is most important that 

the equation is satisfied in the neighborhood of the change (near 

j). Thus, we adopt a scalar design objective based on a local 

least-squares fitting of 𝛽𝑃
∗  over all the voxels within the support 

of the change.  

To use (9) for regularization design, one must have some kind 

of foreknowledge of the change, Δ𝜇. In previous work [24], de-

sign was performed by testing specific change stimuli in con-

junction with the prior image. That is, if one can specify a pre-

sumed (or possible) change that one is seeking in the image, 

regularization can be designed to enforce a specific fractional 

contrast reconstruction. Note that, the change needs not actually 

be present for design. Regularization may be designed such that 

if the change is present, then it will be reliably reconstructed. 

Thus, this basic framework can be used to ensure reliable re-

construction of a specific anatomical change regardless of its 

location.  

Other options exist for specification of Δ𝜇. For example, if 

one has no general knowledge of the anticipated change, one 

can rely directly on measurement data. That is, presuming a reg-

istered prior and current anatomy, 𝐀Δ𝜇 ≈ 𝑙 − 𝑙𝑃, where 𝑙 is a 

vector of line integrals from current low-dose measurements 

and 𝑙𝑃 is a vector of line integrals of the prior image. Thus, it is 

Fig. 3. The reconstructed change intensity (Δ𝜇̂) versus prior image regulariza-
tion strength. In previous work, we have observed that the contrast is reliably 

reproduced up to a certain 𝛽𝑃 (first plateau, left region), then the contrast ab-

ruptly diminishes (middle region), and disappears with higher 𝛽𝑃 (right region). 
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possible to evaluate (9) from prior and measurement data di-

rectly by replacing 𝐀Δ𝜇  with 𝑙 − 𝑙𝑃 . Lastly, since previous 

work [24] found that regularization was most highly dependent 

on contrast and more weakly dependent on shape and size, one 

can potentially perform designs using a generic change and 

clinically relevant contrast difference. In this work, we focus on 

specific presumed changes for the design process, but also con-

sider one experiment where the line integral estimates from the 

data is used.  

D. Shift-variant prior image penalty design 

If Δ𝜇(𝑗) are just shifted versions of the same function, one 

can use (9) to design a shift-variant 𝛽𝑃,𝑗
∗  map that enforces a 

specific fractional change contrast for all locations across the 

field-of-view (FOV). Mathematically, 

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)[𝐀T𝐖𝐀Δ𝜇(𝑗)]𝑗                (10) 

where [∙]𝑗 returns the jth element of the vector argument. Thus, 

(10) may be used with a modified reconstruction objective that 

replaces the scalar regularization strength with a vector of loca-

tion-dependent weights 𝛽𝑃,𝑗
∗ . That is, the third term of (2) will 

become: 

‖𝜇 − 𝜇𝑃‖𝐃{𝛽𝑃,𝑗
∗ }

1 = ∑ 𝛽𝑃,𝑗
∗ |[𝜇 − 𝜇𝑃]𝑗|𝑗       (11) 

to allow local control of the regularization strength.  

The penalty design represented by (10) may be used to elim-

inate location-dependence and make PIBR reconstruction bias 

associated with a specific change between the prior image and 

the current anatomy uniform across the FOV. That is, for a 

given change, Δ𝜇, that change will be reconstructed with the 

same fractional contrast regardless of the location in the object. 

For similar lesions that have appeared on a uniform background 

relative to the prior image, all lesions would have the same ab-

solute bias. While the penalty design represented by (10) may 

be used to eliminate location-dependence and make bias in an-

atomical change uniform across the FOV; this kind of design 

might be computationally inefficient due to repeated projec-

tions and backprojections for different locations. We may lev-

erage previous observations that the fisher information matrix 

(𝐀T𝐖𝐀) is concentrated near its diagonal elements. This per-

mits the approximation 𝐀T𝐖𝐀 ≈ 𝚲𝐀T𝐀𝚲 when applied locally 

(e.g., the change Δ𝜇(𝑗) is relatively compact), where 𝚲 = 𝐃{𝑐} 
is a diagonal matrix of aggregate certainties. [23] The expres-

sion for those certainties is based on the measurement data with  

𝑐𝑗 = √∑ [𝐀]𝑖𝑗
2 𝑦𝑖𝑖 ∑ [𝐀]𝑖𝑗

2
𝑖⁄ .                                (12) 

Therefore, (10) can be approximated as 

∀𝑗   𝛽𝑃,𝑗
∗ = (1 − 𝛾)[𝚲𝐀T𝐀𝚲Δ𝜇(𝑗)]𝑗 

For a (spatially) compact change, and since cj are smooth 

∀𝑗   𝛽𝑃,𝑗
∗ ≈ (1 − 𝛾)[𝚲𝐀T𝐀𝑐𝑗Δ𝜇(𝑗)]

𝑗
 

Similarly, since we are only interested in the jth element of the 

right-hand side, we can obtain:  

∀𝑗   𝛽𝑃,𝑗
∗ ≈ (1 − 𝛾)𝑐𝑗

2[𝐀T𝐀Δ𝜇(𝑗)]𝑗                 (13) 

For an evenly sampled tomographic system such as CT, the ac-

tion of 𝐀T𝐀  is nearly shift-invariant across the FOV, so 

[𝐀T𝐀Δ𝜇(𝑗)]𝑗 is the same value for all j and needs only to be 

computed once. Thus, we can obtain the 𝑐𝑗 map from a single 

computation (on the order of two backprojections). If the 

change Δ𝜇(𝑗)  does not significantly change the statistical 

weights in W, then the certainty map may be computed using 

(12) to obtain a shift-variant 𝛽𝑃,𝑗
∗  map very efficiently.  

    Under the above conditions we may eliminate the location-

dependence of the regularization strength by integrating the cer-

tainty-based weighting from (12) directly into the PIRPLE ob-

jective as: 

 
1 1

ˆ arg max ;
C C

R R P PL y         
D D

Ψ    (14)  

where 𝐃𝐶 = 𝐃{𝑐2} is a weighting matrix of squared aggregate 

certainties along the diagonal. (In this case, the certainty weight 

is also applied to the roughness penalty to encourage more uni-

form smoothing as suggested in previous work [23]). Following 

previous analysis the regularization parameter may be found ef-

ficiently according to 

 𝛽𝑃
∗ = (1 − 𝛾)[𝐀T𝐀Δ𝜇(𝑗)]𝑗.                 (15) 

Note that this expression is location-dependent only in terms of 

the change, Δ𝜇. Thus, if Δ𝜇 differs only by a spatial shift (j), the 

modified objective function that always includes the certainty 

weights permits specification of a uniform scalar penalty 

strength 𝛽𝑃
∗ . We also note that the above development relies on 

an intrinsic response, 𝐀T𝐀, that is nearly shift-invariant across 

the FOV. This is expected for 2D axial CT geometries and per-

mits use of the aggregate certainty approximation in (12). For 

short scans and cone-beam geometries (particularly near the 

edge of the FOV), these approximations may be less accurate. 

However, Cho and Fessler [30] proposed more sophisticated 

system response approximations that are more appropriate for 

these asymmetric geometries. Thus, while this work focuses on 

the 2D axial scenario, it should be straightforward to extend 

computationally efficient penalty design to cone-beam and 

short-scan fan-beam CT. 

E. Phantoms and simulation studies 

The validity of the previous analysis and the relationship be-

tween reconstructed change contrast and regularization is ex-

plored in phantom studies. Two sets of phantoms are used and 

Fig. 5. Torso phantom: (a) prior image generated from an axial slice of a CT 

scan of a cadaver and two simulated lung nodules (indicated by yellow cir-
cles); (b) subsequent scan with nodule shrinkage.  
  

 (b) (a) 

(a) (b) 

Fig. 4. Ellipse phantom: (a) prior image; (b) subsequent scan with two ana-
tomical changes (indicated by yellow circles).  
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are shown in Fig. 4 and Fig. 5. The display window for all the 

images in this paper is [0, 0.04] mm-1 unless otherwise stated. 

The ellipse phantom in Fig. 4(a) consists of three attenuation 

regions (a background ellipse with attenuation 0.02 mm-1, a 

dense circular insert with attenuation 0.03 mm-1, and a low-den-

sity circular insert with attenuation 0.01 mm-1) and is used as 

the prior image. For the subsequent scan, two anatomical 

changes (small discs with the same contrast of 0.008 mm-1 rel-

ative to the background) are introduced to the prior image, as 

shown in Fig. 4(b). The second phantom in Fig. 5(a) was gen-

erated from an axial slice of a CT scan of a cadaver torso. Two 

stimuli were digitally placed in the lung region to mimic irreg-

ular pulmonary nodules. A lung nodule surveillance scenario 

was emulated in which both nodules shrank in the subsequent 

scan (i.e., negative change), as shown in Fig. 5(b). The lung 

nodules in both images have attenuation of 0.021 mm-1 (typical 

for solid solitary pulmonary nodules [31]).  

 For simulation studies, a system geometry of 150 cm source-

to-detector distance, 122 cm source-to-axis distance, and 

0.556 × 0.556 mm2 detector bin sizes, was chosen to generate 

projection data for subsequent scans. Unless otherwise indi-

cated the following parameters served as defaults: A total of 90 

projections equally spaced over 360o were acquired; Poisson 

noise was added to the data using 105 and 104 incident photons 

per detector bin for the ellipse and torso phantoms, respectively; 

and analytical predictions used the true Δ𝜇 stimuli.  

E.1. Exhaustive search vs. analytical prediction 

For both phantoms, we compute ground truth values of the 

reconstructed contrast of changes via individual PIRPLE recon-

structions (100 iterations and 10 subsets of OS-SPS) of the sub-

sequent scan over an exhaustive sweep of the regularization pa-

rameter 𝛽𝑃. The validity of the analytical predictions is assessed 

via comparisons of this (ground truth) baseline with the analyt-

ical prediction given by (10) or the computationally efficient 

approximation in (13). These comparisons are made for the two 

change locations in each phantom. 

E.2. Factors affecting analytical prediction accuracy 

There are a number of potential factors that will influence the 

accuracy of the analytical prediction. Three specific experi-

ments using the ellipse phantom were undertaken to explore the 

following effects. First, the analytical prediction was derived 

under the assumption of 𝛽𝑅 = 0 for mathematical convenience. 

In practice, one always applies the standard roughness penalty 

to help control the noise-resolution trade-off. Thus, we conduct 

a specific experiment using a range of 𝛽𝑅, comparing analytical 

prediction with exhaustive evaluation in the ellipse phantom. 

Second, we consider the case where noisy line integrals, 𝑙 − 𝑙𝑃, 

are used to estimate 𝐀Δ𝜇. To demonstrate the applicability of 

this approach and potential limitation due to noise in measure-

ment data, analytical predictions using the line integral are com-

pared with that using presumed change over a range of noise 

levels. Lastly, since contrast of the anatomical change plays a 

central role in image quality of the reconstructed PIRPLE im-

age, we consider an additional experiment wherein the contrast 

of the stimulus is varied to illustrate low contrast predictive per-

formance. 

E.3. Quantitative evaluation of shift-variant penalty design 

To quantify the performance of shift-variant penalty more 

completely, studies are conducted for a more dense sampling of 

points within the two phantoms for the case of a shift-variant 

penalty design. Specifically, the difference between brute force 

exhaustive search using reconstruction, the design given by (10) 

and the efficient design of (13) are compared for the specific 

choice of 𝛾 = 1/2. 

E.4. Regularization design for varying acquisition protocols  

Lastly, two additional studies are conducted using the anthro-

pomorphic torso phantom in which data acquisition strategies 

are varied and regularization design is conducted. Specifically, 

since optimal regularization is known to be data-dependent, we 

consider a variable number of projection angles and a variable 

incident fluence (x-ray exposure) and whether the regulariza-

tion design approach can be used to control for the variable ac-

quisition strategy. 

Fig. 6. Plot of disc average intensity versus prior image regularization strength 

for the ellipse phantom for two different change locations. Our proposed ana-
lytical prediction approach shows very high accuracy as compared with the 

exhaustive search method. The 𝛾 = 1/2 case is indicated with a horizontal dot-
ted line and the corresponding regularization strength with a solid vertical line. 

Dotted vertical lines indicate the regularization values corresponding to the 

above reconstructions at 𝛽𝑃 = 103, 104, and 105. 
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Fig. 7. Plot of disc average intensity versus prior image regularization 

strength for the ellipse phantom when the certainty-based shift-variant pen-
alty is applied. Again, the predictor shows good agreement with the exhaus-

tive search. The shift-variant penalty enforces a common transition region 

between the two locations (indicated with a vertical solid line centered at 

𝛽𝑃
∗ ≈101.3).  
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III. EXPERIMENTAL RESULTS 

A. Ellipse phantom investigations 

A.1. Exhaustive search vs. analytical prediction 

 A summary of the simulation studies for PIRPLE reconstruc-

tion using standard shift-invariant regularization is shown in 

Fig. 6. Following the objective in (2) and using a fixed 𝛽𝑅 = 

102.5 and PIRPLE reconstructions with varying 𝛽𝑃 (from 101 to 

105 with a 100.05 step size) were computed. Three sample recon-

struction at 𝛽𝑃 = 103, 104, and 105 are shown. Note when 𝛽𝑃 is 

too large, the PIRPLE reconstruction replicates the prior image 

and true anatomical changes (i.e., two discs) do not appear. 

Also, there is an intermediate 𝛽𝑃 where the right disc appears 

but the left disc disappears – suggesting significant location de-

pendence of bias effects. In particular, we see that there is in-

creased bias (a smaller 𝛾 fraction) in the dense portion of the 

phantom, where the stimuli has disappeared. This is consistent 

with the statistical model downweighting measurement data for 

that region due to increased density and increased noise, and 

more reliance on prior information in the objective function 

(e.g., increased similarity to the prior image) in this region. 

The average intensity of voxels inside each disc for all 

PIRPLE reconstructions is plotted versus prior image regulari-

zation strength 𝛽𝑃 for each disc below the sample reconstruc-

tions. A separate plot is shown for the left and right stimuli. 

Based on (10), we also varied 𝛾 from 0 to 0.99 with a 0.03 step 

size and computed the resulting 𝛽𝑃
∗  for each disc. The fractional 

reconstructed contrast of the change, 𝛾, is related to the recon-

structed attenuation (by adding the attenuation of the prior im-

age) and curve of predicted stimuli attenuation versus prior im-

age regularization strength was also plotted for each disc.  

The analytical predictions match well with the exhaustive 

search results in the transition region, indicating a high accu-

racy of the proposed analytical prediction method. There was 

slightly increasing deviation between the brute force calculation 

and the predictions for values farther away from 𝛾 = 1/2, but 

this is expected because the analysis has focused on the transi-

tion region. We also observe a relative shift between the curves 

of the two stimuli. Specifically, the center of transition region 

for the left disc is at 𝛽𝑃
∗ ≈103.4 but 𝛽𝑃

∗ ≈104.3 for the right disc 

(identified with a solid vertical line).  

The same set of experiments for the ellipse phantom using 

the shift-variant certainty penalty given by (14) was also con-

ducted. Due to the certainty weighting, the range of penalty 

strengths was modified accordingly. Specifically, we employed 

a fixed 𝛽𝑅 = 100 and varied 𝛽𝑃 (from 10-2 to 102 with a 100.05 

step size) for PIRPLE reconstructions. Again, three sample re-

constructions are shown. With the shift-variant penalty design, 

one can see that the two stimuli are reconstructed with similar 

fractional contrast showing less location dependence of bias. 

Reconstructed attenuation versus prior image regularization 

strength curves again show good agreement between prediction 

and exhaustive search. These curves also indicate the improved 

uniformity for the left and right discs, with curves exhibiting a 

transition region centered both at 𝛽𝑃
∗ ≈101.3.  

A.2. Factors affecting analytical prediction accuracy 

To investigate the importance of 𝛽𝑅 in the context of the de-

rived relationship between 𝛽𝑃  and fractional change recon-

struction, we repeated the shift-variant experiment summarized 

in Fig. 7 with varying 𝛽𝑅. Specifically, the predicted analytic 

relationship is compared to the exhaustive reconstruction-based 

search for 𝛽𝑅 = 0, 100, 101 and 102. The results of this investi-

gation are shown in Fig. 8. Note that the curves of the exhaus-

tive search approach using 𝛽𝑅 ≤ 100 nearly overlap with each 

other. However, when 𝛽𝑅  is larger, the curve for exhaustive 

search approach shifts downwards. Noting the associated re-

constructions of the left and right stimuli, larger 𝛽𝑅, particularly 

for 𝛽𝑅 ≥102, the stimuli are noticeably over-smoothed and ex-

Fig. 8. The curves of exhaustive search using four different 𝛽𝑅 values for the 

ellipse phantom when the shift-variant penalty are applied. When 𝛽𝑅 is not 

too large, the curves nearly overlap with each other. When 𝛽𝑅 is too large, the 

PIRPLE reconstructed images are over-smoothed, and there is additional bias 
resulting in underestimation of the contrast.. Sample PIRPLE reconstructions 

of the two discs using 𝛽𝑃 =100 and four different 𝛽𝑅 values (0, 100,101,102) 
are also shown.  

 

Increasing 𝛽𝑅  Increasing 𝛽𝑅  

Fig. 10. Plot of left disc average intensity versus prior image regularization 

strength for the ellipse phantom with lower contrast disc stimuli of 

0.004 mm-1, 0.002 mm-1, 0.001 mm-1. Note that predictions remain accurate 
across stimulus contrast levels. 
  

Fig. 9. Analytical predictions of the bias-regularization curves using the line 

integral versus the presumed change approach. When the noise level is rela-

tively low, the two predictions nearly overlap with each other. When noise lev-
els become high, we see a systematic bias wherein the line integral approach 

curves are biased toward the left (lower 𝛽𝑃). 
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hibit decreased contrast due to blur with the surrounding mate-

rial. Arguably, such a 𝛽𝑅 is undesirable and should be avoided. 

Thus, the analytic framework of this paper still provides a pro-

spective way to choose 𝛽𝑃 since predictive curves will match 

for 𝛽𝑅 choices that are not oversmoothing. Moreover, note that 

the location of the transition region in Fig. 8 does not change 

with 𝛽𝑅. This echoes previous work suggesting that the two reg-

ularization parameters may be optimized independently. And, 

since 𝛽𝑅  controls a more familiar noise-resolution trade-off, 

such tuning may be more straightforward. 

While this paper largely focuses on the presumed change 

framework in [24], we have identified the measured line inte-

gral approach where 𝐀Δ𝜇 ≈ 𝑙 − 𝑙𝑃 may be used in the design. 

To study efficacy of this approach at different noise levels, we 

varied incident fluence to 1 x 105, 3 x 104, and 1 x 104 pho-

tons/detector (for a fixed 90 projection angles), and compared 

the performance of these two analytical predictions (See Fig. 

9). Note that the predictions overlap closely for higher fluence 

scenarios, with increasing bias at the lower fluence levels.  

To investigate the effect of stimulus contrast on the accuracy 

of analytical prediction, we performed additional studies with 

decreased contrast for the disc stimuli. Specifically, we used a 

change contrast of 0.004 mm-1, 0.002 mm-1, and 0.001 mm-1, 

and repeated the Section III.A.1 study using the shift-variant 

certainty penalty. The resulting bias-regularizations curves for 

the analytical prediction and exhaustive search for the left disc 

are shown in Fig. 10. The analytical predictions still match well 

with the exhaustive search results at these three contrast levels, 

suggesting that our predictive framework is applicable across 

contrast levels. 

A.3. Quantitative evaluation of shift-variant penalty design 

While the previous investigations of one or two stimuli are 

useful to illustrate the relationship between regularization and 

reconstruction bias, studies were limited to two location probes. 

We consider a more exhaustive spatial investigation for the 

shift-variant penalty design. Specifically, we investigated the 

location dependence of prior image regularization strength by 

adding a constant change (a disc with radius of 15 mm and at-

tenuation of 0.008 mm-1) to the prior image in Fig. 11(a) at 

many different locations. Fig. 11(b) shows an example of the 

constant change at one specific location in an FBP 

reconstruction of  low-dose projection data. While the change 

is a constant, the absolute attenuation of the stimuli varies by 

location, depending on the attenuation of corresponding 

background.  Fig. 11(c) illustrates the contant change at all 25 

locations that were investigated. Note that in any given dataset 

there is only one stimulus at one specific location. The same 

low-dose simulations, projection geometry, etc. was used as in 

the previous ellipse examples.  

For all of the locations, we chose a shift-variant penalty de-

sign goal to enforce 𝛾 = 1/2 for all points in the image volume. 

We performed that design using three approaches: 1) Gold 

standard, brute-force evaluation using exhaustive PIRPLE re-

construction with 𝛽𝑅 =102.5 and 𝛽𝑃 varied from 101 to 105 with 

a fine 100.01 step size. 2) Exhaustive predictive evaluation using 

evaluation of (10) for all 25 locations (j). And, 3) a computa-

tionally efficient shift-variant penalty specification based on 

(13) and the direct calculation of aggregate certainties. For the 

latter calculation, we used the center stimulus (indicated with 

green circle in Fig. 11(c)) to approximate the 𝐀T𝐀Δ𝜇(𝑗) term 

for all locations. To fill in penalty values for all points in the 

image volume, we used radial basis function [24] interpolation 

and extrapolation with the 25 computed samples. 

Computed regularization maps (all 𝛽𝑃,𝑗
∗ ) for each strategy are 

shown in Fig. 12. The log10(𝛽𝑃,𝑗
∗ ) values are shown since the 

action of regularization is in the exponent for log-likelihood-

based objective functions (like PIRPLE). The similarity be-

tween the three maps again demonstrates the high accuracy of 

the analytical prediction methods. Using the log10(𝛽𝑃
∗) values 

from exhuastive search as ground truth, the root mean squared 

error (RMSE) for the analytical prediction in (10) and (13) for 

the 25 locations was computed as RMSE=0.0165 and 

RMSE=0.1071, repectively suggesting high accuracy in the 

design. While the increased computational efficiency of the 

(13) comes with a slight degradation in RMSE, we note that a 

log10(𝛽𝑃,𝑗
∗ ) shift of ~0.1 still localizes the transition region 

well. If one seeks to establish a specific level of bias associated 

with a change, this suggests the potential for a ~10% error (on 

average). If greater accuracy in fractional contrast reconstruc-

tion is required, the more computational expensive approaches 

may be required. However, very high accuracy is usually not 

important for most applications. Previous work [24] has shown 

that there is a wide range of 𝛽𝑃  that improves image quality 

throughout the image volume. The problematic aspect of regu-

larization design is crossing into the transition region and be-

yond where features are grossly misrepresented or nonexistent. 

Thus, for many applications, it is sufficient to identify the loca-

tion of the transition region and to keep 𝛽𝑃 sufficiently low to 

avoid having important changes in the transition region. Local-

ization of the exponent of 𝛽𝑃 within ~0.1 easily establishes this 

goal since 𝛽𝑃 is typically optimized on the scale of whole or 

half exponents. 

The form of the shift-variant penalty design shown in Fig. 12 

shows decreased regularization strength in the high density re-

gions and increased strength in the low density region. This is 

3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 

(a) (b) 

Fig. 12. Estimation of 𝛽𝑃,𝑗
∗  at 𝛾 = 1/2 by: (a) exhaustive search; (b) analyti-

cal prediction in Eq. (10); (c) analytical prediction in Eq. (13). The 𝛽𝑃,𝑗
∗  values 

at the 25 locations were obtained explicitly, and the maps were then generated 
by interpolation using radial basis functions.  
  

RMSE = 0.0165 
  

RMSE = 0.1071 
  

(c) 

Fig. 11. Ellipse phantom: (a) prior image; (b) current low-dose image with 

one anatomical change (indicated by yellow circle) at a specific location; (c) 
one constant anatomical change at 25 different locations. 
  

(a) (b) (c) 
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consistent with previous observations with a uniform shift-in-

variant penalty where increased bias was observed in high-den-

sity regions and lower bias in low-density regions. The de-

signed penalty (which seeks uniform bias in the change between 

prior and current anatomy) modifies the local regularization 

strength accordingly. 

B. Torso phantom investigations 

B.1. Exhaustive search vs. analytical prediction 

While the ellipse phantom is illustrative of general depend-

encies on local density, it is not particularly realistic in terms of 

anatomy. Thus, we have conducted similar investigations in a 

torso phantom. We emulate a lung nodule surveillance scenario 

with irregular lesions and shrinkage over time (in contrast to the 

“simple” appearance of symmetric stimuli in the ellipse phan-

tom). As in the previous investigation, both the shift-invariant 

and shift-variant regularization approaches were applied for the 

torso phantom. Since we emulated nodule shrinkage (i.e., neg-

ative change), a minus sign was added to the right-hand side of 

(10) and (13) for analytical prediction of 𝛽𝑃
∗ .  

The shift-invariant results are summarized in Fig. 13. As be-

fore representative reconstructions are shown for three regular-

ization values (𝛽𝑃 = 103, 104, and 105) and corresponding reg-

ularization bias curves formed via exhaustive reconstruction 

and analytical prediction are shown. Note that the change be-

tween the prior and current data is an irregular shape with a hol-

low center (no change at the center of the lesion). Average at-

tenuation values in the reconstruction are computed over this 

irregular region. The intermediate reconstruction at 𝛽𝑃 = 104 

shows both the fractional representation of attenuation in the 

change region as well as location dependence with less bias in 

the right (green box) stimulus. Note that the regularization-bias 

are inverted as compared with Fig. 6 and Fig. 7, because of 

negative changes. Again, the curves accurately capture the bias 

in the reconstructed images as well as the location-dependence 

as indicated by the shift in transition region between the two 

lesion locations. Moreover, the analytical predictor and the 

exhaustive search remain in good agreement.  

The shift-variant penalty design of (13) is applied to the torso 

phantom and summarized in Fig. 14. The results are consistent 

with previous observations and the shift-variant penalty design 

make the bias associated with the two lesion locations more 

uniform (see both the reconstructions and the shift in the 

transition region to a common 𝛽𝑃
∗ = ~101.3. Thus, not only can 

object-dependence be observed in an anthropomorphic 

phantom, but the design strategy can be used to eliminate bias 

nonuniformity in anatomical change. 

B.2. Quantitative evaluation of shift-variant penalty design 

We also considered a more exhaustive investigation of 

location dependence of shift-variant prior image regularization 

strength for the torso phantom. Toward this end, we emulated a 

similar nodule shrinkage at 13 different locations within the 

lung parenchyma. As before, while a number of locations are 

investigated only a single lesion is emulated in a particular 

dataset. Fig. 15(a) and Fig. 15 (b) illustrate an example of the 

nodule shrinkage at one specific location, showing the prior 

image and current low-dose FBP reconstruction, respectively. 

Fig. 15 (c) illustrates all the 13 nodules simultaneously. The 

same low-dose protocol (i.e., 90 projection views and 104 inci-

dent photons per detector bin) was applied, and the regulariza-

tion design goal targeted 𝛾 = 1/2. Three design strategies: 1) 

Fig. 14. Plot of nodule average intensity versus prior image regularization 

strength for the torso phantom for the shift-variant penalty. The 𝛾 = 1/2 
case is indicated with a dotted line. 
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Fig. 13. Plot of nodule average intensity versus prior image regularization 

strength for the torso phantom for the shift-invariant penalty. The 𝛾 = 1/2 case 
is indicated with a dotted line. 
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Fig. 16. Estimation of log10(𝛽𝑃,𝑗
∗ ) at 𝛾 = 1/2 for the torso phantom by: (a) 

exhaustive search; (b) analytical prediction in (10); (c) analytical prediction 

in (13). The log10(𝛽𝑃,𝑗
∗ ) values at the 13 locations were obtained explicitly, 

and the maps were then generated via radial basis function interpolation.  
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Fig. 15. Torso phantom: (a) One example of a prior image; (b) One example 

of a current low-dose FBP image with nodule shrinkage; (c) The prior image 
with all the 13 nodules, indicating the probe nodule locations. 
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exhaustive search via reconstruction; 2) analytical prediction 

using (10); and 3) certainty-based design were performed. For 

the latter design, we used the nodule change at location 9 to 

approximate the 𝐀T𝐀Δ𝜇(𝑗) term for all locations, although the 

actual nodule change for different locations actually varies 

slightly since the lung background is not uniform.   

Regularization maps containing log10(𝛽𝑃,𝑗
∗ )  values are 

shown in Fig. 16 using radial basis function interpolation and 

extrapolation for all points in the lung tissue. (Areas outside the 

lung are excluded since nodule shrinkage is not particularly 

well defined in these locations). Using the log10(𝛽𝑃,𝑗
∗ ) values 

from exhuastive search as the ground truth, the RMSE by the 

analytical predictions in (10) and (13) are RMSE=0.0473 and 

RMSE=0.0838, repectively. We note that the shift-variant 

log10(𝛽𝑃,𝑗
∗ ) maps retain high similarity between the exhaustive 

search and analytical prediction methods. 

As previously observed, there is a general trend of lower reg-

ularization strength in high density regions (e.g., left portion of 

the image where lung edema is present). Though because the 

location-dependence is based on measurements through that lo-

cation (e.g., the net attenuation/aggregate certainty for that lo-

cation), there is also a general trend for decreased 𝛽𝑃,𝑗
∗  near 

higher density regions (e.g. mediastinum) and toward the center 

of the patient. 

B.3. Regularization design for varying acquisition protocols  

Previous experiments have investigated the bias dependencies 

on anatomy and location. In this section, we explore variations 

in the data acquisition in two experiments using the torso phan-

tom in Fig. 5 with only two stimulus locations. The regulariza-

tion-bias curves by exhaustive search and proposed analytical 

prediction were plotted using the same approach as described 

in Section III.B.1.  

The first experiment (Fig. 17) investigated variable angular 

sampling. We considered a total number of projection angles of 

30, 60, and 90 (with fixed fluence at 104 photons/detector). 

(Smaller numbers of projection angles have been proposed as a 

dose reduction strategy that works well with ℓ1-norm-based reg-

ularization.) Both traditional shift-invariant 𝛽𝑃  and shift-vari-

ant design are applied and compared to brute force evaluation 

via reconstruction. Again, we note good agreement and a reduc-

tion of location-dependence with the shift-variant design. We 

also find that one generally does need to adjust regularization 

strength for varying numbers of angles. Specifically, fewer an-

gles requires lower 𝛽𝑃; however, the location of the transition 

region remains predictable even for small numbers of angles. 

A second experiment (Fig. 18) used varied fluence of 3 x 103, 

6 x 103, and 1 x 104 photons/detector (for a fixed 90 projection 

angles). In the traditional regularization results with the original 

PIRPLE objective in (2), dependence on location and fluence 

levels are apparent, but there is good agreement between pre-

dictions and exhaustive search. For the shift-variant design 

achieved through implementation of the modified objective 

function of (14) with certainty-based weights, not only is loca-

tion-dependence reduced by moving the regularization-bias 

curves to a common transition point, but the fluence-depend-

ence is also eliminated – with all curves having the same tran-

sition point regardless of fluence.  

IV. DISCUSSION AND CONCLUSION 

We have proposed and evaluated an analytical approach that 

quantifies and predicts bias associated with prior image regu-

larization strength in PIRPLE reconstruction. The bias is de-

scribed as the fraction of the actual change between the prior 

image and the current anatomy that appears in the reconstruc-

tion. We have demonstrated the validity of the predictor with 

Fig. 17. Varied angular sampling investigation. Exhaustive search and analyt-
ical predictions for different numbers of projection angles for the torso phan-

tom, using a standard penalty (top) and shift-variant penalty design (bottom).  
  

Standard Shift-Invariant Regularization 

Shift-variant Regularization 

Fig. 18. Varied fluence investigation. Exhaustive search and analytical pre-

dictions for different fluence levels for the torso phantom, using standard pen-

alty (top) and shift-variant penalty design (bottom). 
  

Standard Shift-Invariant Regularization 

Shift-variant Regularization 



0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2847250, IEEE
Transactions on Medical Imaging

 

comparisons to a brute force evaluation gold standard, and we 

have used the derived mathematical relationship between regu-

larization and bias to drive reconstructions with uniform bias 

properties for reconstructed anatomical changes. Computation-

ally efficient versions of the regularization design were also de-

veloped and demonstrated to be accurate. There are several 

merits with the presented analytical prediction approach. It does 

not require explicit iterative reconstructions. The expression 

takes various dependencies into account including the system 

geometry, sampling, fluence levels, measurement statistics, and 

the location and contrast of the anatomical changes – permitting 

reliable regularization control across those dependencies. This 

work provides a general framework to predict and control 

PIRPLE performance, which fills the current gap in understand-

ing PIBR methods. We believe that the introduction of quanti-

tative metrics of PIBR bias and predictive methods for bias es-

timation is critical for producing reliable PIBR images, which, 

in turn, is also critical for the eventual clinical translation of 

these powerful approaches. 

While this work is an important stepping stone in PIBR anal-

ysis and control, there are many aspects that require additional 

investigation in future studies. In particular, the analytic frame-

work developed here identifies the particular bias associated 

with PIBR (partial reconstruction of contrast changes) and es-

tablishes a relation between regularization strength and that 

bias. We note that the framework suggests that any amount of 

regularization results in some reconstruction bias. The specific 

level of bias resulting from regularization design is left to the 

user. The degree of acceptable bias is likely highly dependent 

on the clinical task. For example, detection tasks may be more 

tolerant of bias than quantification tasks. Similarly, this work 

concentrates only on bias and not the noise aspects of PIBR. 

Both bias and noise are likely to play an important role in the 

particular trade-offs of PIBR and require additional investiga-

tions.  

The analytic framework makes the simplification that the 

standard roughness penalty plays a small role in the reconstruc-

tion. Despite illustrating that there is a range of 𝛽𝑅 over which 

this assumption is a good one, that premise breaks down for 

larger 𝛽𝑅 . In future studies we seek a unified regularization 

analysis (e.g. factoring the two regularization strategies) that 

will permit image quality predictions including both regulariza-

tion terms.  

Current work also ignores the effect of registration between 

the prior image and current anatomy. Registration is critical for 

many clinical applications including lung nodule surveillance 

due to different patient positioning, inhalation states, patient 

weight gain/loss, etc. While the studies presented in this work 

apply for well-registered prior images, future studies will need 

to assess the impact of misregistration. The interaction between 

registration and reconstruction is potentially complex since 

some changes (e.g. nodule growth) could potentially be mod-

eled either as an anatomical change (in attenuation) or as a de-

formation of the prior image anatomy, in addition to “simple” 

misregistration errors. This raises a number of additional ques-

tions about the correct way to balance registration and recon-

struction in the context of PIBR. However, we note that recon-

struction and registration can often be decoupled (as with 

PIRPLE), permitting different registration algorithms to be 

tested. This permits investigation of methods that explicitly for-

bid transformations that could be interpreted as nodule growth 

as well as studies where such constraints are not applied. We 

plan on addressing these registration issues in ongoing and fu-

ture studies including clinical datasets with realistic patient mo-

tion and anatomical change. 

Finally, our analysis in this study was focused on the PIRPLE 

method and lung nodule surveillance application. Nevertheless, 

the proposed methodology is general and uses similar mathe-

matical techniques as were used in [27] which permitted analy-

sis of other PIBR methods like PICCS. Naturally, this work has 

potential application beyond lung nodule surveillance including 

cardiac sequences, [12] perfusion, [17] angiography, [32] and 

cross-modality prior images. [33] For example, planning CT 

images may be used to improve onboard CBCT imaging in ra-

diation therapy [33]. Prospective regularization design is signif-

icantly more complicated in this scenario, due to increased scat-

ter fractions in CBCT data, attenuation differences between the 

planning CT and CBCT datasets, as well as positioning differ-

ence and organ deformations between scans [33]. Investigation 

of prospective regularization design for cross-platform applica-

tions is an important topic for future consideration. 
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