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Abstract—Image fusion techniques in 3D echocardiography
attempt to improve the field-of-view by combining multiple 3D
ultrasound (3DUS) volumes. Echocardiography fusion techniques
are mostly based on either image registration or sensor tracking.
Compared to registration techniques, sensor tracking approaches
are image independent and do not need any spatial overlap
between the images. Once the images are spatially aligned
the pixel intensities in the overlapping regions are determined
using fusion algorithms such as average fusion (AVG) and
maximum fusion (MAX). However, averaging generally results
in reduced contrast while maximizing results in amplification
of noise artifacts in the fused image. Wavelet fusion (WAV)
overcomes these issues by selectively enhancing the low-frequency
components in the image, but this could result in pixelation
artifacts. We propose a new method for image fusion based on a
generalized random walker framework (GRW) using ultrasound
confidence maps. The maps are based on: 1) focal properties
of the transducer; and 2) second order image features. The
fusion technique was validated on image pairs sampled from
3DUS volumes acquired from 6 healthy volunteers. All the
images were spatially aligned using optical tracking, and the
fusion algorithm was used to determine the pixel intensity
in the overlapping region.Comparisons based on quantitative
measures showed statistically significant improvements for GRW
(p < 0.01) when compared to AVG, MAX, and WAV for Contrast
to Noise Ratio (CNR): 0.85± 0.03, Signal to Noise Ratio (SNR):
7.42± 1.98, Wang-Bovik metric (Q0): 0.80± 0.15. The Piella
metric (Q1): 0.82± 0.01 also gave higher values for GRW,
but the difference was not statistically significant. Upon visual
inspection, the GRW fusion had the lowest amount of stitching
and pixelation artifacts. The fusion technique proposed could
help in improving the diagnostic accuracy and clinical acceptance
of 3D echocardiography.

Index Terms—3D Echocardiography, Multiview fusion, Ran-
dom Walker, Ultrasound Confidence Maps, Optical tracking

I. INTRODUCTION

Three-dimensional (3D) echocardiography provides accu-
rate, high-quality visualization of the heart and is commonly
used for volumetric measurements such as the left ventricular
(LV) ejection fraction [1]. Relative advantages of 3D echocar-
diography compared to 2DUS are well established [1]–[4]
especially for volumetric analysis of aneurysms [2], [3] where
2D model based approaches usually are less accurate. 3D
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echocardiography also offers benefits in terms of operational
cost and equipment complexity when compared to cardiac
magnetic resonance (CMR) imaging.

A major limitation of 3D echocardiography is its limited
field-of-view (FOV) which is caused due to limitations in
physical dimensions of the transducer and lack of an ideal
sonographic window. These limitations can reduce the clin-
ical applicability of 3D echocardiography as it deprives the
clinician of a complete 3D view of the heart. Consequently,
attempts to fuse multiple cardiac images obtained at different
scanning angles have received considerable research interest.
Image fusion approaches in echocardiography are mostly
based on either image registration [5]–[10] or sensor tracking
[11]–[14].

Echocardiography volumetric data can be fused using image
registration provided there is sufficient overlap between the
constituent images. However clinical images of the heart such
as the apical and parasternal views that contain complementary
information are spatially far apart. In such cases, the require-
ment of substantial image overlap limits the extent of FOV
improvement. Sensor-tracking based fusion techniques [11]–
[14] overcome this limitation by tracking the ultrasound probe
in 3D space and using this information for spatial alignment.
Tracking based approaches also have the additional advantage
of being independent of image resolution.

Once the images are spatially aligned, the next step is to
determine the image intensity of the fused image in overlap-
ping regions. The intuitive approach of averaging the pixel
intensities would result in poor contrast (as image boundaries
get blurred in the composite image). On the other hand
using the maximum intensity has the disadvantage of the
maximizing noise artifacts (such as speckle noise). Multiscale
decomposition (MSD) techniques using wavelets have been
proposed to overcome the issues mentioned above. Rajpoot et
al. [7] extended 3D wavelet-based fusion to echocardiography
images. In their work images from multiple views were
initially registered using a rigid registration technique and then
decomposed into multiple-frequency sub-bands. Then the low-
frequency components were maximized, and high-frequency
components were averaged. This ensured high-frequency noise
suppression while preserving the speckled nature of the image.
Punithakumar et al. [12] proposed a likelihood estimator based
approach for wavelet fusion wherein each pixel was weighted
based on the local image intensity in the neighborhood.
Variants of the wavelet-transforms such as contourlets [15],
curvelets [16], complex wavelets [17], [18] and beamlets
[19] have also been proposed. One limitation of transform
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based techniques (such as wavelets) is the presence pixelation
artifacts which might distort small details in the fused image.
Pixelation occurs due to decimations involved in the wavelet
transform and translation dependence of standard wavelets
[20]. As an alternative, variational approaches such as [21]
have been proposed. These approaches are based on optimiz-
ing an energy-functional and usually involve continuous opti-
mization which is computationally expensive. Computational
cost and time can be considerably reduced by using discrete
optimizations techniques such as graphs cuts which are very
popular in image segmentation, smoothing and stereo vision.
Miles et al. [20] used Graph cuts to fuse computed tomography
(CT) and magnetic resonance (MR) images of the spine.
They formulated image fusion as a multi-label optimization
problem using alpha expansion. Discrete optimization can
also be done using random walker (RW) formulations [22],
[23] which offer two advantages: 1) it reduces the chance of
small cuts for labels with a small boundary cost; and 2) it
provides a confidence rating of each pixel’s membership in the
segmentation. A generalized RW formulation was proposed by
Shen et al. [24] for fusing multi-exposure camera images. To
the best of our knowledge, discrete optimization techniques
have not been used for echocardiographic images to date. In
this paper, we propose a generalized RW formulation (GRW)
for multi-view ultrasound image fusion using ultrasound con-
fidence maps (UCM). UCMs have been used to provide
pixel confidence estimates for applications such as shadow
detection, 3D freehand ultrasound reconstruction and multi-
modal image registration [25]. The probability map proposed
in this paper is different from Karamalis et al. as we 1) define
pixel probability as inverse weights for floating nodes based on
distance from the focal point of ultrasound transducer, and 2)
we use second-order image features to estimate the presence
of tubular structures such myocardial boundaries and leaflets
based on the filter developed by Frangi et al. [26].

II. METHODOLOGY

An overview of the proposed image fusion technique is
shown in Figure 1. As shown in the figure, we align the
individual ultrasound volumes based on the positional infor-
mation obtained from the optical tracking system.The position
and orientation of the ultrasound probe were tracked using an
Optitrack (NaturalPoint, Corvallis, OR, USA) optical track-
ing system which had sub-millimeter precision. Our method
allows six degree of freedom (6 DOF) which captures trans-
lational and rotational components. As an initial calibration
the position of the ultrasound probe w.r.t a global coordinate
system was obtained by scanning the probe using a laser
scanner (Kreon Technologies, Limoges, France), which was
calibrated to an expected accuracy of 57 µm. The spatial trans-
formations required to align the image were computed using
the approach mentioned in Punithakumar et al. [12]. Upon
obtaining spatially aligned images, we formulate image fusion
as an RW optimization problem and introduce pixel-wise
information as a UCM. The UCM assigns higher confidence
values to pixels that are closer to ultrasound focus and closer
to transducer axis. The confidence values are also increased

based on the presence of second order (ridge-like) features.
The formulations for the GRW and UCMs are described below.

Optical tracking cameras

Random Walker
Fusion

Volume from
position 1

Volume from
position 2

Fused
volume

Fig. 1. Schematic representation of the proposed echocardiography fusion
system using optical tracking system for spatial alignment and generalized
random walker for final image intensity computation.

A. Ultrasound Confidence Maps (UCM)

The UCM gives a pixel-wise likelihood estimate ranging
from 0 to 1 based on the location and neighbourhood infor-
mation of the pixel. We define UCM, Ui, as follows:

Ui = (df,i + da,i) exp (−αdo,i) exp (−βFi) (1)

where d represents the distance of point i from the focal point
f , nearest point to the axis of the transducer a and geometric
center of the transducer array o. These are defined using a
L2-norm such that:

df,i =
∥∥i− f∥∥2

da,i =
∥∥i− a∥∥2

do,i =
∥∥i− o∥∥2 (2)

Fi is a vesselness function computed based on eigen value de-
composition [26]. Using eigen values (λ1, λ2) of the Hessian
matrix H we define Fi as:

Fi =


0 if λ2 > 0

1− exp

(
λ1
λ2

)
+ exp (λ1 + λ2) if λ2 < 0

(3)
The Hessian matrix H is computed as the convolution of the
image I over the second order derivatives of a Gaussian filter
bank G which can be written as:

G(x, s) =
1

2π
s2 exp

(
−‖x‖

2

2s2

)
(4)

The term s represents the scale of the Gaussian filter, and it
was empirically set to 2. Similarly, the two free parameters,
α and β, were empirically chosen for the entire dataset.

B. Generalized Random Walker Formulation for Multiview
Image Fusion

The RW approach formulates fusion as a multi-labeling
problem. For a set of n images coming from multiple views
M = {I1, . . . , In} and set of labels L = {l1, . . . , ln} corre-
sponding to these views, RW algorithm finds the probability
p of each pixel in the fused image having a label l ∈ L. Note
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that we assume the images to be either registered or aligned
by tracking such that there is a one-to-one correspondence
between the pixel intensities in each image. The pixel intensity
in the fused image gfi can be calculated as the average of the
pixel intensities from the individual views gki weighted by their
probability pki .

gfi =
1

n

n∑
k=1

gi × pki (5)

The set of pixels in fused image F and corresponding labels
L are represented by nodes on an undirected graph G = (V,E)
where V = (F∪L) and E = F×L. The RW formulation finds
the probability that a random walker starting from an image
node Vf ∈ F reaches a particular label node Vl ∈ L. The
weights for the image edges and label edges are represented
by ωij defined as:

ωij =

{
exp (−(gi − gj)) ∀j ∈ F
exp (−(l − Ui)) ∀j ∈ L

(6)

where Ui is the pixel probability of pixel obtained from
the UCM. A schematic representation of a node in the GRW
formulation is shown in Figure 2.

w

L1L2

w
ij
(j
∈
L
)

wij(j ∈ F)

Fig. 2. Schematic representation of diagonally connected neighbourhood of
a node in the GRW formulation.

Based on the equivalence of RW formulation and electrical
networks described by Grady [23], we denote the node po-
tential of vi ∈ V as u(vi) . The total energy of the network
can then be described in terms of a quadratic functional of the
edge weights as:

E =
1

2

∑
(vi,vj)

ωij (u(vi)− u(vj))2 (7)

Grady [23] has shown that any harmonic function can
minimize the energy functional in (7). This harmonic function
can be efficiently computed using the Laplacian matrix L
which represents the edge weights as:

Lij =


di if i = j

ωij if (i, j) ∈ V
0 otherwise

(8)

The Laplacian matrix L can be rearranged using upper

triangular matrices LL, LX and R as:

L =

[ LL R
RT LX

]
(9)

As shown by Shen et al. [24], the solution to the combinatorial
Dirichlet problem in (7) can be solved by rewriting (7) in
matrix form as :

E =

(
uL
uX

)T
[ LL R
RT LX

](
uL
uX

)
(10)

where uL = (u(l1) ...u(lk)) represents the label nodes and
ux = (u(x1) ...u(xN )) represents the image nodes.The mini-
mum energy solution of (7) can be obtained by setting∇E = 0
in equation (10) and solving for :

LXuX = −RTuL (11)

The estimated contribution pki of an individual view k for a
pixel location i can be found by solving k such combinatorial
formulations.

The ultrasound image acquisition setup and quantitative
metrics used for evaluation are explained next.

C. Data Acquisition
In this study, we acquired 18 three-dimensional ultrasound

(3DUS) volume pairs of echocardiography data from 6 healthy
volunteers. All sequences were acquired on a Philips iE33
ultrasound scanner (Philips Healthcare, Best, The Netherlands)
using an X3-1 matrix array transducer. The protocol was
approved by the Health Research Ethics Board of the Univer-
sity of Alberta, and informed consent was obtained from all
volunteers. Volume rates were varied from 7 to 34 per cardiac
cycle. Each 3DUS volume constituted of 176 × 176 × 208
pixels with resolutions in the range of (74 × 74 × 63) to
(85×85) mm in x, y, and z coordinate directions, respectively.
During scanning, the ECG from the ultrasound scanner was
transmitted and read using an NI USB-6009 digitizer. We
also developed a software module to detect the R-wave using
LabVIEW so as to ensure that volumes correspond to similar
points in the cardiac cycle. A test data set of 60 2D images
was randomly sampled from the 3D volumes for quantitative
evaluation.

D. Metrics for Quantitative evaluation of Image Fusion
In this study, we compared four fusion techniques - av-

erage fusion (AVG), maximum fusion (MAX), wavelet fusion
(WVL) and GRW fusion - using quantitative metrics. We used
four metrics for comparison - signal to noise ratio (SNR),
contrast to noise ratio (CNR), Wang-Bovik metric (Q0) [27]
and Piella metric (Q1) [28]. These metrics are calculated as
follows:

SNR =
µMY

µBP
(12)

CNR =
(µMY − µBP )

µBP
(13)

The subscripts MY and BP refer to myocardial and blood
pool regions selected around the contours as shown in Figure
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Fig. 3. A few examples of manual segmentation on individual slices
delineating the myocardial boundary and leaflets. Corresponding views are
shown pairwise in figures (a) and (b), and figures (c) and (d).

3. The terms µ and σ2 represent the mean and variance of
pixel intensities in the region.

In order to quantify the amount of features retained in the
fused image, we computed the Wang-Bovik metric (Q0) and
Piella metric (Q1). To calculate the Wang-Bovik metric, a
reference image R was chosen from the individual views v1
and v2 based on the segmentation masks. Given a reference
image R and fused image F the Wang-Bovik metric can be
calculated as:

Q0 =
4σRFµRµF

(µ2
R + µ2

F )(σ
2
R + σ2

F )
(14)

For the Piella metric Q1, we define a saliency feature η(w)
over a window w based on the ratio of mean to standard
deviation:

η(w) =
µ1/σ

2
1

(µ1/σ2
1) + (µ2/σ2

2)
(15)

Then, the Piella metric can be calculated as:

Q0(v1, v2, F ) =
1

‖W‖
∑
w∈W

(
η(w)Q0(v1, F )

+ (1− η(w))Q1(v2, F )
)

(16)

III. RESULTS

The images obtained in this study were spatially aligned
using optical tracking. The GRW fusion algorithm was imple-
mented in Matlab version 8.6 (R2015b). The execution time
for the algorithm was less than 10 seconds per ultrasound
image while running on a 3.2 GHz CPU. We manually
segmented the myocardial boundary and leaflets, examples
of which are shown in Figure 1. The SNR and CNR were
calculated by comparing the pixel intensities inside the mask
to pixel intensities in the immediate neighborhood. A reference
image Iref was created using the segmentation masks (shown
in Figure 3) which was then used to compute the Wang-
Bovik metric Q0. Similarly to compute the Piella metric
Q1 we defined a saliency feature based on the signal-to-
noise ratio inside the segmentation masks. An example of the
image fusion is shown in Figure 4. The GRW fusion gave
significantly higher values for all four indices, and it did not

Fig. 4. First row: Fused image slice from various fusion techniques (a) AVG
(b) MAX (c) WAV and (d) the proposed GRW, second row: Magnified view
showing the left-ventricle (LV), right-ventricle (RV), mitral valve, septum and
lateral-wall of the heart. Note the imaging artifacts shown by the asterisk (*)
in row 2b and c are considerably reduced in GRW fusion.

have pixelation artifacts in the fused image since the approach
does not involve transformation (as shown in row 2 of Figure
4). GRW fusion also considerably reduced the stitching which
can be clearly seen in other fusion techniques.

The quantitative indices - CNR, SNR, Q0, and Q1 for a
dataset of 60 images fused using each of the techniques is
compared in Table I. GRW gave higher values for all indices
calculated. The differences for all matrices were statistically
significant (at p < 0.01) when analyzed using a paired t-test
for CNR, SNR, and Q0.

The color map shows high probability pixels in blue and low
probability in red. As shown in Figure 5, pixels corresponding
to the cardiac structures were assigned to a higher probability
(dark blue) in the UCM. The impact of the free parameters α
and β on the ultrasound confidence map was also studied. As
shown in Figure 5, increasing the α value resulted in shrinking
the focal region (shown in blue). Similarly, when the β value
was increased, small echogenic structures were assigned to
higher probabilities in UCMs resulting in a grainy pattern.
As shown in Figure 5 optimal performance was obtained for
α = 1 and β = 2.

IV. DISCUSSION

In order to optimize the image quality of fused echocar-
diography datasets, we proposed a GRW formulation using
UCMs. Senor based fusion is a two-step process involving 1)
spatial alignment of images and 2) finding the optimal image
intensity of each pixel location in the fused image. The spatial
alignment determined using sensor position is independent of
image-overlap and image quality. In non-overlapping regions
of the fused image the image intensity from the single view
is retained. The proposed GRW formulation determines the
optimal pixel intensity in overlapping regions of the fused
image, and it was tested with datasets from volunteers for
the first time. Main advantages of the proposed technique,
when compared to existing techniques, are that it accounts
for pixel neighborhood intensities and ultrasound transducer
characteristics (via the UCM).
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TABLE I
COMPARISON OF QUANTITATIVE INDICES FOR VARIOUS FUSION METHODOLOGIES, VALUES ARE REPRESENTED AS MEAN ± STANDARD DEVIATION.

GRW FUSION YIELDED THE BEST VALUE FOR ALL QUANTITATIVE MEASURES.

Fusion Method CNR SNR Q0 Q1

Average (AVG) 0.84± 0.04 7.11± 2.0 0.60± 0.1 0.72± 0.12
Maximum (MAX) 0.83± 0.04 6.96± 1.90 0.53± 0.14 0.80± 0.12
Wavelet (WAV) 0.84± 0.03 7.16± 1.94 0.70± 0.13 0.78± 0.14
Generalized Random Walker (GRW) 0.85± 0.03 7.42± 1.98 0.80± 0.15 0.82± 0.12

Fig. 5. Examples of slices from the fused image volume shown row-wise, first
row: (a), (b) individual views of heart and corresponding probability maps (c),
(d), Effect of free parameters on the UCM is illustrated in rows 2-3, which
show variation of and respectively.

The performance of the proposed fusion technique was
evaluated using CNR, SNR, Wang-Bovik metric (Q0) and
Piella metric (Q1). While CNR and SNR indicated image qual-
ity, Q0 and Q1 indicated the amount of relevant information
preserved in the fused image. Compared to other commonly
used fusion techniques such as AVG, MAX, and WAV, the
GRW gave higher values for all four quality indices: CNR,
SNR, Q0 and Q1. Also as demonstrated in Figure 3 the
fusion technique does not result in pixelation artifacts since the
approach does not involve transformation. We also observed
only a small number of stitching artifacts in the GRW fusion
when compared to AVG fusion where the effects of stitching
were apparent.

The proposed provides an ideal framework to seamlessly
integrate the various transducer characteristics such as focus-
ing as well as image features into the fusion algorithm. The
UCM provided a confidence estimate for each pixel in the
fused image, and these probabilities were used as label-edge
weights. As this formulation leaves the lattice structure of the
RW formulation intact, we could use the optimization schemes
mentioned by Grady [23]. Since cardiac structures such as
leaflets and the myocardial boundaries are seen as echogenic
tubular structures, the UCM assigned higher probabilities to

these structures.
Fusion methods have been proposed to overcome some

of the major hurdles which limit the more extensive use of
3D echo: the limited FOV and the limited image quality in
many patients. Over the last years, progress has been made to
develop techniques to accurately align 3D datasets obtained
from different positions on the chest. Recently our group has
reported a technique using optical tracking which was used
in this study to obviate the need for image overlap between
individual views and is also independent of image resolu-
tion. This is beneficial in echocardiography as the ultrasound
image volumes usually have high levels of speckle noise.
We were also able to fuse image volumes obtained at large
angular separation such as parasternal and apical views of
the heart which usually contain complementary information
[13]. The generalized random walker framework (GRW) using
ultrasound confidence maps (UCM) is another step towards a
clinically applicable 3D echocardiography fusion method.

The ultrasound scanning takes ≈ 5 seconds per volume
for a 4–beat acquisition but varies with the patients anatomy.
During the study, parasternal and apical views were acquired
within single breath-holds (within 10 to 15 seconds) as well as
multiple breath-holds (15 to 20 seconds). The optical tracking
runs simultaneously and does not introduce any additional
delay. The post-processing time was ≈ 10 seconds per image.
However, in order to fuse an entire cardiac cycle (with ≈30
frames), the algorithm might take a more significant amount of
time in which case GPU computation techniques would have
to be developed. In this study, we used data sets with large
variations in volume rate (7 to 34 per cardiac cycle). The low
volume rates correspond to single breath-holds and the higher
volume rates correspond to multiple breath-holds. We did not
notice any difference in the quality of fusion in both cases
which illustrates the robustness of the approach. Usually low-
volume-rate data sets are not used for clinical measurements
(such as ejection fraction) due to poor temporal resolution.

Although the fusion technique has been tested for cardiac
images, it could be extended to other organs like the carotid
artery, aorta, and 3-D fetal femur. Further, there are no
limitations on the number of views that can be fused. However,
we found that two spatially-apart views were sufficient to cover
the entire LV boundary.

One limitation of our study is that it was conducted on a
small number of subjects all of which were healthy volunteers
with relatively good acoustic windows. We have only acquired
still frames at breath-hold and effect of free breathing has
not been examined. An extension of this study to a more
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substantial number of subjects including patients with heart
disease is planned as a future work. Note that in this case, the
advantage of the FOV improvement could be more apparent.

On the technical aspect of limitations, the optical tracking
is restricted to line-of-sight [12]. During the experiment we
determined the optimal position of multi-camera system inside
the scanning room so as to minimize the line-of-sight issue. In
a separate study, we have examined the feasibility of magnetic
tracking on dynamic heart phantom [14], and in future, we plan
to test the magnetic tracking on healthy volunteers. One of the
limitations of all the fusion techniques described (including
ours) is that fast moving structures such as valves could be
duplicated in the fused image. Our future work would aim to
extend the proposed RW formulation to 3D so that we could
fuse complete 3D volumes instead of individual slices thereby
accounting for pixel information in the all three dimensions.
By extending the RW formulation to 3D we would also be
able to fuse full loops of ultrasound images which would be
beneficial in visualizing moving structures.

V. CONCLUSION

A new approach for echocardiography image fusion based
on generalized random walker formulation was introduced in
this paper. The new method was able to incorporate transducer
characteristics and image features into the fusion and showed
higher values for various image quality metrics than other
commonly used fusion approaches. The fusion technique also
reduced pixelation or stitching artifacts. We expect that this
technique could add substantial value to diagnostic echocar-
diography and we suggest further studies in patients.
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