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Abstract—In quantitative magnetic resonance T1 mapping, the
Variable Flip Angle (VFA) steady state spoiled gradient recalled
echo (SPGR) imaging technique is popular as it provides a series
of high resolution T1 weighted images in a clinically feasible time.
Fast, linear methods that estimate T1 maps from these weighted
images have been proposed, such as DESPOT1 and iterative re-
weighted linear least squares (IRWLLS). More accurate, non-
linear least squares (NLLS) estimators are in play, but these are
generally much slower and require careful initialization. In this
work, we present NOVIFAST, a novel NLLS-based algorithm
specifically tailored to VFA SPGR T1 mapping. By exploiting
the particular structure of the SPGR model, a computationally
efficient, yet accurate and precise T1 map estimator is derived.
Simulation and in vivo human brain experiments demonstrate
a twenty-fold speed gain of NOVIFAST compared to conven-
tional gradient-based NLLS estimators, while maintaining a
high precision and accuracy. Moreover, NOVIFAST is eight
times faster than efficient implementations of the VARPRO
method. Furthermore, NOVIFAST is shown to be robust against
initialization.

Index Terms—T1 mapping, Variable Flip Angle, SPGR,
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I. INTRODUCTION

Quantitative T1 mapping is a Magnetic Resonance Imaging
(MRI) technique that deals with the estimation of the spin-
lattice relaxation time (T1) in biological tissues [1]. The spin-
lattice relaxation time has proved to be an excellent biomarker
in a broad range of diseases, such as multiple sclerosis [2],
epilepsy [3] and Alzheimer’s disease [4]. Due to the large
spectrum of potential applications, there is an increasing
interest in turning quantitative T1 mapping into a mature and
robust MR modality that can be routinely used in clinical
practice. In this effort, the longstanding goal is to provide
accurate high resolution spatial maps of T1 in a short time
frame [5]. To that end, a plethora of T1 mapping techniques
has been proposed during the last decades (see [6] for a
recent review). Among them, the Variable Flip Angle (VFA)
technique, also known as the variable nutation angle method,
has gained increasing popularity [5]. This is mainly due to
its superior time efficiency compared to other T1 mapping
techniques, such as the traditional Inversion Recovery (IR)
technique [6].

VFA T1 mapping consists of the acquisition of a range
of steady state spoiled gradient recalled echo (SPGR) MR
images over a set of flip angles [7]–[9]. Since steady state MR
sequences can use much shorter repetition times (TR) [10] than
classical inversion/saturation recovery sequences, high resolu-
tion T1 maps can be acquired in real-time clinical acquisition
[5]. Importantly, the fact that the SPGR signal model can be
easily linearized, an observation which dates back to 1977
[11], has encouraged researchers to develop fast linear T1
estimation algorithms [5], [12], rendering the estimation time
of the T1 map negligible in comparison to the acquisition time.
With such computationally inexpensive algorithms, real-time
high resolution T1 mapping can be achieved. The simplic-
ity and efficiency of the T1 estimation step are among the
main reasons why VFA T1 mapping has drastically grown in
popularity, with DESPOT1 (Driven Equilibrium Single Pulse
Observation of T1) being the most widespread algorithm [5].
Unfortunately, the price to pay with such linear estimators is
a loss of accuracy, since the linearization of the SPGR model
becomes inexact in the presence of noise, thereby introducing
a noise-induced bias. For that reason, some researchers still
adhere to more accurate non-linear least squares (NLLS)
estimators, which can be shown to have optimal statistical
properties for clinically achievable signal-to-noise ratio (SNR)
[13]. However, NLLS estimators require the use of non-linear
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optimization algorithms, which are typically much slower than
linear algorithms, can be difficult to implement, and are prone
to convergence issues if not properly initialized.

Encouraged by such an apparent trade-off between speed
and statistical optimality, we present a novel NLLS iterative
optimization algorithm for VFA T1 mapping which combines
the best of both worlds: high accuracy and precision in a low
computation time. The method, which we dubbed NOVIFAST
(being an acronym for NOn-linear VarIable Flip Angle data
baSed T1 estimator), shares the same favorable statistical
properties as the de facto standard NLLS optimization algo-
rithm, the Levenberg-Marquard (LM) algorithm, and Variable
Projection (VARPRO)-based methods, but with a much lower
computation time, being comparable to that of DESPOT1.

In particular, the contributions of this work are: 1) VFA
T1 mapping is formulated as an NLLS optimization problem
that can be iteratively solved as a two-by-two linear system,
constituting a fixed-point algorithm (NOVIFAST). Due to
its formulation, NOVIFAST turns out to be very easy to
implement, and computationally highly efficient.

2) We prove that, with noiseless SPGR data, NOVIFAST is
an exact method. That is, it provides the T1 estimates with zero
error in the first iteration, no matter which initial values are
used. This is an important result since it explains the excellent
convergence of the method at clinically realistic (high) SNR
levels. 3) We provide evidence of the remarkable convergence
characteristics of NOVIFAST even for low SNR under the
framework of fixed-point algorithms theory.

Monte-Carlo (MC) based simulations are used to eval-
uate NOVIFAST’s performance and compare it with that
of NLLS optimization algorithms (i.e., the Gauss-Newton
(GN) algorithm, the LM algorithm, and VARPRO-based meth-
ods), DESPOT1, and the Iterative Re-Weighted Linear Least
Squares (IRWLLS) method proposed by Chang et al. [12].
Finally, NOVIFAST is validated with a set of in-vivo human
brain SPGR MR images.

The structure of the remainder of the paper is as follows.
In Section II, the SPGR signal model is described as well as
the most popular VFA T1 mapping algorithms. In Section III,
the complete derivation of NOVIFAST is given and its con-
vergence properties are presented. Experiments are described
in Section IV and the corresponding results are presented
in Section V. Next, extensions of NOVIFAST are described
(Section VI), and the main conclusions are summarized at the
end of the paper (Section VII).

II. BACKGROUND

A. SPGR signal model

The VFA SPGR method for T1 mapping is based on the
acquisition of a set of MR images where the images are
acquired with different/variable non-zero flip angles (FAs),
but constant repetition time (TR) and echo time (TE). Since
the images are differently T1-weighted, T1 mapping can be
performed by voxel-wise fitting a prescribed mathematical
model to the set of MR images. A very popular model for

the noiseless (magnitude) steady-state SPGR signal intensity
{sn}Nn=1 is [14]:

sn(K,T1) =
K(1− e−

TR
T1 ) sin(αn)

1− e−
TR
T1 cos(αn)

, for n = 1, ..., N, (1)

where {αn}Nn=1 denotes the FAs, with αn 6= 180◦ for
every n, and N is the total number of FAs used (or images
collected). The unknown parameter K > 0 includes multi-
plicative factors such as the longitudinal component of the net
nuclear magnetization vector, and the attenuation due to T ∗2
relaxation for a fixed TE [14]. In reality, the signal {sn}Nn=1

is always corrupted by noise. Therefore, the measured noisy
SPGR samples yn, for n = 1, ..., N , can be considered as
realizations of random variables whose distribution depends
parametrically on K and T1. Given a set of samples {yn}Nn=1,
inferring the values of the unknown underlying T1 and K
(assuming TR and αn to be known) is an estimation problem.
A wide variety of estimators may be defined. In this work,
we focus on the ordinary, i.e., unweighed, NLLS estimator, as
well as heuristic linear least squares (LLS) estimators, since
these types of estimators are the most popular ones in VFA
T1 mapping. In the succeeding section, we review the most
common NLLS optimization algorithms to solve the NLLS
estimation problem, as well as the heuristic linearized variants.
We discuss their pros and cons, after which we present our
novel NLLS method.

B. NLLS estimation problem

For a given data set {yn}Nn=1, the ordinary NLLS estimator
is defined as

{K̂, T̂1} = argmin
K,T1

N∑
n=1

(
yn − sn(K,T1)

)2
. (2)

Such an optimization problem cannot be solved analytically
and hence one has to resort to numerical algorithms. A
straightforward approach to find K̂ and T̂1 would be to
discretize the search space of both K and T1, and then
reformulate the problem as a discrete optimization problem.
In other words, the cost function of Eq. (2) is evaluated in a
sufficiently dense grid, given by a user-defined resolution, and
then, the minimum value is retained. This technique is called
brute force grid search. It should be noted that brute force
grid search may be computationally inefficient since the range
of values of the parameter K may be relatively large, thereby
resulting in a prohibitive number of cost function evaluations.
For model-based MRI relaxometry, such as VFA T1 mapping,
it is much more common to tackle the original optimization
problem in its native continuous domain. By far, the most
common line of action is to employ optimization algorithms
that attempt to find the local minima with gradient-based
techniques. Perhaps, the main representative of this class of
algorithms is the full Newton algorithm [15]. A downside
of this algorithm is that it is considerably time consuming
due to the need of line searches and the computation of
the Hessian matrix. To solve NLLS estimation problems, it
is often better to exploit the quadratic structure of the cost
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function, as is done by the celebrated Gauss-Newton (GN)
and Levenberg-Marquard (LM) algorithms [16], [17], which
are, by far, the most popular NLLS optimization algorithms.
Both algorithms are briefly reviewed below.

1) Gauss-Newton (GN):
Let us define r(K,T1) = (r1(K,T1), ..., rN (K,T1))

T , where
rn(K,T1) = yn− sn(K,T1) are the so-called residuals of the
NLLS problem. The GN algorithm can be derived by linearly
approximating r(K,T1) around a given estimate (Kk, T k1 )
[15],

r(K,T1) ≈ r(Kk, T k1 ) + Jr(K
k, T k1 )∆, (3)

where Jr(K
k, T k1 ) is the Jacobian matrix of r(·, ·), evaluated

at (Kk, T k1 ). The vector ∆ = (K,T1)
T −(Kk, T k1 )

T is called
the step vector. After substituting Eq. (3) into Eq. (2), and
equating the gradient of the cost function with respect to ∆
to zero, we arrive at the normal equations:

J̃r(K
k, T k1 )∆ = −Jr(K

k, T k1 )
T
r(Kk, T k1 ), (4)

with J̃r(K
k, T k1 ) = Jr(K

k, T k1 )
T
Jr(K

k, T k1 ). Provided
J̃r(K

k, T k1 ) is non-singular, a condition implicitly assumed in
the GN algorithm, the step vector can be obtained analytically
for each iteration, which, for the dimensions of the problem
at hand, can be done with a negligible computational effort.
The GN algorithm can also be interpreted as an inexact full
Newton algorithm where the Hessian matrix is approximated
to avoid the computational burden [15]. The GN algorithm
works well close to the minimum, however, it may not
converge at all if it is not initialized properly [17], [18].
Rigorous conditions to prove local convergence1 are given
in [19].

2) Levenberg-Marquardt (LM):
The LM algorithm [16], [17] can be seen as a generalization of
the GN algorithm. Like GN, the LM algorithm can be derived
from the normal equations (Eq. (4)), but this time J̃r(K

k, T k1 )
is modified to

J̃r(K
k, T k1 ) + λdiag

(
J̃r(K

k, T k1 )
)
, (5)

where λ is a user-controlled parameter which may be updated
at each iteration, and diag

(
J̃r(K

k, T k1 )
)

is a diagonal matrix
whose entries are the elements on the diagonal of J̃r(K

k, T k1 ).
When λ→ 0, the calculated step vector ∆ approaches the GN
step obtained by solving Eq. (4). When λ→∞, ∆ approaches
a gradient-descent step where each component is weighted
according to diag

(
J̃r(K

k, T k1 )
)
. In a typical implementation,

λ is set to a non-zero value at initial iterations. For finite λ
values, it is not guaranteed that the iterates (Kk+1, T k+1

1 )
T
=

(Kk, T k1 )
T
+ ∆, decrease the cost function, therefore, this

condition is always checked in the implementation of the LM
method. If the descent-property is not fulfilled, λ is increased,

1In optimization theory’s parlance [19], [20], local convergence means
that convergence is assured if the initial approximation is close enough to
a stationary point. In contrast, global convergence implies convergence for
any arbitrary initialization. Note that this terminology does not deal with the
character of stationary points, e.g., local/global minima, but just refers to
convergence to stationary points.

and the normal equations are again solved till the step ∆
assures a decrease in the cost function. If the descent property
is fulfilled, iterates are updated and the value λ is reduced.
Therefore, the LM algorithm behaves as a modified gradient-
descent method at early iterations, but mimics GN as it gets
closer to the minimum (λ is decreased towards zero). LM
is slightly more computationally demanding than GN, but
it converges for initializations that are far away from the
solution, where GN often fails [17]. In this sense, LM shows
global convergence properties and is therefore the preferred
method of choice in common NLLS problems.

C. VARiable PROjection method (VARPRO)

Let us write Eq. (1) as sn(K,T1) = Kgn(T1) with

gn(T1) =
(1− e−

TR
T1 ) sin(αn)

1− e−
TR
T1 cos(αn)

, for n = 1, ..., N, (6)

and let us focus on the optimization problem (Eq. (2)), which
now takes the expression

{K̂, T̂1} = argmin
K,T1

N∑
n=1

(
yn −Kgn(T1)

)2
. (7)

By virtue of the Hilbert projection theorem [21], independently
of the value of T1, one can prove that K̂ is always given by

K̂(T1) =

∑N
n=1 yngn(T1)∑N
n=1 g

2
n(T1)

. (8)

By inserting Eq. (8) into Eq. (7), Eq. (7) reduces to a one-
dimensional optimization problem:

T̂1 = argmin
T1

N∑
n=1

(
yn − K̂(T1)gn(T1)

)2
. (9)

It can be demonstrated that solving Eq. (9) and then calcu-
lating K̂(T̂1) provides the same result as that obtained by
solving Eq. (7) directly [22], [23]. This approach is known
as the VARiable PROjection method (VARPRO) [22]. The
VARPRO method has been used in several MRI relaxometry
applications, not only in VFA T1 mapping [24]–[27], and is
particularly appealing since it reduces the optimization prob-
lem to a simpler one-dimensional problem. While derivative-
based algorithms that find the stationary points can be used
[28], it is more common to use derivative-free algorithms that
search for the global minimum directly, such as brute force
grid search [24], [25], [27] or more efficient iterative methods
such as the golden-section search, which require a substantially
fewer number of cost function evaluations to get the same
result [26].

D. Heuristic linearized variants

Both GN and LM make use of the quadratic expression
of the NLLS cost function but, as general-purpose NLLS
algorithms, they do not consider the particular structure of the
SPGR signal model described by Eq. (1). Indeed, by dividing
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both sides of Eq. (1) by sin(αn), and then rearranging the
equation, it can be shown that Eq. (1) can be written as [11]:

sn
sinαn

= c2
sn

tanαn
+ c1 for n = 1, ..., N, (10)

with
c1 = K(1− e−TR/T1), c2 = e−TR/T1 . (11)

and where it has been assumed that αn 6= 90◦ and αn 6= 270◦

in order for tanαn to be well-defined. The linear relation of
Eq. (10) (w.r.t. c1 > 0 and c2 > 0) is substantially exploited
in several LLS-based algorithms, which we briefly review
hereunder.

1) DESPOT1:
The DESPOT1 algorithm, proposed by Deoni et al. [5], aims
to estimate c1 and c2 in a linear regression framework. Indeed,
in the absence of noise, sn

tanαn
may be considered as the

regressor variables and sn
sinαn

as the regressand counterparts.
In the noisy case, {sn}Nn=1 is not observable and hence
DESPOT1 replaces {sn}Nn=1 by {yn}Nn=1, after which c1 and
c2 are estimated by linear least squares (LLS) regression.
DESPOT1 presents the lowest computational cost since it is
an analytical estimator (i.e., it gives the estimates in a closed-
form expression). However, as it strongly relies on the linear
relation described by Eq. (10), and this relation no longer holds
when {sn}Nn=1 is replaced by {yn}Nn=1, a bias is introduced,
which becomes more pronounced at low SNR [29].

2) Iterative Re-Weighted Linear Least Squares (IRWLLS):
To increase the accuracy of DESPOT1, Chang et al. [12]
suggested to include a weighting function for each of the
samples n = 1, ..., N . The linear regression approach is then
transformed into a weighted linear regression approach, where
the weights are derived based on uncertainty propagation
theory. Since the optimal weights depend on the parameters
to be estimated, Chang et al. proposed an iterative approach
where the parameters c1 and c2 are estimated using a weighted
linear least squares estimator of which the weights are up-
dated iteratively. This iterative re-weighted linear least squares
(IRWLLS) method effectively outperforms DESPOT1 in terms
of accuracy. However, there is no guarantee that the final
estimates share the same optimal properties as a pure NLLS
approach. Furthermore, convergence of the iterative procedure
is not guaranteed. Consequently, the algorithm may in fact
diverge.

III. METHOD

NOVIFAST is derived directly from the NLLS problem
(Eq. (2)), and should thus be classified as an NLLS optimiza-
tion algorithm. Interestingly, in its derivation, the particular
structure of the SPGR model is exploited, which resembles
the approach that was used in the linearized, but sub-optimal
DESPOT1 and IRWLLS algorithms. This way, NOVIFAST
combines the best of both worlds: the accuracy/precision of
NLLS estimators and the computational speed of heuristic
linear algorithms. Since NOVIFAST is not a general-purpose

NLLS-based algorithm, we present its complete derivation
below. In Section III-B, the main features of the algorithm
are described and its pseudo-code is presented. Convergence
properties are briefly covered in Section III-B and thoroughly
studied in Section I-B of the supplementary file which accom-
panies this paper.

A. Derivation of NOVIFAST: exploiting the structure of the
SPGR model

Let us denote by L(K,T1) the cost function that is sought to
be minimized in Eq. (2). We then formalize the change of vari-
ables given in Eq. (11) with the definition of a two-dimensional
vector-valued mapping, ΦTR : R+×R+ 7→ R+× (0, 1), given
by

ΦTR(K,T1) =
(
K(1− e−TR/T1), e−TR/T1

)
. (12)

We call the first component of ΦTR(K,T1) as c1, whereas the
second component is denoted as c2. The mapping ΦTR(K,T1)
is a bijection between R+×R+ and C = R+×(0, 1). In other
words, given any pair of points c1 and c2 that lie in C, there
is a unique combination of K and T1 such that (c1, c2) =
ΦTR(K,T1). The inverse mapping, Φ−1TR (c1, c2) : C 7→ R+ ×
R+, has the expression of

Φ−1TR (c1, c2) =

(
c1

1− c2
,− TR

log c2

)
. (13)

Let us then reparameterize L(K,T1) in terms of the new
variables c1 and c2, that is,

L(K,T1)|(K,T1)=Φ−1
TR (c1,c2)

, (14)

where now S(c) , L(K,T1)|(K,T1)=Φ−1
TR (c1,c2)

, with c =

(c1, c2)
T , is the new cost function, that is,

S(c) =
N∑
n=1

(yn − sn(c))2, (15)

with
sn(c) =

c1 sin(αn)

1− c2 cos(αn)
, for n = 1, ..., N. (16)

With this change of variables, we can derive the NLLS
estimate of c by solving

ĉ = argmin
c
S(c), (17)

and then obtain K̂ and T̂1 with Φ−1TR (ĉ1, ĉ2). Indeed, the
equivalence of the global minimum of Eq. (2) and Eq. (17) can
be demonstrated as follows: by definition of global minimum,
we have that S(ĉ) ≤ S(c) for all c ∈ C. Let us call
(K∗, T ∗1 ) = Φ−1TR (ĉ1, ĉ2), and let us pick any point (K,T1)
in R+ × R+. Since we know that ΦTR(K,T1) is a bijection,
we have that (K,T1) = Φ−1TR (c1, c2) for some c = (c1, c2)

T .
Therefore, we have that

L(K,T1) = S(c) ≥ S(ĉ) = L(K∗, T ∗1 ), (18)

which automatically implies that (K∗, T ∗1 ) is the global min-
imum, that is K∗ = K̂ and T ∗1 = T̂1 in Eq. (2). Now that
we have demonstrated that minimizing the cost function with
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respect to c1 and c2 is equivalent to minimizing it with respect
to K and T1, let us put our efforts into the new optimization
problem of Eq. (17). The first-order conditions necessary to
locate the stationary points of S are:

∂S
∂c1

= 2
N∑
n=1

(
yn − sn(c)

) sinαn
1− c2 cosαn

= 0 (19)

∂S
∂c2

= −2
N∑
n=1

(
yn − sn(c)

) sn(c) cosαn
1− c2 cosαn

= 0. (20)

The NLLS estimate, by construction, must fulfill this system
of non-linear equations. In principle, the complexity to solve
Eqs. (19–20) makes this approach unattractive, and probably
that is the main reason that existing NLLS optimization
algorithms for VFA T1 mapping do not attempt to follow this
line of thinking. However, the particular structure of sn(c), a
rational function of sines and cosines, in combination with
certain algebraic rules, as those exposed by Dimitrov and
Kamenski for rational functions in chemical kinetics [30],
yields a surprisingly simple set of non-linear equations, which
can be solved iteratively. Indeed, if we substitute sn(c) in
Eq. (19) by its rational expression (Eq. (16)), and use the term
1 − c2 cosαn as common denominator, which is never zero,
we get

N∑
n=1

yn(1− c2 cosαn)− c1 sinα
(1− c2 cosαn)2

sinαn = 0. (21)

By rearranging terms, Eq. (19) can be written as

c1

N∑
n=1

sin2 αn

(1− c2 cosαn)2
+ c2

N∑
n=1

yn sinαn cosαn

(1− c2 cosαn)2

=
N∑
n=1

yn sinαn

(1− c2 cosαn)2
. (22)

Similarly, Eq. (20) can be expressed as

c1

N∑
n=1

sn(c) sinαn cosαn

(1− c2 cosαn)2
+ c2

N∑
n=1

ynsn(c) cos
2 αn

(1− c2 cosαn)2

=
N∑
n=1

ynsn(c) cosαn

(1− c2 cosαn)2
. (23)

If we define the (N × 1) vectors a, ã, b, and z as

a =

(
y1 cosα1

1− c2 cosα1
,

y2 cosα2

1− c2 cosα2
, ...,

yN cosαN

1− c2 cosαN

)T

, (24)

ã =

(
s1(c) cosα1

1− c2 cosα1
,
s2(c) cosα2

1− c2 cosα2
, ...,

sN (c) cosαN

1− c2 cosαN

)T

, (25)

b =

(
sinα1

1− c2 cosα1
,

sinα2

1− c2 cosα2
, ...,

sinαN

1− c2 cosαN

)T

, (26)

z =

(
y1

1− c2 cosα1
,

y2
1− c2 cosα2

, ...,
yN

1− c2 cosαN

)T

, (27)

the previous system of non-linear equations is concisely
expressed as(

〈b, b〉 〈b,a〉
〈b, ã〉 〈a, ã〉

)
︸ ︷︷ ︸

A(c)

(
c1
c2

)
︸ ︷︷ ︸

c

=

(
〈z, b〉
〈z, ã〉

)
︸ ︷︷ ︸

v(c)

, (28)

where 〈·, ·〉 is the usual inner-product for vectors in Euclidean
spaces. Note that even though we have omitted the dependence
on c in the definition of Eqs. (24–27), the 2 × 2 matrix
A(c) depends on the linear coefficients, and the 2× 2 vector
v(c) does so as well. Eq. (28) is the basis of NOVIFAST.
Although the equation is non-linear in c, it resembles a purely
linear system. If the variation of A(c) and v(c) w.r.t. c were
negligible, a simple 2×2 inversion technique would suffice to
find the solution of Eq. (28). Since this is not the case, a natural
approach is to solve it iteratively, thereby still exploiting the
semi-linear structure. We propose an iterative technique where,
given that A(c) and v(c) are known, c is solved linearly, after
which A(c) and v(c) are updated with the new guess. The
repetition of those two steps constitutes our algorithm, which
we dubbed NOVIFAST.

B. NOVIFAST: algorithm definition

Equations of the form A(c)c = v(c) often appear in
discretization schemes for time differential equations [31]. A
common method for its solution is what is called a semi-
implicit technique [31]: an iterate ck derived from the k-th
iteration is used to evaluate A(c) and v(c), and the following
linear equation w.r.t. ck+1 is solved:

A(ck)ck+1 = v(ck). (29)

Cramer’s rule [32] allows us to obtain ck+1 explicitly:

ck+1
1 =

∣∣∣∣∣∣
〈z, b〉 〈b,a〉

〈z, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
, ck+1

2 =

∣∣∣∣∣∣
〈b, b〉 〈z, b〉

〈b, ã〉 〈z, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
, (30)

where | · | denotes the determinant of a matrix, and we have
made the assumption that the denominator of both expres-
sions is non-zero for every c ∈ C. In Section II-A of the
supplementary file we elaborate on this assumption. We are
then ready to define the NOVIFAST algorithm through the
following pseudo-code (Algorithm 1):

Algorithm 1 Pseudo-code of NOVIFAST.

1: Given parameters: TR and flip angles {αn}Nn=1

2: Initial values: Kini and T1ini
3: c01 ← Kini(1− exp (−TR/T1ini))
4: c02 ← exp (−TR/T1ini)
5: k ← 0
6: ck ← (ck1 , c

k
2)
T

7: while convergence criterium is not met do
8: Solve Eq. (29) with the solutions given in Eq. (30)
9: k ← k + 1

10: end while
11: return K̂ = ck1/(1− ck2) and T̂1 = −TR/log ck2

Below, we pinpoint some of the most interesting properties
of NOVIFAST.
• Convergence points are roots of Eqs. (19–20)

If NOVIFAST converges to some c?, it is necessarily a
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root of Eqs. (19–20). To see this, one only needs to take
limits when k → ∞ on both sides of Eq. (29), and use
the fact that both A(c) and v(c) are continuous functions
of c. Hence, limit point c? meets A(c?)c? = v(c?),
and it is a solution of Eq. (28), or equivalently a root
of Eqs. (19–20). Therefore, the algorithm is well defined.

• Good convergence properties
With NOVIFAST, the only required stopping criterion
is to check that the norm of the difference between
consecutive iterates is below a fixed tolerance. There
is no need to assure the descent property. This is an
advantage in terms of computation time when compared
to descent-based algorithms such as GM or LM. Indeed,
we have corroborated with MC simulations that for
realistic SNR values and typical ground-truth T1 values
in white and gray matter, the sequence ck lies in a
closed subset of C with probabilities near to 100%
(being 95% the worst case for extremely low SNR). This
experiment is described in Section I-B.1 and II-B.2 of
the supplementary file. A closed subset of C, together
with the l2 norm, define a complete metric space, which,
by definition, implies that if limk→∞ ||ck+1 − ck||2 = 0,
then limk→∞ ck = c?, which, as we have seen,
is a root of Eqs. (19–20). The conditions to meet
limk→∞ ||ck+1 − ck||2 = 0 are thoroughly studied
under the framework of fixed-point algorithms theory.
Convergence conditions are empirically checked in
Section II-B of the supplementary file as well, where it
is shown that they hold with probabilities near to 100%
for realistic clinically achievable SNRs.

• Low cost per iteration
The cost per iteration of NOVIFAST is low, since it
amounts to calculate two quotients of determinants of
just 2 × 2 matrices. The cost per iteration is similar to
that of IRWLLS, and also to the total cost of DESPOT1.
Importantly, NOVIFAST aims to get the NLLS estimates
(see first bullet point), whereas both IRWLLS and
DESPOT1 are modified heuristic algorithms.

• Robustness and high convergence rate
NOVIFAST is rather insensitive to initial values Kini
and T1ini, and convergence is usually reached within 2-4
iterations with the same tolerance criterion as LM or GN
algorithms. This makes NOVIFAST an ideal algorithm to
be used in practice. Like LM and VARPRO, NOVIFAST
shows global convergence properties, but it converges
considerably faster. This is in agreement with results
provided in [33], and also with those of our previous
work [34]. In Section I-B of the supplementary file, we
provide evidence for these claims, and we experimentally
check the conditions with an MC analysis in Section
II-B of the same document.

• Simplicity
NOVIFAST does not need any tuning parameter in con-
trast to LM, and its implementation is straightforward.

C. NOVIFAST as an exact, analytical method

It is not difficult to demonstrate that in the noise-
free case, that is, when yn = sn, the NLLS es-
timates coincide with the ground-truth values, and that
they can be obtained analytically. Indeed, in the noise-
less case, the ground-truth value cGT = (c1GT, c2GT)

T
=

(KGT(1− exp (−TR/T1GT)), exp (−TR/T1GT))
T is the global

minimum of S since we have yn = sn , sn(cGT), thus
S(cGT) = 0. Due to the linear relationship of Eq. (10), cGT
can be linearly expressed in terms of just two samples from
{sn}Nn=1. Since the NLLS estimate is equal to cGT, it can also
be expressed this way, and thus K̂ and T̂1 can be derived
as a closed-form expression. Therefore, in the absence of
noise, DESPOT1 becomes an exact method, but it is not clear
what happens with iterative algorithms, since GN, LM, and
VARPRO, by design, do not exploit the particular structure
of the SPGR signal. Remarkably, in the absence of noise,
and due to the semi-linear structure of Eq. (28), NOVIFAST
becomes an exact and analytical method as well, in the sense
that it provides the ground-truth values with just one iteration.
Observe that this is not true for GN, LM, and the VARPRO
method. Indeed, for noiseless data, the following relations can
be shown to be true:

〈z, b〉 = c1GT〈b, b〉+ c2GT〈b,a〉 (31)
〈z, ã〉 = c1GT〈b, ã〉+ c2GT〈a, ã〉. (32)

If we substitute 〈z, b〉 and 〈z, â〉 in the numerators of Eq. (30)
by the expressions of Eqs. (31–32), and we make use of
determinant properties, it is possible to prove that ck+1

1 = c1GT
and ck+1

2 = c2GT for k = 0, 1, .... The interested reader
may find the mathematical proof of this result in the sup-
plementary file which accompanies this paper (Section III).
In short, NOVIFAST shares with DESPOT1 that just one
iteration is needed to provide the ground-truth parameters.
This correspondence with DESPOT1 may be useful to bet-
ter understand the convergence behavior of NOVIFAST in
realistic conditions, when noise is present. Of course, we
remark that in such real conditions, DESPOT1 is not optimal
whereas NOVIFAST is a truly NLLS-based algorithm. For
instance, as is shown in Section II-B of the supplementary
file, NOVIFAST’s convergence conditions are very likely to
hold at clinically achievable SNR values, and the number of
iterations required to reach convergence decreases with the
SNR. This is not surprising since we already know that in the
asymptotic case of an infinitely high SNR NOVIFAST must
be an exact and analytical algorithm. In contrast, there is no
theoretical reason why the GN algorithm, the LM algorithm or
VARPRO method would require fewer iterations to converge
when the SNR increases.

IV. EXPERIMENTS

We validated NOVIFAST with Monte Carlo (MC) simula-
tion and in vivo human brain experiments. For the simulation
experiments, we generated noisy SPGR magnitude data yn,
n = 1, ..., N , as realizations of statistically independent
random variables that follow a Rician distribution, where the
signal parameter is given by sn(KGT, T1GT), with KGT and
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T1GT the ground-truth K and T1 values, respectively, and
the noise standard deviation is denoted by σ. We employed
the Rician distribution model since it is the most common
statistical model for magnitude MR images, in both single
and multi-coil acquisitions [13], [35], [36]. The noise standard
deviation σ is parameterized as σ = KGT/SNR90◦ , with
SNR90◦ the maximum SNR per pixel for an image acquired
with an FA of 90◦ and TR > 6× T1 [37].

Such a definition of the SNR is commonly used in other
works on VFA SPGR T1 mapping [12], [37]. However, for
better interpretation, we will additionally utilize the conven-
tional SNR that is used in quantitative MRI:

SNR =
1

N

N∑
n=1

sn
σ
. (33)

We illustrate the performance of NOVIFAST with com-
mon sequence settings that are reported in the litera-
ture. We used a repetition time TR of 5 ms [37],
and two sets of FAs, namely {2◦, 9◦, 19◦} [37] and
{2◦, 3◦, 4◦, 5◦, 7◦, 9◦, 11◦, 14◦, 17◦, 22◦} [37], [38]. We de-
note the FA sets as AN=3 and AN=10, respectively.

A. MC simulation experiment with synthetically generated
SPGR MR signals

First, experiments with simulated SPGR MR signals were
set up to compare the performance of NOVIFAST in terms
of convergence and computational efficiency to that of GN,
LM, VARPRO, DESPOT1, and IRWLLS. To investigate the
convergence properties of GN, LM, and NOVIFAST, ideally
we could check whether the final iterates provided by all of
them truly correspond to the global minimum of the NLLS cost
function. However, this approach is infeasible since we would
need to do so for all possible noisy SPGR signals. Instead, we
followed a more modest approach which is common practice
when a new VFA T1 mapping algorithm is introduced. Since
convergence failure may introduce a bias in the final estimates,
and as this bias is not intrinsic to the NLLS estimator but rather
to the optimization algorithm, we could detect convergence
pathologies by analyzing those estimates. By using realistic
MC simulations, we assessed the statistical performance of
GN, LM, and NOVIFAST, as if they were considered as
different estimators.

All algorithms were run in Matlab, using both GN and
LM implemented within the Matlab function lsqnonlin.
Although both GN and LM have been described in the domain
of K and T1, we implement them in the c domain, with an ex-
act, analytical Jacobian. This provides a fair comparison with
DESPOT1, IRWLLS, and NOVIFAST, which are genuinely
conceived in the c domain. We set the initial value of λ in the
LM formulation to the recommended value in lsqnonlin.
IRWLLS, GN, LM, and NOVIFAST were halted with the
same tolerance criterion: the relative l2 norm between con-
secutive iterates was set to 10−6. The maximum number of
iterations was set to 1000. We implemented two versions of
the VARPRO method. In the first version, the global minimum
T̂1 was obtained using a brute force grid-search approach,
as implemented in [24], [25]. We denote this approach as

VARPRO-BRUTE. We used the acronym VARPRO-GSS for
the second implementation, where T̂1 is attained with the
golden-section search [26]. Both implementations used a grid
of T1 values between T1min-grid = 250 ms and T1max-grid = 3000
ms with a grid resolution (tol) of tol = 1 ms, as suggested in
[26]. With this settings, VARPRO-BRUTE requires 2751 cost
function evaluations.

The experiment setup for the MC simulation was the
following.

1) We chose either AN=3 or AN=10 as FA set.
2) We fixed KGT = 1 and generated ground-truth SPGR

signals, {sn}Nn=1, with ten different values of T1GT
logarithmically spaced between 500 ms and 2500 ms.

3) For each of the ten ground-truth signals {sn}Nn=1,
we generated NMC = 105 realizations of Rician dis-
tributed noisy signals {yn}Nn=1. For each noisy dataset,
SNR90◦ was selected among the following list of values:
{80, 150, 250, 300}. Those values are within the range of
SNR90◦ commonly used in similar MC-based analyses
in the literature [12], [37].

4) The five algorithms were run with the same input
datasets {yn}Nn=1. In order to check the influence of
initialization, we chose a constant initialization for all
range of T1GT. We studied the robustness of NOVIFAST
against the rest of the methods with respect to poor
initialization. To that end, we selected two different
configurations: 1) Kini = 0.5 and T1ini = 1000 ms, and
2) Kini = 0.5 and T1ini = 500 ms.

The computational time, in milliseconds, amounts the total
CPU time of the algorithms’ execution for given input data
{yn}Nn=1. All algorithms were run on an Intel R©Xeon R©CPU
E5-2680 v2 with 25 MB of cache clocked at 2.8 GHz.

B. MC simulation with synthetic 3D T1 phantom

Prior to validating NOVIFAST with in vivo SPGR MR
images, we conducted an MC-based simulation with a synthet-
ically generated set of SPGR MR images. We used realistic
SNR values achievable in practice, realistic ground-truth T1GT
and KGT maps (with a wider range of values than those in the
previous experiment, including T1 beyond that of white/gray
matter), and we mimicked clinically realistic noise conditions,
e.g., spatially variant noise maps. Specifically, several sets of
noise-free 3D SPGR MR images (following Eq. (1) with TR =
5 ms and with FAs given by the AN=10 FA set) were created
based on ground-truth T1GT and KGT maps. Those maps were
estimated from a simulated IR gradient recalled echo sequence,
with similar settings as those given in [39]. The size of both 3D
maps was 111 × 93 × 71 with an isotropic voxel size of 1.5
mm. Next, noisy Rician distributed images were generated,
similarly as in Section IV-A, but this time with a spatially
variant σ. We employed similar noise maps as those reported
in [40], and we scaled them so as to get spatially averaged
SNR90◦ values of 400 and 500 (and corresponding SNR values
of 12.3 and 15, respectively). Those values are within the range
of SNRs encountered in practice [41]. For each of those values
of SNR90◦ , NMC = 104 noisy realizations were generated.
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T1 maps were estimated by applying DESPOT1, IRWLLS,
LM, VARPRO-GSS, and NOVIFAST in a voxel-wise manner,
with a mask including only brain tissue voxels (Mvoxels =
212411 in total)2 Code parallelization was not performed, and
all algorithms were run with the same parameters as in the first
experiment, except VARPRO-GSS. Since the ground-truth T1
map contains values beyond gray matter, we used a wider
grid, namely T1min-grid = 250 ms and T1max-grid = 8000 ms
with the same grid resolution (1 ms). The algorithms that
require an initialization were initialized with constant K and
T1 maps. The initial values were Kini = 0.5 and T1ini = 1000
ms. Algorithms were stopped using the same criterion as in
the first experiment. For each algorithm, the total computation
time as well as the spatially averaged relative bias, standard
deviation (Std.), and rMSE were reported.

C. In vivo human brain set of SPGR MR images

A set of SPGR MR images of a healthy 29-year old male
volunteer was acquired with a 1.5T MRI scanner (MAGNE-
TOM Aera, Siemens) using a 20-channel head coil. For each
FA given in the AN=10 set, a 256×256×30 image (voxel size
1 × 1 × 5 mm3) was acquired with a 3D FLASH sequence.
The sequence parameters were: TR/TE = 7.8/3.48 ms and BW
= 320 Hz. B1 mapping was not performed. Magnitude images
were reconstructed with the GRAPPA and adaptive combine
method (acceleration factor of 2) [42], [43]. An SNR = 10
was estimated with the method of [44]. The total scan time
per FA was 45 seconds. In order to show that NOVIFAST
does not require a careful initialization, and can be initialized
with a constant map, we chose for all the algorithms that
require initialization T1ini = 500 ms and Kini = 1.9 · 103
(being the average value of the estimated K map obtained with
DESPOT1). Algorithms were stopped according to the same
criteria as used in the second experiment, and identical tunning
parameters were used. Similar to the previous experiment, all
algorithms were applied voxel-wise with a mask including
only brain tissue voxels (Mvoxels = 632260 in total). VARPRO-
BRUTE was applied with the same setting parameters as
VARPRO-GSS. As such, VARPRO-BRUTE requires 7751 cost
function evaluations per voxel, that is, Mvoxels ·7751 = 4.9·109
in total.

V. RESULTS

A. MC simulation with synthetically generated SPGR MR
signals

To avoid manuscript overlength, we only present the results
for the AN=10 FA set with initialization Kini = 0.5 and T1ini =
1000 ms. Results for Kini = 0.5 and T1ini = 500 ms, as well
as results for the AN=3 FA set (with both initializations), are
presented in the supplementary file. In Fig. 1, we show box-
plots for the T1 estimates obtained with the five algorithms

2Since VARPRO-GSS provided identical estimates as VARPRO-BRUTE,
but with a much shorter computation time, we did not apply VARPRO-
BRUTE in this experiment. Moreover, initial experiments showed that the GN
algorithm did not converge for most of the voxels in the phantom. Therefore,
we decided not to include GN in the MC experiment to avoid a drastic
increase in total time, which would have rendered the experiment infeasible
for NMC = 104 repetitions.

DESPOT IRWLLS GN LM VARPRO-BRUTE VARPRO-GSS NOVIFAST
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Fig. 2: Total computation time of each of the five optimization
algorithms for the MC simulation-based experiment (Case of
AN=10 FA set and fixed initialization of Kini = 0.5 and T1ini =
1000 ms).

under test. A box-plot-based visualization allows us to see
whether there exist statistically significant differences in the
population of the sample estimates of T1 [45]. In that box-plot
visualization, horizontal yellow lines, representing the values
of T1GT, are intentionally marked for ease of interpretation.
To illustrate the speed performance, the average computation
time is displayed in Fig. 2. Results for the second initialization,
both regarding the statistical performance and the computation
time, are presented in Fig. 9 and Fig. 10 of the supplementary
file.

A first, general observation that we can already point out
is that less accurate and precise T1 estimates are obtained
if heuristic linearized estimators, such as DESPOT1 and
IRWLLS, are employed. This can be attributed simply to the
statistical superiority of the NLLS estimator over modified
linear versions. It is true, though, that the difference becomes
less noticeable with increasing SNR, and is less drastic for
the AN=3 FA data set. The most interesting observations are
those related to GN, LM, VARPRO-BRUTE, VARPRO-GSS,
and NOVIFAST. From Fig. 1 it is clear that GN is sensitive to
initialization. The local-convergence behavior of GN evidently
degrades for T1GT > 1000 ms, yielding a systematic bias
which persists over the whole range of SNRs. Observe that for
T1GT > 1223 ms, the GN interquartile ranges (IQRs), covering
the middle 50% of the sample, do not cover T1GT. It can also
be observed that the corresponding IQRs are approximately
clustered around 1000 ms, i.e, T1ini, and the variability of the
estimates greatly reduces for that regime. Note as well that
the length of the GN boxes in Fig. 1(c) and Fig. 1(d) becomes
very small for T1GT > 1748 ms (see black arrows pointing
the boxes). This behavior is due to convergence failure, since
GN is stagnating at the initialization, as we observed in a
large number of MC realizations. This is also reflected by the
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Fig. 1: Box-plots of the T1 estimates that are obtained with the five SPGR VFA optimization algorithms. Tukey-style whiskers
are shown that extend to a maximum of 1.5 × IQR beyond each box, with IQR the interquartile range (corresponding with
the length of each box) [45]. Ground-truth T1 values are marked with horizontal yellow lines to ease interpretation (Case of
AN=10 FA set and fixed initialization of Kini = 0.5 and T1ini = 1000 ms).

method’s computation time in Fig. 2, which massively grows
for high T1GT, since GN was only stopped when it reached
the maximum number of iterations.

The LM algorithm and, especially, NOVIFAST present a
remarkable insensitivity to initialization, providing very simi-
lar results. Results presented in the supplementary file confirm
that the same conclusions hold when the second initialization
was employed. Indeed, in that case, NOVIFAST and LM
also manifest a substantial robustness to poor initial values
in contrast to GN, which starts to fail as soon as the value
of T1GT = 715 ms is reached. Both VARPRO-BRUTE and
VARPRO-GSS, as expected, present identical results, and the
statistical performance is nearly equal to that of LM and
NOVIFAST3.

Having shown that both LM and NOVIFAST have good
global convergence properties, and that their statistical per-

3Estimates with VARPRO-BRUTE and VARPRO-GSS show less variability
for high T1GT (observe that the top part of the whiskers are shorter than those
of LM and NOVIFAST) due to the maximum allowable value of the method’s
grid, 3000 ms in our implementation. It has nothing do with any intrinsic
feature of VARPRO that leads to statistical superior results.

formance is similar as VARPRO-BRUTE and VARPRO-GSS,
what distinguishes them is, as we have already mentioned,
their computational speed. Due to the negligible cost per-
iteration and the rapid convergence, the average computational
time of NOVIFAST is overall more than one order lower than
LM. Indeed, averaged over SNRs and T1GT, NOVIFAST is
20 times faster. Furthermore, NOVIFAST is much faster than
VARPRO-BRUTE (more than 200 times), and substantially
faster than the efficient VARPRO-GSS, 8 times.

This speed gain increases with SNR, since the number of
iterations needed for NOVIFAST to converge asymptomati-
cally decreases to one as the SNR approaches infinity, i.e.,
NOVIFAST, unlike LM, VARPRO-BRUTE, or VARPRO-
GSS, asymptotically approaches an exact, analytical estimator.
By observing Fig. 2, it is clear that NOVIFAST’s computa-
tional time is nearly constant, around 0.16 ms.

The reported computational time of NOVIFAST seems
similar to that of IRWLLS, but NOVIFAST’s statistical per-
formance is considerably higher. Indeed, being an heuristic
algorithm, convergence of IRWLLS in l2 norm does not imply
that the NLLS cost function is effectively minimized. Readers
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can check that the same conclusions that are drawn in this
subsection also hold for the AN=3 FA set (supplementary file).

B. MC simulation with synthetic 3D T1 phantom

The overall accuracy (bias), precision (Std.), RMSE and
computational time are shown in Table I and II for SNR90◦ =
400 and SNR90◦ = 500, respectively. Bias and RMSE maps
for one particular mid-axial slice are shown in Fig. 3 (for
the case SNR90◦ = 500). As expected, LM, VARPRO-GSS,
and NOVIFAST provide nearly identical accuracy, precision,
and RMSE. Nevertheless, NOVIFAST provides the NLLS
estimated 3D T1 map in about 23 s, whereas it takes around
10 min for LM and 3 min for VARPRO-GSS to do so. The
accuracy of NLLS-based algorithms is drastically higher than
that of DESPOT1 and IRWLLS (at least 6×) and the RMSE
is lower as well, confirming the statistical superiority of the
NLLS estimator over heuristic modifications. Finally, observe
that NOVIFAST is consistently faster than IRWLLS.

C. In vivo human brain set of SPGR MR images

Although we are not able to assess the statistical per-
formance of the five methods with real data, due to the
overarching issue of lacking a noise-free ground truth, inter-
esting observations can be made about convergence and total
computation time. Estimated T1 maps of a mid-axial slice is
shown in Fig. 4. A constant initial map is not an impediment
for NOVIFAST to estimate a reliable T1 map, which is not the
case for GN (observe the yellow arrow on the lowest part of the
brain, where the estimated T1 value remains constant and equal
to 500 ms). Interestingly, several outliers are manifestly clear
in the T1 map that was estimated with LM. They are located
on the boundary between cerebrospinal fluid and gray matter,
and are due to poor initialization. Indeed, if LM is initialized
with DESPOT1, those outliers are not present in the estimated
T1 map. No outliers were observed in the T1 maps estimated
with DESPOT1, IRWLLS, VARPRO-GSS, and NOVIFAST.

DESPOT1 and NOVIFAST are the only methods that can
provide this high resolution 3D T1 map in less than 1

TABLE I: Quantitative results obtained with DESPOT1,
IRWLLS, LM, VARPRO-GSS, and NOVIFAST, when esti-
mating a synthetic 3D T1 map (SNR90◦ = 400).

Bias [%] Std. [%] RMSE [%] Time [s]
DESPOT1 2.48 13.45 13.68 6.2
IRWLLS 3.13 11.45 11.87 31.4
LM 0.32 11.03 11.03 640.2
VARPRO-GSS 0.32 11.03 11.03 157.8
NOVIFAST 0.32 11.03 11.03 23.2

TABLE II: Quantitative results obtained with DESPOT1,
IRWLLS, LM, VARPRO-GSS, and NOVIFAST, when esti-
mating a synthetic 3D T1 map (SNR90◦ = 500).

Bias [%] Std. [%] RMSE [%] Time [s]
DESPOT1 1.58 10.38 10.5 6.2
IRWLLS 1.99 9.00 9.23 30.2
LM 0.24 8.80 8.81 637.8
VARPRO-GSS 0.24 8.80 8.81 156.9
NOVIFAST 0.24 8.80 8.80 22.1

min, where the NOVIFAST speed gain over IRWLLS, LM,
VARPRO-BRUTE, and VARPRO-GSS, is about 16×, 27×,
1500×, and 9×, respectively. Although differences between
the T1 maps of DESPOT1 and NOVIFAST, are, as expected,
visually indistinguishable, the T1 estimates substantially differ
when both methods are compared (see Fig. 5). It should be
noted though that statistical claims can only be made based
on the previous MC simulations, and not on difference maps
from a single real data experiment.

Before finishing this section, it is worthwhile to point out
that the SPGR model of Eq. (1) neglects partial volume effects,
which may be relevant for highly non-isotropic voxels, as
those of the dataset used in this experiment. Furthermore,
possible incomplete spoiling may introduce related T2 decay
effects [46]. However, such effects are intrinsic to the SPGR
model at hand, and not to the choice of the algorithm. Indeed,
NOVIFAST is always applicable wherever the rest of the
compared methods in this manuscript are.
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Fig. 5: Absolute difference T1 map (a) and relative absolute
difference T1 map (w.r.t. DESPOT1) (b) between DESPOT1
and NOVIFAST for the mid-axial slice of Fig. 4.

VI. EXTENSIONS

NOVIFAST can be extended in several ways. In this work,
it has been presented as an ordinary NLLS optimization
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Fig. 3: Bias and RMSE maps of a mid-axial slice of a synthetic 3D T1 map (SNR90◦ = 500) obtained with DESPOT1,
IRWLLS, LM, VARPRO-GSS, and NOVIFAST. The computation times are shown as well (total time for the 3D T1 map and
time per voxel, Mvoxels = 212411)

algorithm, but extension to the weighted NLLS estimator is
possible (see [30] for more details).

NOVIFAST can be applied independently of the statistical
distribution of the noisy data. However, it is worth mention-
ing that NOVIFAST equals the Maximum-Likelihood (ML)
estimator when the data is Gaussian distributed [47], and as
such, it provides statistically optimal estimates. This situation
occurs when VFA T1 mapping is directly performed on the real
and imaginary part of complex-valued data that results from
reconstructing single-coil k-space. It also arises in parallel
acquisitions, when, for example, a complex MR image is
obtained with the GRAPPA method. In this case, the Gaussian
distribution also applies, and hence NOVIFAST provides the
ML estimates [13]. Interestingly, when the data distribution at
hand is not Gaussian, it is yet possible to embed NOVIFAST
in a Maximum-Likelihood (ML) framework, aiming at fully
exploiting the statistical knowledge of both single and multi-
coil MR data [48], [49]. This is the case when the data follows
a Rician or a non-central χ distribution, which are often
encountered in typical parallel MRI acquisitions. Indeed, MR
images reconstructed with the SENSE method follow a Rician
distribution, and the magnitude of a complex image obtained
with GRAPPA and the adaptive combine method does so as
well [13], [36]. A non-central χ distribution typically applies
when complex images from several coils are combined with
the Sum of Squares (SoS) method [13], [36]. It has been shown
recently that solving an ML estimation problem with non-

central χ or Rician distributed data is equivalent to iteratively
solving a collection of NLLS subproblems [39], [50]. As
a result, NOVIFAST can be integrated into this approach,
by solving each of the NLLS subproblems, thereby greatly
boosting the speed of the overall ML estimation procedure.

Furthermore, NOVIFAST can be applied to other MR data
sequences than SPGR. For example, it is well known that the
completely balanced TrueFISP sequence can be modeled as
a quotient of continuous functions, where the (three) linear
parameters encode the T1 and T2 values [51]. NOVIFAST can
be reformulated for TrueFISP, since the semi-linear structure
of Eq. (28) also appears when fitting a quotient of continuous
functions [33].

Finally, NOVIFAST can be embedded into a unified frame-
work where T1 mapping and actual flip angle mapping are per-
formed simultaneously, similarly to [52]. The NLLS optimiza-
tion problem of Eq. (2) can be extended to include simultane-
ous estimation of the flip angle correction factor. As the nom-
inal flip angles are known beforehand, this three-dimensional
optimization problem also provides estimates of the actual
flip angles, thereby performing actual flip-angle mapping [53].
The three-dimensional NLLS optimization problem may be
solved with a cyclic coordinate descent algorithm [39], [54],
being the optimization problem decomposed into two iterative
subproblems. Indeed, given estimates of K and T1, the flip
angle correction factors can be estimated with any conven-
tional NLLS optimization algorithm. On the other hand, when
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Fig. 4: Mid-axial slice of the estimated 3D T1 map with the VFA T1 estimation algorithms compared for the in vivo MR
experiment. The computation times are shown as well (total time for the 3D T1 map and time per voxel, Mvoxels = 632260)

estimates of the flip angle correction factors are known, the
only remaining optimization variables are K and T1. Since
this iterative subproblem is essentially the same as Eq. (2), it
can be solved very fast and accurate with NOVIFAST. Cyclic
iteration between these two subproblems constitutes the global
optimization algorithm for simultaneously actual flip angle and
T1 mapping.

VII. CONCLUSIONS

In VFA T1 mapping, it is common to use heuristic linear
estimators such as the celebrated DESPOT1 method [5] or
the IRWLLS method of Chang et al. [12]. They are preferred
despite the superiority of NLLS estimators in terms of ac-
curacy and precision, since optimization algorithms for NLLS
estimators are much slower than linear estimators, and are also
prone to initialization issues. In this work, we reconcile these
two separate frameworks by proposing a novel NLLS method,
NOVIFAST, which provides the NLLS estimates more than
twenty times faster than conventional gradient-based NLLS
optimization algorithms and about eight times faster than
efficient VARPRO-based method implementations. Thus, our

NOVIFAST algorithm merges the best of both approaches, i.e.,
accurate and precise T1 mapping with a very short computation
time. This is the consequence of conceiving NOVIFAST in a
fundamentally different fashion than other VFA T1 mapping
methods. To derive NOVIFAST, our starting point was the
reparameterization of the numerator and denominator of the
SPGR model by a set of two linear coefficients (Eq. (11)).
However, instead of applying the linearization of the SPGR
model that DESPOT1 includes, we sought for the optimal lin-
ear coefficients in an NLLS sense, which is exactly equivalent
to performing NLLS T1 fitting directly, as we theoretically
proved in this paper. NOVIFAST does not attempt to find the
optimal linear coefficients by decreasing the NLLS criterion,
as gradient-based descent algorithms, e.g., the LM algorithm,
do. Moreover, with NOVIFAST, numerical evaluation of the
NLLS cost function is not required, as other techniques such
as VARPRO-based methods do so extensively. Indeed, with
NOVIFAST, the problem of finding the optimal linear coeffi-
cients in NLLS sense is transformed into a root-finding prob-
lem that arises when the first-order conditions for optimality
are imposed. In this derivation, we made use of algebraic rules



0278-0062 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2833288, IEEE
Transactions on Medical Imaging

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X 2017 13

in the same spirit of those of [30], to come up with a set of non-
linear equations, which is iteratively solved as a two-by-two
linear system problem. The iterative procedure, which qualifies
as a fixed-point algorithm, possesses very rapid convergence,
usually between two and four iterations are required. The
excellent convergence properties have been evidenced with
MC simulations, in a framework of fixed-point algorithms
theory. The computational time per iteration is rather low,
similar to DESPOT1. Furthermore, as we have experimentally
corroborated, NOVIFAST is quite robust to initialization. In
fact, it can be initialized with constant T1 maps. Therefore,
minimal pre-processing is needed for NOVIFAST in a real
implementation.

Another distinct feature of NOVIFAST in comparison to
other NLLS-based algorithms is that, with noiseless SPGR
data, it provides the T1 estimates with zero error, with only
one iteration, and for every initialization is chosen. That is,
NOVIFAST, despite being an iterative algorithm, becomes
an analytical estimator when the SPGR model is noise-free.
This result, which we prove theoretically, guarantees a very
appealing behavior as the SNR increases in realistic noisy
scenarios, since the number of iterations necessarily has to
decrease to one so as to mimic the remarkable asymptotic
behavior in absence of noise.

We believe that NOVIFAST is a good candidate to be
included in every processing pipeline for high-quality, robust,
and efficient VFA T1 mapping.
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