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ABSTRACT High-level synthesis has been widely recognized and accepted as an efficient compilation pro-
cess targeting field-programmable gate arrays for algorithm evaluation and product prototyping. However,
themassively parallel memory access demands and the extremely expensive cost of single-bankmemorywith
multi-port have impeded loop pipelining performance. Thus, based on an alternative multi-bank memory
architecture, a joint approach that employsmemory-aware force directed scheduling andmulti-cyclememory
partitioning is formally proposed to achieve legitimate pipelining kernel and valid bank mapping with
less resource consumption and optimal pipelining performance. The experimental results over a variety of
benchmarks show that our approach can achieve the optimal pipelining performance and meanwhile reduce
the number of multiple independent memory banks by 49.2% on average, compared with the state-of-the-art
approaches.

INDEX TERMS Modulo scheduling, memory partitioning, multi-bank memory, HLS.

I. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) have earned a
significant market segment in microelectronics industry. Off-
the-shelf FPGAs are extensively available and FPGA-based
accelerators have shown computation and energy efficiency
in many application areas, in contrast with CPU/GPU [1].
High-Level Synthesis (HLS) is an efficient compilation pro-
cess targeting FPGAs for algorithm evaluation and product
prototyping.With high level description language (e.g. C pro-
gram) as input, HLS can produce optimized hardware
description language (HDL) output which can be synthesized
into FPGAs. Thus, the design and verification efforts of
digital systems can be dramatically reduced [2].

In HLS, optimizing loops performance is crucial for the
overall performance of synthesized architecture and circuits.
Loop transformation and software pipelining are commonly
used to improve the parallelism of loop iterations at iteration
level and instruction level respectively.

The loop transformations are commonly formulated as
iteration-level polyhedral transformations [3]–[5]. There are
several basic transformations at iteration-level, including
fusion/fission, interchange, reverse, skewing, peeling, index
set splitting and tiling. Software pipelining is a prominent
technique of loop optimizations focusing on instruction-level
parallelism [6], which is realized by overlapping the execu-
tion of subsequent iterations to parallelize loop execution.

Modulo scheduling is arguably the most widely used tech-
nique to enable software pipelining [6], [7]. The key of mod-
ulo scheduling is to find a legitimate pipelining kernel with
minimized Initiation Interval (II ) by overlapping consecutive
iterations. II is the delay between the initiation of two con-
secutive iterations of a loop and is inversely proportional to
the pipelining performance [6]. After overlapping, operations
are assigned to a particular control step and the scheduled
operations will form a kernel. The remaining tasks of HLS
are allocation and binding for specifying hardware resources
consumption and mapping the operations to hardware units,
respectively.

It is worth noting that after loop transformation and soft-
ware pipelining, the loop parallelism is greatly improved,
which also means that more concurrent memory accesses are
required. Even if the pipelining is constituted successfully,
the memory access conflicts will still cause serious degrada-
tion in pipelining performance. Therefore, massively parallel
memory accesses with limited memory ports are becoming a
crucial bottleneck for loop execution.

This memory access bottleneck requires a memory infras-
tructure which can be accessed simultaneously by parallel
load/store operations. However, it is very difficult to provide
all the necessary ports in single-bank data memory, since
the extremely expensive cost of single-bank memory with
multi-port in terms of area, power, and speed [8]. Typical
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BRAMs in commonly available FPGAs are designed as sin-
gle or dual port, which is very limited for feeding the highly
parallelized memory accesses. An alternative architecture of
multiple independent memory banks (multi-bank) is favored
increasingly. Meanwhile, BRAM is configurable and flexible
for programming, which provides good support for multi-
bank memory architecture to relieve the bottleneck prob-
lem. In multi-bank memory architecture, data elements are
mapped into multiple memory banks, so as to improve the
bandwidth of parallel data access and reduce memory access
conflicts. However, multi-bank memory only provides an
architectural basis for solving the parallel data access prob-
lem, while an efficient pipelining and memory partitioning
approach for multi-bank memory is still required.

Recently, several linear transformation based techniques
[9]–[12] are proposed to partition data arrays into multi-bank
memory for HLS. Nevertheless, multi-cycle memory access
pattern in pipelining kernel is not concerned, which can cause
considerable cost in memory bank consumption. Moreover,
the interaction between modulo scheduling and memory par-
titioning is not considered, which can cause unnecessary
memory access conflicts or waste of local memory banks.
Actually modulo scheduling can further optimize memory
access pattern, reducing the demand of parallel data accesses
in pipelining kernel. Most of the existing HLS scheduling
techniques only concern the scheduling problem under tim-
ing or hardware constraints [13], [14]. These shortcomings
cause the limitation of the state-of-the-art approaches in loop
pipelining. Efficient solution amenable to the emergingmem-
ory access constraints is demanded for HLS scheduling.

In this paper, a joint approach, which simultaneously con-
siders modulo scheduling and memory partitioning for multi-
bank memory, is formally proposed. In particular, our main
contributions are described as follows:
• A multi-cycle memory partitioning (MMP) algo-
rithm for constructing conflict-free memory access
pattern with minimized memory bank number. The
multi-cycle memory partitioning algorithm is employed
to eliminate the memory access conflicts in each control
step and all the load/store data elements in each cycle in
the pipelining kernel can be accessed without any bank-
conflict.

• Amemory-aware force directed scheduling (MAFDS)
algorithm for operation scheduling in modulo
scheduling. Our method heuristically assigns opera-
tions distribution and constructs pipelining kernel by
successively and iteratively scrutinizing the memory-
aware force until a legitimate loop pipelining with min-
imized II can be found. With the memory-aware force,
the memory access pattern in pipelining kernel is con-
currently optimized to interact withmemory partitioning
for further reducing memory bank number.

• A joint approach consisting of operation scheduling
andmemory partitioning for optimizing loop acceler-
ation in HLS by reducing memory access constraints
in the context of multi-bank memory. From the

perspective of loop optimization, our proposed approach
is complementary to existing loop transformation tech-
niques. Compared with the state-of-the-art approaches,
the proposed joint approach can produce substantial
reduction in the number of multiple independent mem-
ory banks, while achieving the optimal loop pipelining
performance.

The remainder of this paper is organized as follows:
In Section II, the relatedworks are presented. Section III gives
some notations and presents a motivation example. Then,
Section IV describes the problem formulation. Section V
gives an efficient solution of the joint approach. Next,
Section VI gives the experimental results and comparisons
that demonstrate the effectiveness of our approach. At last,
Section VII summarizes conclusions.

II. RELATED WORK
Loop transformation and software pipelining are commonly
performed by high-level FPGA compilers to improve the
parallelism of loop iterations at iteration level and instruction
level respectively.

Morvan et al. [3] propose a method using polyhedral anal-
ysis to improve nested loop pipelining. To overcome con-
flicts of memory dependencies in a pipeline, their approach
firstly flattens the nested loop and then inserts wait states to
resolve memory conflicts. Zuo et al. [4] present an integrated
technique using polyhedral models to model and enable
both intra- and inter-block optimizations, which improves
the opportunity to use HLS optimizations for parallelism and
pipelining. Liu et al. [5] propose a loop splitting technique,
which is realized based on polyhedral analysis and transfor-
mation. For a given loop, it can resolve all potential conflicts
of uncertain or non-uniform memory dependency at compile
time.

In addition to these aforementioned iteration-level
loop transformations, our approach targets instruction-level
optimization for modulo scheduling in HLS. Early in high-
level synthesis, the central research topic was the opera-
tion/instruction level scheduling [14]. Scheduling assigns
operations in the Data Flow Graph (DFG) to the control
steps and decides in which clock cycle they are performed.
Various approaches have been proposed [13]–[15] for HLS
scheduling. Force directed scheduling (FDS) [15] is a widely
used constructive heuristic, with high flexibility and low com-
plexity. It leverages the force, which is much like the force
exerted by a spring that obeys Hooke’s law, to characterize
the assignment of an operation to a particular control step
and proceeds by stepwise refinement. System of Difference
Constraints (SDC) [13] uses a mathematical framework to
describe scheduling constraints and performs optimization by
solving a linear programming (LP) problem.

In the compiler domain, modulo scheduling is a well-
known technique to exploit parallelism between successive
iterations of a loop. Since timing and hardware resources
constraints have made modulo scheduling an NP-hard prob-
lem [16], various heuristics have been proposed. Iterative
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modulo scheduling [17] combines list-scheduling, backtrack-
ing and a modulo reservation table to find the possible
minimized II under the given constraints. Swing modulo
scheduling [18] schedules the operations by considering the
criticality and places each operation close to either its pre-
decessors or successors to reduce the register requirements.
Recently, a heuristic in [19] extend SDC [13] to handle mod-
ulo scheduling. This work prioritizes operations that mini-
mize the impact on unscheduled operations and chooses the
operations to be scheduled greedily. [20] also extends SDC
and takes an alternative backtracking approach.

One major weakness of the existing modulo scheduling
techniques is lack of awareness of memory access pattern
optimization in pipelining kernel. With the support of multi-
bank memory architecture, memory partitioning can improve
the bandwidth of parallel data access and reduce memory
access conflicts. With optimized memory access pattern,
it can further reduce the number of multiple independent
memory banks. In [9], a Linear Transformation-Based (LTB)
method is proposed for data access in multidimensional
arrays by cyclic partitioning. The same authors extend their
previous work as a Generalized Memory Partitioning (GMP)
algorithm in [10], using polyhedral model to describe the
partitioning problem. A constructive algorithm (EMP), pro-
posed in [11], develops an efficient memory partitioning
strategy with low time complexity and low storage overhead
for multidimensional array partitioning. Su et al. extend LTB
to develop an efficient algorithm (DRMP [12]) for memory
partitioning by caching the reusable data by on-chip registers.
However, very few studies have extended the aforementioned
state-of-the-art approaches to support memory partitioning
in multi-cycle pipelining kernel. In [21], we have proposed
an early version of joint loop mapping and data place-
ment approach for coarse-grained reconfigurable architec-
ture (CGRA). However, in CGRA, the loops are temporally
mapped onto processing elements (PE), in which time multi-
plexing of PE is allowed. Therefore the operator scheduling
is quite different to the spatial mapping in FPGA. In this
paper, we constructively propose a joint modulo scheduling
and memory partitioning scheme especially for FPGA.

III. MOTIVATION EXAMPLE
The front-end of HLS is similar to the existing soft-
ware compiler. In the case of C as input for behavioral
description, it involves lexical and syntactic analysis, and
generates the corresponding intermediate representation (IR)
such as a graph representation called Data Flow Graph
(DFG). A DFG Gd = (Vd ,Ed ) is a directed graph, where
Vd is the set of operation nodes and Ed includes the data
dependencies between operation nodes. We assume that all
the operations in Vd incur one clock cycle delay and no
operations are allowed to be chained for demonstrating the
primitiveness of our approach. Block RAM-based multiple
independent memory banks are programmed as single port,
allowing only one read or one write operation during one
clock cycle.

FIGURE 1. Pseudocode of motivation example.

FIGURE 2. Scheduling result of SDC scheduling.

In modulo scheduling, the loop latency (total number of
clock cycles required to execute all loop iterations) is D +
(TC − 1) × II , where D is single loop latency and TC is
the trip count of iterations, which is typically constant for a
given loop. Therefore, II is the dominant factor for pipelining
performance and minimizing II can significantly improve
pipelining performance. The modulo scheduling algorithm
begins by calculating the lower bound of II by both the
resource constrained resMII and the recurrence constrained
recMII , which is termed Minimum Initiation Interval (MII =
max( resMII , recMII )) [17]. In FPGA-based HLS, resources
for operations like adders are typically unconstrained and
resMII is derived from the constraints of functional units,
which are specific in types and number. In addition to calcu-
lating resMII to obtain a lower bound on II , we also calculate
the recMII , which indicates the effect of recurrences on II .
The recurrences refer to those loop-carried dependencies in
DFG. The recMII is calculated by dividing the maximum
recurrence cycle length by the number of iterations the loop-
carried dependency spans (denoted as dif in DFG).

In this section, an example is given in Fig.1 to illustrate
our joint approach consisting ofmemory-aware force directed
scheduling and multi-cycle memory partitioning algorithms.
An iteration of the loop body in Fig.1 is represented as
a DFG. First, SDC modulo scheduling gives a legitimate
loop pipelining of the DFG, shown in Fig.2. Due to modulo
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FIGURE 3. Pipelining Kernel of SDC scheduling.

scheduling, the pipelining kernel is achieved by folding the
result in Fig.2 by II and the corresponding pipelining ker-
nel is shown in Fig.3. There are eight memory operations
simultaneously accessing the memory bank and conflicts
exist among these load/store operations in CS4k . The optimal
initiation interval (MII ) in this example equals 4, while the
achieved II in SDC modulo scheduling rises to 11, which is
due to the pipelining stalls and is intolerant compared with
the single loop latency of only 5 control steps.

Since neither memory access conflict nor memory parti-
tioning is considered in SDC scheduling, memory partition-
ing technique is additionally supplemented for constructing
a memory access conflict-free pipelining kernel. LTB is first
applied and the resulting II equals 4 with a cost of 8 banks.
The detailed bank mapping after LTB memory partitioning is
shown in Fig.6(a).

However, SDC modulo scheduling neglects the interaction
between modulo scheduling and memory partitioning, which
can cause unnecessary memory access conflicts or waste of
memory banks. Then, our proposed joint approach based on
memory-aware force directed scheduling (MAFDS+MMP)
is applied for comparison. The scheduling result of the
MAFDS is shown in Fig.4 and the corresponding pipelining
kernel and the optimized memory access pattern are shown
in Fig.5. x[i][j] and w[i][j] can be partitioned into only two
banks respectively and stored in the way shown in Fig.6(b).
The achieved pipelining kernel can execute without any
pipelining stall and II turns out to beMII , while the required
number of multiple independent memory banks reduces to
only 2. It is the optimal result under the constraint of 8
memory access operations and 4 control steps in pipelining
kernel.

IV. PROBLEM STATEMENT
A. PRELIMINARIES
In modulo scheduling, the pipelining kernel is achieved by
folding the DFG by II . Therefore, the height of a multi-cycle
pipelining kernel is defined as II , which corresponds to II
control steps or clock cycles. The following terminology is
needed to clarify the statement of the problem.
Definition 1 (Memory Access Domain): Given a finite

n-dimensional array A, a memory access Em ∈ M from array
A can be represented as EmA = (mA0 ,m

A
1 , · · · ,m

A
n−1)

T , where

FIGURE 4. Scheduling result of MAFDS scheduling.

FIGURE 5. Pipelining Kernel of MAFDS scheduling.

mAi ∈ [0,wAi − 1], 0 ≤ i ≤ n− 1, and wAi indicates the bound
of ith dimension in array A.

All the memory accesses from array A in the csth control
step of the pipelining kernel will form a single-cycle access
pattern PAcs, which is defined as follows:
Definition 2 (Single-Cycle Access Pattern): Given the csth

control step (single-cycle), a single-cycle memory access
pattern for array A is defined as PAcs = { E1

A,(1)
cs , E1

A,(2)
cs , · · · ,

E1
A,(rcs)
cs }, where rcs indicates the number of memory

access operations in the csth control step. E1A,(k)
cs =

(1A,(k)
cs,0 ,1

A,(k)
cs,1 , · · · ,1

A,(k)
cs,n−1)

T , 1 ≤ k ≤ rcs, which is a
memory access from a finite n-dimensional array A.
In a multi-cycle pipelining kernel, the single-cycle access

patterns from different control stepsPAcs correspond to the dis-
parate memory access requirements at different control steps.
Therefore, combiningwith all the single-cycle access patterns
in the pipelining kernel, the multi-cycle access pattern PAkernel
is defined.
Definition 3 (Multi-Cycle Access Pattern): Given a

pipelining kernel with II control steps, the multi-cycle
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FIGURE 6. Bank mapping result for (a) SDC+LTB. (b) Our Approach (MAFDS+MMP).

access pattern PAkernel can be represented as PAkernel =
{PA1 ,P

A
2 , · · · ,P

A
II }, whereP

A
cs = {

E1
A,(1)
cs , E1

A,(2)
cs , · · · , E1

A,(rcs)
cs },

1 ≤ cs ≤ II , indicates the single-cycle access pattern of the
pipelining kernel in each control step.
Definition 4 (Valid Bank Mapping): Given arrays {Aj|1 ≤

j ≤ q} and the corresponding multi-cycle access patterns
{P

Aj
kernel |1 ≤ j ≤ q}, a valid bank mapping is described as

(I ( Em), F( Em)), where I ( Em) represents the bank index that Em is
mapped to and F( Em) represents the inside offset within bank
I ( Em). The conditions of a valid bank mapping (I ( Em), F( Em)) is
presented as follows:

1) ∀a1, a2 ∈ {A1,A2, · · · ,Aq}, where a1 6= a2, the cor-
responding memory accesses Em1 and Em2 have unique
addresses, i.e. I ( Em1) 6= I ( Em2) or I ( Em1) = I ( Em2),
F( Em1) 6= F( Em2);

2) ∀Em1, Em2 ∈ {P
A1
cs ,P

A2
cs , · · · ,P

Aq
cs }, 1 ≤ cs ≤ II , 1 ≤ j ≤

q, we have Em1 6= Em2⇒ I ( Em1) 6= I ( Em2), which implies
that nomemory access conflict exists among the single-
cycle access patterns for all the q arrays in any control
step.

Definition 5 (Legitimate Pipelining Kernel): Given aDFG
Gd = (Vd ,Ed ), a legitimate modulo scheduled pipelining
kernel Kp should satisfy the following conditions:

1) achieved II ≥ MII ;
2) every operation in the DFG is assigned to a particular

control step and only appear once in the pipelining
kernel;

3) the resulting pipelining kernel does not violate any
dependency in the original loop.

B. PROBLEM FORMULATION
Now we can establish the scheduling problem we seek to
solve as follows:
Given a DFG Gd = (Vd ,Ed ) and a set of scheduling

constraints C , including resource constraints CRes and recur-
rence constraints CRec, find a memory access pattern in the
pipelining kernel and a bank mapping such that:
Minimize total number of multiple independent memory

banks Ntotal .

Subject to 1) A legitimate pipelining kernel Kp; 2) A valid
bank mapping (I ( Em), F( Em)); 3) Minimized II .

V. JOINT APPROACH
A. MMP ALGORITHM
We extend the constructive efficient memory partitioning
algorithm in [11] to a multi-cycle context by considering the
interaction with the modulo scheduling algorithm. Our pro-
posed multi-cycle memory partitioning (MMP) algorithm is
amenable to pipelining kernel with multiple control steps and
can ensure a conflict-free memory access pattern, in which all
the load/store operations in the same control step can execute
without any bank-conflict. The proposed algorithm proceeds
in two stages, which are array separation and bank sharing.

1) ARRAY SEPARATION
The first stage of the proposed multi-cycle memory parti-
tioning is array separation. In this stage, the accessed data
elements of an array in the pipelining kernel are separated
into multiple independent memory banks, guaranteeing that
no memory access conflict will occur during any control step.
Given the multi-cycle access pattern P

Aj
kernel, 1 ≤ j ≤ q

and II , the minimum number of banks N
Aj
f for array Aj can

be derived by array separation. The pseudocode for array
separation algorithm is presented in Algorithm 1.
Since there are II control steps in the pipelining kernel,

the union set of all the single-cycle access patterns {P
Aj
1 ,P

Aj
2 ,

· · · ,P
Aj
II } will form the multi-cycle memory access pattern

P
Aj
kernel for array Aj (line 2). According the previous definition

of multi-cycle access pattern, the single-cycle access pattern
can be represented as P

Aj
cs = { E1

Aj,(1)
cs , E1

Aj,(2)
cs , · · · , E1

Aj,(rcs)
cs },

1 ≤ cs ≤ II , and E1
Aj,(k)
cs = (1

Aj,(k)
cs,0 ,1

Aj,(k)
cs,1 , · · · , 1

Aj,(k)
cs,n−1)

T ,
1 ≤ k ≤ rcs (line 4).
Our proposed multi-cycle memory partitioning leverages

linear transformation, a fast and low-complexity method, for
separating the data elements in an array into different inde-
pendent memory banks. The maximum differences among
the access patterns are calculated respectively (line 5-7).
Based on the maximum differences D

Aj
i , 0 ≤ i ≤ n − 1,
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Algorithm 1 ArraySeparation

Input {P
Aj
kernel |1 ≤ j ≤ q}, Input II ,

Output {N
Aj
f |1 ≤ j ≤ q}.

1 for j = 1; j ≤ q; j++ do
2 {P

Aj
1 ,P

Aj
2 , · · · ,P

Aj
II } ← P

Aj
kernel ;

3 for cs = 1; cs ≤ II ; cs++ do
4 { E1

Aj,(1)
cs , E1

Aj,(2)
cs , · · · , E1

Aj,(rcs)
cs } ← P

Aj
cs ;

5 for i = 0; i ≤ n− 1; i++ do
6 D

Aj
cs,i←

max1≤k≤rcs 1
Aj,(k)
cs,i −min1≤k≤rcs 1

Aj,(k)
cs,i + 1;

7 D
Aj
i ← max1≤cs≤II D

Aj
cs,i;

8 for i = 0; i ≤ n− 2; i++ do
9 αi← 5n−1

t=i+1Dt ;

10 αn−1← 5n−1
t=nDt = 1;

11 Eαj← {α0, α1, · · · , αn−1};

12 for cs = 1; cs ≤ II ; cs++ do
13 for i = 1; i ≤ rcs; i++ do
14 Z

Aj,(i)
cs ← Eαj · E4

Aj,(i)
cs ;

15 Gcs← ∅;
16 for i = 1; i < rcs; i++ do
17 for k = i+ 1; k ≤ rcs; k ++ do
18 Gcs← {Gcs, | Z

Aj,(i)
cs − Z

Aj,(k)
cs |};

19 G←
⋃

1≤cs≤II Gcs;

20 N
Aj
f ← max1≤cs≤II rcs; // Initialize N

Aj
f

21 z← 1;

22 while zN
Aj
f ≤ maxG do

23 if zN
Aj
f ∈ G then

24 N
Aj
f ← N

Aj
f + 1;

25 z← 1;

26 else
27 z← z+ 1;

28 return {N
Aj
f |1 ≤ j ≤ q};

the linear transformation vector Eαj = (α0, α1, · · · , αn−1) for
array Aj is presented in line 8-11.

After calculating the n-dimensional memory access vector
Em = (m0,m1, · · · ,mn−1)T , a linear combination of Em is
calculated by Eα · Em. Then, the linear transformation results for
thememory access pattern of arrayAj in csth pipelining kernel
control step are defined as (Z

Aj,(1)
cs , Z

Aj,(2)
cs , · · · ,Z

Aj,(rcs)
cs ) =

(Eαj· E1
Aj,(1)
cs , Eαj· E1

Aj,(2)
cs , · · · , Eαj· E1

Aj,(rcs)
cs ), 1 ≤ cs ≤ II , 1 ≤ j ≤

q (line 12-14). For the multi-cycle access pattern, we use set
Gcs to store the gaps among the linear transformation results
Z
Aj,(k)
cs , 1 ≤ k ≤ rcs. Precisely, all the absolute values from

subtractions between ZA,(i)cs and ZA,(j)cs , 1 ≤ i < j ≤ rcs,

are calculated and stored in Gcs and G is a union set of Gcs,
1 ≤ cs ≤ II (line 15-19).
Then, N

Aj
f is defined to represent the number of banks after

array separation for Aj and is initialized by max rcs (line 20).
A valid array separation with the current N

Aj
f banks should

satisfy that all the integral multiples of N
Aj
f (zN

Aj
f , z ∈ Z+)

are not in the gap set G. If it fails, the number of banks
will increase and the algorithm is repeated until a valid array
separation with the given N

Aj
f memory banks has been found

(line 21-28).
Then, the bank index I ( Em) after array separation can be

derived by applying cyclic partitioning:

I ( Em) = (Eα · Em)%N
Aj
f (1)

After array separation for any given array Aj in the csth
control step, I

Aj,(i)
cs = Z

Aj,(i)
cs %N

Aj
f is different from each other,

which means all rcs data elements from the same array are
separated into different memory banks successfully.

2) BANK SHARING
The next stage of our proposed multi-cycle memory parti-
tioning is bank sharing. Given the multi-cycle memory access
patterns P

Aj
kernel , and the corresponding memory bank number

N
Aj
f after array separation for all the arrays accessed in the

pipelining kernel, we can exploit bank sharing algorithm to
put the arrays into the same banks according to the memory
access conflict states to further reduce the memory bank
consumption and derive the minimum number of multiple
independent memory banks Ntotal for our proposed joint
approach.

Detailed description of bank sharing algorithm is pre-
sented in Algorithm 2. First, given the multi-cycle memory
access patterns P

Aj
kernel , conflict states among the q arrays are

extracted and used to determine the q × q conflict matrix C
(line 1). Then, the total number of memory banks Ntotal is
initialized by the maximum number of the memory banks
N
Aj
f after array separation for all the arrays accessed in the

pipelining kernel (line 2). According to the array separation
results achieved in Algorithm 1, the data storage for each
accessed array is calculated and stored in a q×Ntotal matrix S
(line 3). Then, the conditions for valid bank sharing are as
follows: 1) no conflict exists among the arrays placed in the
same bank, and 2) the total storage space for all the arrays in
a bank is no bigger than the maximum size of a single bank.
Each data storage result in S is checked to determine if they
can share the same memory banks (line 5-17). At last, this
process will return the total number of memory banks Ntotal ,
which is the minimum number of memory banks after multi-
cycle memory partitioning with the given pipelining kernel
and II (line 18).

3) DETAILED PARTITIONING EXAMPLE
In this section, we present the exact steps of our proposed
ArraySeparation and BankSharing for the pipelining kernel
described in Fig.5.
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Algorithm 2 BankSharing

Input {P
Aj
kernel |1 ≤ j ≤ q}, Input {N

Aj
f |1 ≤ j ≤ q},

Output Ntotal .

1 Cq×q← GetConflictMat({P
Aj
kernel |1 ≤ j ≤ q});

2 Ntotal ← max1≤j≤q N
Aj
f ;

3 Sl[1, · · · ,Ntotal]← SM ; //Initialize storage space for
each bank

4 Sq×Ntotal ← CalDataStorage({P
Aj
kernel |1 ≤ j ≤ q,Ntotal});

5 for j = 1; j ≤ q; j++ do
6 for k = 1; k ≤ Ntotal; k ++ do
7 if S[j][k] > 0 then
8 m← k;

UpdateSl :
9 if m > Ntotal then
10 Sl[m]← SM ;
11 Ntotal ← Ntotal + 1;

12 if Sl[m] ≥ S[j][k]&ConflictFlag == 0 then
13 Sl[m]← Sl[m]− S[j][k];
14 else
15 m← Ntotal + 1;
16 goto UpdateSl ;

17 return Ntotal ;

First, array w[i][j] and its corresponding access pattern
are extracted from the pipelining kernel in Fig.5. Given
II = 4, the multi-cycle access pattern of w[i][j] are Pwkernel =
{{(1, 1)T },∅, {(1, 3)T , (0, 1)T },∅} (line 2 in Algorithm 1).
Then, we have Dw0 = max1≤cs≤4Dwcs,0 = max{1, 2} = 2 and
Dw1 = max1≤cs≤4Dwcs,1 = max{1, 3} = 3 (line 3-7). Each
component of the linear transformation vector Eα is calculated
from Dw0 and Dw1 . Specifically, α0 = D1 = 3, α1 = 1 and
Eα = (3, 1) (line 8-11). Then linear transformation results
are calculated as follows. Zw,(1)1 = (3, 1) · (1, 1)T = 4,
Zw,(1)3 = (3, 1) · (1, 3)T = 6, and Zw,(2)3 = (3, 1) · (0, 1)T = 1
(line 12-14). The corresponding gap set G1 = ∅, G3 = {5}
and G = G1

⋃
G3 = {5} (line 16 -19). Finally, according

to the rule described in line 20-28, we can get the resulting
minimized bank numberNw

f = 2, whichmeans, with our pro-
posed ArraySeparation in Algorithm 1, two memory banks
can support the parallel memory accesses for array w[i][j] in
the whole access pattern. Then, we can continue to perform
ArraySeparation on array x[i][j], y[i][j] and v[i][j], respec-
tively. The resulting minimized bank numbers are N x

f = 2,
N y
f = 1 and N v

f = 1, respectively.
Without the process of BankSharing proposed in Algo-

rithm 2, a scheme of 6 memory banks (Nw
f +N

x
f +N

y
f +N

v
f =

2+2+1+1 = 6), as described in Fig.7(a), can guarantee that
all the arrays can be access without conflict in any control step
of the pipelining kernel. However, we can continue with our
BankSharing process to merge the arrays into the same banks

FIGURE 7. (a) An ArraySeparation scheme of 6 memory banks without
BankSharing. (b) An ArraySeparation scheme of 2 memory banks after
BankSharing.

according to memory access conflict states and the maximum
size of a single bank. Finally, after BankSharing, we can
achieve a scheme of only 2 memory banks, as described
in Fig.7(b), which is a locally conflict-free memory access
pattern.

B. MAFDS ALGORITHM
1) MAFDS OVERVIEW
From the insights gained from the aforementioned MMP
for the multi-cycle memory access pattern, we introduce the
memory-aware force directed scheduling (MAFDS) algo-
rithm to interact with the memory partitioning algorithm by
optimizing memory access pattern for reducing the parallel
data access demands.

According to the traditional force-directed scheduling [15],
different types of the operations in each cycle of the kernel
will generate the force for HLS hardware resources. With
the definition of multi-cycle access pattern, different control
step assignments for the load/store operations in the pipelin-
ing kernel correspond to different memory access patterns.
In addition, the memory access operations in each control
step of the kernel generate the force for multiple independent
memory banks. Combined with these features and based on
the force-directed scheduling [15], memory-aware force is
proposed in MAFDS, which includes the forces for both
multi-bank memory and hardware resources.

In HLS, different types of operations require distinct
hardware resources. In the proposed MAFDS algorithm,
arithmetic and logic operations (e.g. addition, subtraction,
multiplication in Fig.4) will first be scheduled separately and
only the force for hardware resources FR(CS) is considered
in this step. Lastly, memory access operations are scheduled
by calculating thememory-aware force because the preceding
schedules of operations will impact the memory-aware force
distribution of the memory access operations. Since modulo
scheduling has been used and the critical path is extended
in MAFDS, the longest distance between two operations in
the pipelining kernel is limited to II . Therefore, the mobility
of all the memory access operations is defined as II . The
main method is presented in Algorithm 3. First, mobility are
calculated with the given II (line 2). Then, distribution graph
DG(cs1) and changes of probability v(cs0, cs1) are calculated
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Algorithm 3Memory-Aware Force Directed Scheduling
Input VM , Input II , Input Gd = (Vd ,Ed ),
Output Gd_Sch = (Vd_Sch,Ed_Sch).

1 while VM 6= ∅ do
2 MOB← CalMob(VM , II ,Gd ,Gd_Sch);
3 (DG, v)← GetDG(VM , II ,Gd ,Gd_Sch);
4 Candidates← CalFB (VM ,DG, v,MOB);

//Candidates schedules are selected
5 (SchLF , vLF )←

CalFR(VM ,DG, v,MOB,Candidates);
// A schedule with the lowest force is selected

6 UpdateDFG(SchLF , vLF ,Gd ,Gd_Sch);
// The selected memory access operation vLF is
assigned to the control step

7 VM ← VM\vLF ;

8 return Gd_Sch;

(line 3), where DG(cs1) can be represented as a series of
springs that will exert forces on operations at control step
cs1, and v(cs0, cs1) indicates the increase (or decrease) of the
probability on the operation at control step cs1 due to the
operation assignment. The total force Fv(cs0) associated with
the assignment ofmemory access operation v ∈ VM to control
step cs0 is given by Fv(cs0) =

∑
cs1 DG(cs1) ∗ v(cs0, cs1).

Then, the proposed memory-aware force (including
FB(CS) and FR(CS)) is calculated successively and itera-
tively (line 4-5). The first force FB(CS) is for memory banks,
generated by memory access operations, and the second force
FR(CS) is for hardware resources, generated by the estimated
hardware resource consumption for storing the pipelined data
in memory access operations in DFG. The candidate sched-
ules are selected by choosing the minimum FB(CS) forces,
which indicates the forces for banks. Then, the lowestFR(CS)
force within the previously selected candidate schedules and
the corresponding assignment are finally determined. Next,
the scheduled DFG intermediate is updated and the MAFDS
algorithm will start over until all the memory access opera-
tions are assigned to a control step.

2) DETAILED SCHEDULING EXAMPLE
To show clearly how the memory-aware force directed
scheduling works, a detailed example is given in Fig.8, which
is an intermediate during MAFDS modulo scheduling after
the operations L1, L2 and L4 are scheduled.

First, II is initialized by MII = 4 and the mobility of all
the memory access operations in Fig.8 is calculated as II ,
shown in Fig.9. Then, the distribution graphs for both banks
and hardware resources are presented in Fig.10 by summing
up the force distribution. The overall force generated by one
memory access operation is defined as 1. The DG for banks
are calculated as follows: the scheduled operations L1, L2
and L4 generate a force distribution of 1 in the correspond-
ing control step separately, while the unscheduled memory

FIGURE 8. An intermediate during MAFDS.

FIGURE 9. Mobility graph of the unscheduled memory access operations
in Fig.8. All the memory access operations have a mobility of II = 4.

access operations L3, L5, L6, S1 and S2 generate a force
distribution for each bank, which is 1/II in each control
step. Meanwhile, the DG for hardware resources is calculated
as follows: besides the scheduled operations L1, L2 and L4,
generating a force distribution of 1, operations L3, L5, L6, S1
and S2 generate the force distribution for hardware resources,
which is non-uniform distribution. Taking L6 in Fig.9 as an
example, its force distribution is {1/10, 2/10, 3/10, 4/10} after
normalization, based on the estimated register consumption
determined by the assignment of memory access operation to
different control steps.
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FIGURE 10. (a) Distribution Graph for Banks. (b) Distribution Graph for
Hardware Resources.

FIGURE 11. (a) Result of F B(CS) for the scheduling intermediate in Fig.8.
(b) Result of F R (CS) for the scheduling intermediate in Fig.8.

With the distribution graph, the memory-aware force are
then calculated, shown in a descending order in Fig.11. Sev-
eral candidate schedules with the minimum FB(CS) forces
are selected in Fig.11(a), which are (L3,CS3k ), (L5,CS3k ),
(L6,CS3k ), (S1,CS3k ) and (S2,CS3k ). Then in Fig.11(b),
the lowest FR(CS) force within the selected candidates and
the corresponding schedule (L3,CS3k ) are finally deter-
mined. This corresponds to assigning the memory access
operation L3 to control step CS3k in the example interme-
diate. Our proposed MAFDS is an iterative process until all
the memory access operations have been assigned to a control
step, presented in Algorithm 3.

C. OVERALL FLOW
An overall flow of the proposed joint approach is presented
in Algorithm 4. First, different types of operations in DFG
are classified into several categories and memory access
operations are stored into subset VM (line 1-3). Then, with
resource constraints and recurrent constraints, MII is calcu-
lated and used to initialize II (line 4-5).With the initialized II ,

Algorithm 4 Overall Flow

1 Gd ← (Vd ,Ed ); // Input DFG
2 Gd_Sch← ∅; // Output Scheduled DFG
3 VM ← ∀v ∈ Vd ; // Memory access operation subset VM
4 {VOP1,VOP2, · · · } ← ∀v′ ∈ Vd\VM ;
// Different types of operations (excluding VM ) are
classified into corresponding subsets

5 II ← MII ; // Initialize II with Minimum Initiation
Interval

6 while 1 do
7 for VOPx ∈ {VOP1,VOP2, · · · } do
8 FDS(VOPx , II ,Gd ,Gd_Sch);

9 MAFDS(VM , II ,Gd ,Gd_Sch);

10 {PA1kernel,P
A2
kernel, · · · ,P

Aq
kernel} ←

GetKernel(II ,Gd_Sch);
11 ArraySeparation({P

Aj
kernel |1 ≤ j ≤ q}, II ,

{N
Aj
f |1 ≤ j ≤ q});

12 BankSharing({P
Aj
kernel |1 ≤ j ≤ q}, {N

Aj
f |1 ≤ j ≤ q},

Ntotal);
13 IsSuccess← CheckConstraints(CRes,CRec);
14 if IsSuccess is true then
15 Break;

16 II ← II + 1;

the second step is to find an optimized memory access pat-
tern together with a legitimate pipelining kernel which is
implemented by memory-aware force directed scheduling
algorithm. The operations within {VOP1,VOP2, · · · } will be
allocated the control step firstly (line 7-8). Following this,
the memory access operations within VM are scheduled with
the proposed memory-aware force directed modulo schedul-
ing (line 9). The third step is to leverage multi-cycle memory
partitioning algorithm to achieve an appropriate bank map-
ping for the multi-cycle pipelining kernel. Once the memory
access pattern and pipelining kernel are determined (line 10),
the array separation and bank sharing algorithms proposed
in Algorithm 1 and 2 are applied, which can guarantee a
conflict-free loop pipelining and derive the minimized total
number of multiple independent memory banks Ntotal for the
joint approach (line 11-12).

If resource constraints CRes and recurrence constraints
CRec are not satisfied with current II , II will increase by
1 to relax the restriction and a new iteration will start with
II = II + 1 for a feasible result (line 13-16). This iterative
process will stop until the following conditions are satisfied:
1) resource constraints CRes and recurrence constraints CRec
are met, 2) There exists a legitimate pipelining kernel Kp,
3) There is a valid bank mapping (I ( Em), F( Em)).

VI. EXPERIMENTAL RESULTS
The proposed joint approach is implemented based on Legup
framework, which is one of the state-of-the-art academic
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TABLE 1. Properties of the benchmarks.

HLS tools, built on the LLVM compiler [22]. The memory-
aware force directed scheduling operates on the LLVM inter-
mediate representation. In multi-cycle memory partitioning,
the accessed data elements aremapped tomulti-bankmemory
and the Block RAM-based multiple independent memory
banks are programmed as single port for clarifying the pro-
posed algorithms. The typical memory storage capability of
each Block RAM is set as 18 Kb. RTL design is then imple-
mented by Xilinx Vivado Design Suite 2015.4 [23] targeting
the Virtex-7 VC709 Evaluation Platform (xc7vx690tffg1761-
2) for simulation, synthesis and power estimation.

The proposed approach is compared to four other
approaches: Baseline, SDC+LTB, SDC+EMP and
SDC+DRMP. ‘‘Baseline’’ denotes basic SDC modulo
scheduling, which works with no memory partitioning. Thus
all the banks share an uniform address space and all the
accessed arrays are placed continuously. Since there is no
other customized approach considering the joint problem
of modulo scheduling and memory partitioning in the lit-
erature, we combine SDC and three memory partition-
ing techniques to form different comparative approaches,
denoted as ‘‘SDC+LTB [9]’’, ‘‘SDC+EMP [11]’’ and
‘‘SDC+DRMP [12]’’, respectively.

We first evaluate the effect of memory partition-
ing and modulo scheduling in Section VI-A and VI-B
respectively. These experiments verify the usefulness of
the proposed multi-cycle memory partitioning (MMP) and
memory-aware force directed scheduling (MAFDS) algo-
rithms. Then, the complete experimental results of the
joint approach are compared with the other approaches in
Section VI-C.

Several representative C loops are selected from three
benchmark suites: Polybench, Livermore and Media-
bench. Table 1 describes detail, where Trip Count represents
the number of loop iterations and Access# represents the
number of memory access operations in one loop iteration.
In contrast with the previous work, the pipelining perfor-
mance II in our formulation includes not only the interval
between starting successive iterations of the loop, but also the
pipelining stalls caused by memory access conflicts. Thus,

it is more general and precise for evaluating the achieved
pipelining performance. Moreover, we also evaluate our
approach over the complete Polybench suite.

A. COMPARISON OF MEMORY PARTITIONING
The massively parallel data elements accessing the same
memory bank simultaneously have made memory access a
crucial bottleneck. An urgent request ismade formemory par-
titioning approaches to relieve the memory access problem.
In this section, our proposed multi-cycle memory partitioning
(MMP) are compared with the state-of-the-art memory parti-
tioning approaches LTB [9], EMP [11] and DRMP [12]. SDC
modulo scheduling algorithm is applied as a default schedul-
ing scheme to all of the memory partitioning algorithms for
fairness, denoted as SDC+LTB, SDC+EMP, SDC+DRMP
and SDC+MMP respectively.
We run the aforementioned C benchmarks and compare

the experimental results. Since all the aforementioned mem-
ory partitioning approaches can leverage the architecture of
multiple independent memory banks to achieve the opti-
mal pipelining performance, no performance benefit in loop
pipelining can be observed in this comparison.

We compare MMP to the better one among LTB, EMP
and DRMP. As can be seen from the results in Fig.12,
the proposed MMP provides an average 21.1% reduction in
Bank #, which corresponds to reduction in the number ofmul-
tiple independent memory banks. This is because the other
comparative techniques consider the memory access con-
flicts from different single-cycle access patterns concurrently,
which will result in a globally conflict-free pipelining kernel.
While ourMMPonly targets the single-cycle access pattern in
each control step to guarantee a locally conflict-free pipelin-
ing kernel. Moreover, the overhead, induced by unmapped
interspace segments in Block RAM, can be reduced by 22.9%
on average by our proposed MMP. The overhead is measured
in the unit of word. The overall storage is calculated by the
total number of 18 Kb Block RAMs, which has an average
reduction of 12.7%.

With the same scheduling algorithm, the generated pipelin-
ing datapath and control logic of these memory partition-
ing algorithms are almost identical, nevertheless, contracted
memory subsystems can bring improvements in the resource
utilization: Our proposed MMP can reduce the usage of LUT
and FF by 12.3% and 11.2% on average. Meanwhile, there is
an average reduction of 12.4% in the dynamic power.

B. COMPARISON OF MODULO SCHEDULING
The existing memory partitioning algorithm can guarantee
that no memory access conflict will occur in the execution
of all the memory access operations in any control step,
but state-of-the-art HLS scheduling approaches (e.g. SDC
modulo scheduling) ignore the interrelation between mod-
ulo scheduling and memory partitioning. Then, our pro-
posed heuristic modulo scheduling algorithm (MAFDS) is
compared with SDC modulo scheduling. Likewise, memory
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FIGURE 12. Comparison of the experimental results among SDC+LTB, SDC+EMP, SDC+DRMP and SDC+MMP.

FIGURE 13. Comparison of the experimental results between SDC+MMP and MAFDS+MMP.

partitioning algorithm MMP is applied to both of the modulo
scheduling algorithms for fairness, denoted as SDC+MMP
and MAFDS+MMP respectively.
The comparison results are presented in Fig.13. Over the

representative benchmarks, the number of multiple indepen-
dent memory banks has an average reduction of 34.6%.
This is because our MAFDS can optimize the multi-cycle
access pattern to reduce the demand for parallel data accesses
(reducing maximum number of load/store operations in any
control step) and achieve the optimal multi-bank consump-
tion. The results also show that our scheduling approach can
result in an average reduction of 18.5% in LUT and 16.2% in
FF, which is due to both the reduction of resources for storing
the pipelined data and the contraction in memory subsystem.

With MAFDS, the dynamic power is reduced by 23.7% on
average versus the comparative work.

C. EXPERIMENTAL RESULTS ON SELECTED LOOPS
The experimental results and comparisons over 9 C
loops from three different benchmark suites are pre-
sented in Table 2. ‘‘MAFDS+MMP’’ is our proposed joint
approach, which consists of multi-cycle memory partition-
ing (MMP) and memory-aware force directed scheduling
(MAFDS) algorithms.

When comparing ‘‘Baseline’’ with ‘‘Our Approach’’,
a great improvement is achieved in the pipelining perfor-
mance in our proposed scenario, with an average improve-
ment of 43.0% for II and 42.8% for latency. It is noteworthy
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TABLE 2. Experimental results and comparisons on multi-benchmark suites.

that with our proposed joint approach, hardware resource
usage will increase and more power is consumed, but it
is still an acceptable cost compared with the considerable
improvement in pipelining performance.

For the rest of these comparative approaches, we compare
the results of ‘‘Our Approach’’ with the best results achieved
among ‘‘SDC+LTB’’, ‘‘SDC+EMP’’ and ‘‘SDC+DRMP’’.
The results show that our joint solution can further opti-
mize the hardware resource usage, while still achieving the
optimal pipelining performance (II and latency reach the
optimal minimum values). Table 2 shows that the average
improvements in Bank # and storage overhead are 49.2%
and 32.3% respectively to the best of the other 3 approaches.
There is also an average reduction of 30.0% in overall storage

(number of 18Kb Block RAMs) after memory partitioning.
The contraction of memory subsystem by our approach con-
tributes to the reduction in LUT (28.3%) and FF (25.9%). Fur-
thermore, the total dynamic power consumption is reduced
by 32.3% and the clock period is reduced by 3.2% on
average.

It is worthy to note that the single loop latency achieved by
‘‘Our Approach’’ will be slightly greater than those achieved
by the comparative methods (an increase of a few cycles
in some benchmarks). This is because our approach will
increase the critical path to guarantee that there is no pipelin-
ing stall in the loop pipelining and an optimized memory
access pattern can be achieved. However, with the trip count
being large enough, the tiny increment in loop latency can
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FIGURE 14. Experimental results and comparisons on complete Polybench suite.
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always be neglected and no distinct variation will be observed
in the corresponding wall-clock time.

The improvement in our joint approach is mainly from two
aspects: 1) the memory partitioning in MMP separates the
accessed arrays into multiple independent memory banks and
the memory access conflicts in the same control step will be
avoided. Meanwhile, taking the multi-cycle pipelining kernel
achieved by modulo scheduling into collaborative considera-
tion, less banks are required for a conflict-free pipelining ker-
nel. 2) the memory-aware force directed scheduling has been
applied to further optimize the multi-cycle access pattern and
reduce the parallelism of the load/store operations in each
control step of the pipelining kernel and it will interact with
MMP to reduce the hardware resource usage and memory
bank consumption.

D. EXPERIMENTAL RESULTS ON COMPLETE
POLYBENCH SUITE
In this section, we present the experimental results on
the complete Polybench suite. Since ‘‘SDC+DRMP’’
achieves relative better performance than ‘‘SDC+LTB’’ and
‘‘SDC+EMP’’ in previous experiments, we compare our
approach to both ‘‘Baseline’’ and ‘‘SDC+DRMP’’.
The complete experimental results and comparisons are

presented in Fig.14. When comparing ‘‘Baseline’’ with our
approach, a great improvement is achieved in the pipelining
performance in our proposed joint approach, with an average
improvement of 70.4% in total latency.

Both ‘‘SDC+DRMP’’ and our approach achieve the opti-
mal pipelining performance, but the results show that our
joint solution can further optimize the hardware resource
usage, while still achieving the optimal pipelining perfor-
mance. Fig.14 shows an average improvement of 18.3% in
Bank #. There is also an average reduction in LUT (8.3%) and
FF (7.7%) achieved by our approach. Furthermore, the total
dynamic power consumption is reduced by 6.7% on average.
All these results, which are consistent with the experiments
over the selected loops, unanimously prove the effective-
ness of our joint approach for improving loop performance
in HLS.

VII. CONCLUSION
In this paper, we study the problem of HLS modulo schedul-
ing in the context of multi-bank memory and propose a joint
memory-aware force directed scheduling and multi-cycle
memory partitioning approach for the massively parallel
memory access bottleneck problem. Comparedwith the state-
of-the-art approaches, experimental results demonstrate that
the proposed joint approach can produce substantial reduc-
tion in the number of multiple independent memory banks,
while achieving the optimal loop pipelining performance.
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