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Abstract—Classification of plants based on a multi-organ
approach is very challenging. Although additional data provides
more information that might help to disambiguate between
species, the variability in shape and appearance in plant organs
also raises the degree of complexity of the problem. Despite
promising solutions built using deep learning enable represen-
tative features to be learned for plant images, the existing
approaches focus mainly on generic features for species classifica-
tion, disregarding the features representing plant organs. In fact,
plants are complex living organisms sustained by a number of
organ systems. In our approach, we introduce a hybrid generic-
organ convolutional neural network (HGO-CNN), which takes
into account both organ and generic information, combining
them using a new feature fusion scheme for species classification.
Next, instead of using a CNN based method to operate on
one image with a single organ, we extend our approach. We
propose a new framework for plant structural learning using
the recurrent neural network (RNN) based method. This novel
approach supports classification based on a varying number
of plant views, capturing one or more organs of a plant, by
optimizing the contextual dependencies between them. We also
present the qualitative results of our proposed models, based
on feature visualisation techniques and show that the outcomes
of visualisations depict our hypothesis and expectation. Finally,
we show that by leveraging and combining the aforementioned
techniques, our best network outperforms the state-of-the-art on
the PlantClef2015 benchmark.

Index Terms—Plant classification, deep learning.

I. INTRODUCTION

B IODIVERSITY is declining steadily throughout the
world, mainly due to direct or indirect human activities.

To protect biodiversity, people have begun building knowledge
of accurate species to recognize unknown plant species. Tax-
onomists, botanists, and other professionals determine plant
species from field observation based on a substantial species
knowledge gained through their field work and studies. Cate-
gorisation of plants still remain a tedious task due to limited
knowledge and information of world’s plant families. For this
reason, taxonomists started seeking methods that can meet
species identification requirements, such as developing digital
image processing and pattern recognition techniques [1].

Recent progress in computer vision makes it possible to
assist botanists in plant identification tasks. The majority of
computer vision approaches utilizes leaves for discrimination,
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Fig. 1: Example of plant organs images, and we can observe
the large variability in their appearance.

as leaf characters have been predominantly used to clarify
plants. Characters such as shape, texture and venation are the
features most generally used to distinguish leaves of different
species [2]. Nevertheless, due to the intra or interspecies
diversity of plants in nature, some species are difficult or
impossible to differentiate from one another using only the leaf
organ. In fact, this ambiguity occurs also in other organs. For
example as shown at the top of Fig. 2, the images of fruits are
visually similar. Using solely a single image of a fruit organ
makes it considerably hard to differentiate between species,
especially for non-botanists who have limited knowledge of
plant characters. However, if we extend our observation to
multiple organs such as branches and leaves (as shown at the
bottom of Fig. 2), together with fruits, we can easily find out
that they have discriminative patterns, as a significant cue for
plant recognition. For example, the differences between the
appearance of branches as well as the venations of leaves.
So, in this case, it is obvious that observing different organs
can help to ease the plant identification task. On the other
hand, there are times when certain organs are not in season,
for example, during winter we can only observe the bark of a
deciduous plant. Under these circumstances, it is known to be
more informative to capture multiple viewpoints of the bark
to increase the species discrimination [3].

Therefore, in connection with the aforementioned studies,
researchers started to focus on the automatic analysis of
multiple images exploiting different views of a plant capturing
one or more organs. However, it is a challenging task to
classify different organs plant images. For example, in Fig
1, we can observe the large variability in the appearance of
plant organs. Even within the same organ, large differences
can occur. Furthermore, images of plants taken in the field
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Fig. 2: Examples of very similar appearance of fruit organs between species (right: Cornus mas L., left: Cornus sanguinea L.).
However, by extending our observation to different views capturing one or more organs such as branches and leaves, we can
easily find out the discriminative patterns. For examples, color and texture of the branches as well as the venation structure of
the leaves.

with clutter in the background are more difficult to recognize.
For this, researchers generally adopt organ-specific features
for discrimination [4]–[9]. They first group images of plants
into their respective organ categories. Then, based on each
organ category, organ-specific features are extracted using
feature engineering approaches such as Scale-invariant feature
transform (SIFT), Bag of Word (Bow), Speeded-Up Robust
Features (SURF), Gabor, Local Binary Pattern (LBP). During
the species classification stage, the computed features for
each organ category are trained individually using conven-
tional machine learning algorithms such as Support Vector
Machine (SVM), k-means clustering, Weighted Probability
(WP) approach, nearest neighbour classifier and random forest.
Although successful, to design or decide which feature de-
scriptors to use for each organ is highly dependent on the prior
knowledge of plant organs, and, this information is usually
only partially available or incomplete for non-specialist users.

Deep Learning (DL) [10] is an emerging technology that
has proved extremely high recognition capabilities with very
large datasets, replacing the need of designing hand-crafted
features as to previous approaches [4]–[9]. The Convolutional
Neural Network (CNN), as one of the most used DL methods
has been employed to learn generic representation for images
of plants [11]–[14]. Specifically, M -class species classifier is
trained, irrespective of the organ or organ structure. Although
generic features can model target species classes, they might
not be able to provide an appropriate description for a plant.
For example, for a leaf image taken with a noisy background,
as the leaf on the newspaper shown in Fig. 1, generic features
focus on the holistic representation of the image. In such
case, text might be considered erroneously as one of the
discriminative features for the species. This is not surprising,
as a generic network learns irrelevant features, especially
when they appear to be discriminative among species. For
this reason, we propose a new CNN architecture that can go
beyond the regular generic description of a plant, integrating
the organ-specific features together with the generic features
to explicitly force the designed network to focus on the organ
regions during species classification.

Although existing CNN methods can model a suitable fea-
ture representation for a plant image, they lack the capability
to model the global relationship between different plant views
(or organs) captured of a plant. The reason is that existing
CNN based approaches were designed to operate on a single
plant image, focusing on capturing the similar region-wise
patterns within an image but not the structural patterns of a
plant seen from multiple views with one or more of its organs.
This is particular important as these images captured from a
same plant contain structural information that is not mutually
exclusive. In fact, they share overlapping characteristics which
are useful for species recognition. Henceforth, this motivates
us to move beyond existing practice, proposing a new plant
classification framework that takes into consideration contex-
tual dependencies between varying plant views capturing one
or more organs of a plant.

In this work, we present two frameworks to classify different
plant organs images. First, we present a novel CNN archi-
tecture called the hybrid generic-organ convolutional neural
network, abbreviated HGO-CNN. Specifically, it extracts prior
organ information, and, classifies one image based on the
correlation between the chosen organ and generic-based fea-
tures. Second, we propose a new framework of plant structural
learning based on recurrent neural networks (RNN), namely
the Plant-StructNet. Specifically, it takes in a varying number
of plant views images composed of one or more organs,
and, optimizes the contextual dependencies between them for
species classification. To summarize our major contributions:

1) We present two novel plant classification frameworks,
namely the HGO-CNN (Sec. III) and Plant-StructNet
(Sec. IV). The HGO-CNN can be seen as a per-image
modeling focusing on feature representation of one image
capturing a single plant view (or organ), while the Plant-
StructNet can be as a multi-image modeling that operates
on multiple plant views capturing one or more organs of
a plant.

2) We experimentally show that modeling the dependencies
between plant views can essentially improve the perfor-
mance of plant classification (Sec. VII-A). In addition,
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we demonstrate that the ensemble model combining the
enhanced HGO-CNN and Plant-StructNet architectures
outperforms the state-of-the-art (SOTA) on the Plant-
Clef2015 [15] dataset (Sec. VII-C).

3) Besides quantitatively analyzing our proposed models, we
go deeper into exploring, analyzing and understanding the
learned features through feature visualisation techniques.
Through the deconvolution approach [16], we show that
both the organ and generic features learned in HGO-CNN
exhibit different contextual information of a plant image
(Sec.VI-C). Furthermore, through the t-SNE [17], we can
observe the discriminative behavior of both HGO-CNN
and Plant-StructNet that reflects the quantitative results
(Sec. VII-A).

A preliminary version of the HGO-CNN was presented
earlier [18]. The present work adds to the initial version in
significant ways. Firstly, we present and analyze in this paper
various improvements we have made to our previous HGO-
CNN, and, find that enhancing the feature fusion can further
improve its classification performance. Secondly, we propose
a Plant-StructNet that supports classification based on varying
plant views, and to our surprise, it is able to improve the
prediction of the less informative plant organ that is hardly
handled by the HGO-CNN. Next, we experimentally prove
that the ensemble model combining both the proposed HGO-
CNN and Plant-StructNet, outperforms the SOTA result.

Our paper begins with a comprehensive review of existing
methods of plant identification in Sec. II. Inspired by the
success of RNN in modeling long-term dependency, we also
review RNN and its varying application. Sec. III introduces the
idea of HGO-CNN for end-to-end automatically processing
and classification for the multi-organ plant data. Next, we
introduce the Plant-StructNet architecture that built upon the
concept of RNN to distinguish plant species at Sec IV. The
experiments of HGO-CNN and Plant-StructNet are given in
Sec. VI and Sec. VII respectively. Finally, we conclude this
paper in Sec. VIII.

II. RELATED WORK

Plant identification. Over the past few years, researchers have
worked on recognizing plant species using solely a single plant
organ. A majority of the studies have utilized leaves to identify
species. Leaf characters such as shape [19]–[22], texture [21],
[23], and venation [24]–[26] are the most generally used
features to distinguish leaves of different species. Lately, [2]
proposed the use of deep learning for reverse engineering
features of leaf, and, found out that different orders of leaf
venation are more discriminatory than leaf shape features.
Other than leaf, there are also researchers focus on using
flower [27]–[29] to identify species.

To fit better with a real scenario where a botanist generally
tries to identify a plant by observing several plant organs or
a similar organ from different viewpoints during times when
other organs are not in season, researchers in computer vision
have focused on designing an automated plant classification
system to identify different organs plant images. Earliest
attempts [4]–[9], [30] in general, adopt feature extraction and

classification as two separate steps, and, they engineered the
features. For example, to support large-scale plant species
identification, a course-to-fine method was introduced through
constructing a hierarchical classifier [30]. Although reliable
performance was reported, cascaded inferences in the hierar-
chical classifier are very much affected by the selection of the
best subset of handcrafted features, which are in turn, task or
dataset dependent. Lately, [31] proposed using an end-to-end
CNN to replace those hand-crafted feature extractors. They
introduced organ-specific CNN models where each model is
trained on dedicated plant organs. Although CNN is powerful
in learning discriminative features, constraining it to learn on
specific organ categories might restrict its performance.

Other research [11]–[14] has focused on using CNN to
learn generic features of plants, irrespective of their organ
information. In this case, multi-organ plant images are trained
together using a generic CNN model. In the LifeClef2015
challenge, [12] showed that using the deepest network of
GoogLenet, could provide the best result. However, generic
features tend to focus on the holistic structures of an image,
neglecting relevant attributes describing characteristics of a
plant organ. Our work aims to solve this problem by designing
a new CNN model that can extract prior organ information,
and, subsequently combine it with generic features for species
recognition.

RNN based classification The RNN has received great at-
tention due to its capability of processing sequential data
such as language translation [32]–[34] and action recognition
[35]–[37]. Recently, CNN and RNN have been employed
to combine information, integrating the domain of computer
vision and natural language processing. For example, image
[38], [39] or video [40], [41] to text translation and reasoning
as well as question and answering based on images [33],
[42]–[44]. Due to the inherent sequential nature of video
and language, Long Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU) are the generally used architectures to
process these data.

Other than the capability of modeling video or language
data, lately, a few publications have showed the effectiveness
of RNN based approaches to process variable length of fixed-
sized data in a sequential manner though data originally is not
in a form of sequences. Specifically, RNN is used to model the
dependencies between pixels or regions within an image. For
example, it has been actively explored in segmentation [45]–
[47], scene labeling [48]–[50], object recognition [51], [52]
and detection [53], [54], as well as image generation [55].
Our work builds on the foundations laid in these approaches.
Nevertheless, instead of using RNN based method to process
pixels [46], [47] or regions [51], [55] level information of
an image, we formulate it to process the structural level
information of a plant based on several images captured from
its various organs or different viewpoints of a similar organ.
In particular, this can be seen as a first step towards plant
semantic learning systems that modeling plant species based
on multiple plant views capturing one or more organs of plant.
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Fig. 3: Overview of HGO-CNN framework. (a) The architecture of HGO-CNN; (b) Multi-scale plant images generation: given
a plant image, we isotropically rescale the training images into three different sizes: 256, 384 and 512. Then, for 384 and 512
image sizes, we crop 256 × 256 center pixels; (c) The HGO-CNN feature fusion scheme: (i) during training, the two-path
CNN is initially pretrained with the ImageNet dataset [56]. (ii) Then, one of the CNN path is repurposed for the organ task,
while (iii) the another CNN path is repurposed for the generic task. (IV) Finally, new species layers are introduced to train
the correlation between both the organ and generic components. Best viewed in color.

III. THE HGO-CNN

Generally, botanists can classify plants by observing and
studying their features, usually using all the plant organs.
Plant organs are known prior to explore the characteristic of a
species. For instant, when botanists study a leaf, they focus on
the leaf characters such as its margin or venation patterns, and,
when they study a flower, they focus on the characteristics of
its petals, sepals and stamen to identify unknown plant species.
So, it is logical to believe that a better recognition method for
plant species might require prior information of their organs.
We propose an end-to-end network, namely the HGO-CNN,
to classify different plant organ images. HGO-CNN is able
to encapsulate organ and generic information prior to species
classification. Fig. 3(a) depicts its architecture.

A. Architecture

The proposed HGO-CNN comprises four layers or compo-
nents: (i) a shared layer, (ii) an organ layer, (iii) a generic
layer, and (iv) a species layer. The rationale behind proposing
a shared layer is inspired by: (1) the work of [16], [57], who
demonstrated that bottom layers in deep networks respond to
low-level features, such as corners and edges, in turn crucial
to the classification of any high level features, and, (2) the
fact that such layers help reducing the number of training
parameters.

Input to our HGO-CNN is a 224 × 224 color image.
For the convolutional layer, we utilise 3 × 3 convolution
filters with spatial resolution preserved using stride 1. Max
pooling is performed using a 2 × 2 pixel window with
stride 2. Three fully connected layers, which have 4096, 4096
and 1000 channels respectively, follow behind the stacks of
convolutional layers. The output of the last hidden layer is
normalized with the softmax function:

P (r|I) = esr(I)∑M
m=1 e

sm(I)
(1)

where M and r stand for the total number of classes and
the target class respectively, while s(I) stands for the final
activation of the input plant image I obtained at the last hidden
layer. After performing the softmax operation, we find the
maximum likelihood of the sample by applying the objective
function, Lhgo = −logP (r|I).

B. Multi-scale plant images generation

To increase the robustness of a system in recognising multi-
organ plant images, we generate multi-scale plant images for
training as depicted in Fig. 3(b). We isotropically rescale the
training images into three different scales: 256, 384 and 512,
where each scale be the smallest side of an isotropically-
rescaled training image. Then, we crop 256 × 256 center
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pixels. By doing this, the crops from the larger scale images
will correspond to a small parts of images or particularly
subparts of organs, while, the crops from the smaller scale
images hold the information of the entire organs. During
network training, 224 × 224 pixels are randomly cropped
from the rescaled images and fed into the network. During
testing, we do apply a similar multi-scale process to obtain
three sets of testing images for a query image. An averaging
fusion method is then used to combine their softmax scores
to output a final result for a query image.

C. Feature Fusion Scheme

In order to train the HGO-CNN to capture prior organ
information, and, subsequently integrate both generic and
organ-based information for species classification, we propose
a feature fusion scheme. It is based on a novel step-by-step
training strategy (illustrated in Fig. 3(c)):

i. Pre-Training CNN layers HGO-CNN uses a two-path
CNN as shown in Fig. 3(c)(i) for the purpose of training
generic and organ based features at a later stage. This two path
CNN is similar to the architecture depicted in Fig. 3(a), except
that, it does not include the interconnection between paths,
and, each path has its own fully connected layers. These are
initially pre-trained using the ImageNet challenge dataset [56].

ii. Organ layer After we obtained the pre-trained two-path
CNN, one of the CNN paths is repurposed to extract organ
features. This organ layer is trained together with the shared
layer, using seven kinds of organ labels predefined in the
PlantClef2015 dataset. The organ labels are branch, entire,
flower, fruit, leaf, stem and leafscan. We obtain organ-based
feature maps, xorg ∈ RH×W×Z where H,W and Z are
the height, width and number of channels of the respective
feature maps. We train the shared layer based on the organ
labels is because the shared layer that corresponds to the
low-level features is more appropriate to be trained upon
the course-level organ classes instead of the class-specific
species classes. So that, it can be more generalised to fit in
the modeling of both target classes.

iii. Generic layer After training the organ layer, another CNN
path is repurposed to extract the generic features. This generic
layer is trained using the 1000 species labels predefined in
the PlantClef2015 dataset, regardless of organ information.
We obtain generic-based feature maps, xgen ∈ RH×W×Z . To
allow both the organ and generic layers to share the common
proceeding layer, we keep the shared layer’s weights to be
consistent. This is achieved by setting their learning rate to
zero.

iv. Species layer To introduce correlation between both the
organ and generic components, we introduce a fusion function
gcat. It is employed at stage L (after the last convolutional
layer for both components as shown in Fig. 3(a)). In our
model, gcat first concatenates xgen and xorg along the
channel axis, forming a stacked data, xcat = [xgen,xorg],

where xcat ∈ RH×W×2Z . Then, xcat will subsequently
convolves with a set of filters f ∈ Rp×q×2Z×N with dimension
p× q × 2Z and biases b ∈ RN : ycat = xcat ∗ f + b. We
set N = Z so that we can reduce the dimensionality of
the output feature maps ycat, while, at the same time,
modeling the correspondence between the two feature maps
xgen and xorg. The feature maps ycat will then go through
convolution layers to learn the combined representation of
generic and organ features. Since these two convolution
layers are new randomly-initialised, we set their learning
rate to be 10 times higher than the other layers during training.

IV. THE PLANT-STRUCTNET

Plants are complex living organisms sustained by a number
of organ systems. To recognize plant species, botanists usually
observe multiple plant structures captured from a same plant
to encounter the local ambiguities of features between species
brought by the intra and interspecies diversity of plants in na-
ture. For example as shown in Fig. 2, incorporating observation
from multiple plant organs such as branches, leaves and fruits
provides a better understanding on the discriminative patterns
to distinguish plant species. There are also times people extend
their observation to multiple views of a similar organ when
other types of organs are not in season [3]. Although the
existing CNN methods allow us to extract the discriminative
features of a plant image without the needs of handcrafting
features, it has been designed to operate on a single plant
image which in turns is incapable of modeling the contextual
dependencies between varying plant views capturing one or
more organs of a plant. We believe that different plant views
captured from a same plant contain structural information that
is not mutually exclusive, but in fact, they are correlated. For
this reason, we move beyond existing practice, proposing the
Plant-StructNet to model high level contextual dependencies
between plant views comprising varying organs or different
viewpoints of a similar organ.

A. Architecture

It is known that human brain processes information itera-
tively, where it keeps the current state in an internal memory
and uses it to infer future observation, capturing the potential
relationships between them [58], [59]. Driven by this insight,
we build the Plant-StructNet upon the RNN, which it can hold
and relate different structural information of a plant. It would
be also versatile to deal with arbitrary number of plant images.
Plant-StructNet is based on a probabilistic framework that can
directly maximize the probability of the correct species label,
conditioned on all other related plant images by using the
following cross entropy function:

Lt = −logP (rt|It, {rd}d6=t) (2)

where t = 1, ..., T are the states corresponding to the
indices of plant images captured from a same plant. Con-
trary to modeling video or language data where variable
number of inputs are conditioned upon their previous states,
P (rt|It, r1, ..., rt−1), in our case, it is logical to condition
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Fig. 4: The architecture of the proposed Plant-StructNet in
classifying different plant views capturing one or more organs
of a plant. Each state of the network stores the information of
one plant view.

the inputs upon all other states information for the plant
structural modeling, P (rt|It, {rd}d6=t). The reason is that,
states in our context are analogous to the collections of plant
views captured from a similar plant, so the relationships
between these states are interrelated. Henceforth, to tackle
this challenge, we design the Plant-StructNet in such a way
that it would be able to iteratively classify images of a plant
while conjointly operate on all of its related instances. In
particular, we build a bidirectional states modeling mechanism
where the forward neuron activations

−→
h models Pfw =

P (rt|It, r1, ..., rt−1) and the backward neuron activations
←−
h

models Pbw = P (rt|It, rt+1, ..., rT ). Then, we put in cor-
respondence between both neurons for every state and train
them upon the respective species classes as shown in Fig 4.
In this manner, each state t can be considered as condition
upon the collections of the related plant images from states
1, ..., t− 1, t+ 1, ..., T . To model both the Pfw and Pbw, we
adopt GRU [60] as one of the RNN gating mechanisms.

During training, given an array of plant images acquired
from a similar plant It ∈ {I1, I2, ..., IT}, we first compute
their feature representation using CNN, δt ∈ {δ1, δ2, ..., δT }.
Then, we feed them sequentially to each state t = 1, ..., T
of the Plant-StructNet. The forward activation function of the
GRU,

−→
h t at state t is a linear interpolation between the

previous activation
−→
h t−1 and the candidate activation

−̃→
h t:

−→
h t = (1−−→z t)

−→
h t−1 +−→z t

−̃→
h t (3)

where −→z t is the update gate that decides how much of the
unit updates its activation. It is computed as follows:

−→z t = σ(Wz1δt +Wz2
−→
h t−1) (4)

The candidate activation
−̃→
h t is computed as follows:

−̃→
h t = tanh(Wh1δt +Wh2(

−→v t �
−→
h t−1)) (5)

where −→v t is the reset gate and � is an element-wise multi-
plication operator, −→v t is computed as:

−→v t = σ(Wv1δt +Wv2
−→
h t−1) (6)

All the various W matrices are trained parameters. Specif-
ically, GRU has two gating units to modulate the flow of
information inside the unit. The update gate −→z t decides how
much of the previous state should be kept around, while the
reset gate −→v t determines to which extent the new input should
be combined with the previous state. When the reset gate −→v t

is off (−→v t close to 0), it allows the unit to forget the previous
computed state. To compute the backward activation

←−
h t, we

formulate it as for the
−→
h t but in a reverse direction as shown

in Fig 4. In order to correlate between both states, the output
activations of the forward and backward GRU are cascaded as
follows:

ht = [
−→
h t,
←−
h t] (7)

Then, we multiply ht with a class embedding matrix, Wem,
which is s(It) = Wemht before normalizing it with a softmax
function:

P (rt|It, {rd}d6=t) =
esr(It)∑M

m=1 e
sm(It)

(8)

We perform the softmax operation for every state t preceding
the computation of the overall cross entropy function: Lpsn =
1
T

∑T
t=1 Lt, where Lt is mentioned at eqn. (2).

During prediction, the species label for the t-th plant image
can be calculated by first simply cascading the output activa-
tions of the forward and backward GRU as mentioned in eqn.
7. The output ht is then multiplied with the class embedding
matrix, Wem, before going through the softmax function (eqn.
(8)).

V. DATASETS AND EVALUATION METRICS

Dataset. The PlantClef2015 dataset was used. It has 1000
plant species classes. Training and testing data comprise
91759 and 21446 images respectively. Each image is
associated with a single organ type (branch, entire, flower,
fruit, leaf, stem or leaf scan).

Evaluation metrics. Two evaluation metrics are employed: the
image-centered and the observation score [15]. The purpose
of the observation score is to evaluate the ability of a model
predicting correct species labels for all the users. The obser-
vation score calculates the mean of the average classification
rate per user as defined:

Sobs =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

Su,p (9)

where U : represents the number of users, Pu: the number
of individual plants observed by the u-th user, Su,p: the
score between 0 and 1 as the inverse of the rank of the
correct species (for the p-th plant observed by the u-th user).
Each query observation is composed of multiple images. To
compute Su,p, we adopt the Borda count (BD) and the majority



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2836321, IEEE
Transactions on Image Processing

PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 7

voting (MAV) based approaches to combine the scores of
multiple images:

BD =
1

n

n∑
k=1

scorek (10)

MAV = max
1≤k≤n

scorek (11)

where n: the total number of images per query observation.
score: is the softmax output score, which describes the ranking
of the species.

Next, the image-centered score evaluates the ability of a
system to provide the correct species labels based on a single
plant observation. It calculates the average classification rate
for each individual plant defined as:

Simg =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

Nu,p

Nu,p∑
n=1

Su,p,n (12)

where U and Pu are explained earlier in the text. Nu,p is the
number of pictures taken from the p-th plant observed by the
u-th user, Su,p,n is the score between 0 and 1 equal to the
inverse of the rank of the correct species (for the n-th picture
taken from the p-th plant observed by the u-th user). We
compute the rank of the correct species based on its softmax
scores.

VI. EXPERIMENTS WITH THE HGO-CNN

We train our HGO-CNN model using the Caffe library
[61]. The networks are trained with back-propagation, using
stochastic gradient descent [62]. For the training parameter
setting, we employed the fixed learning policy. We set the
learning rate to 0.01, and then decrease it by a factor of 10 until
the validation set accuracy stops improving. The momentum is
set to 0.9 and the weight decay to 0.0001. In all experiments,
we use a mini-batch size of 60. We improve the generalization
of the model by randomly cropping and mirroring the input
image during training. We run the experiments using an
NVIDIA K40 graphics card.

A. Performance Evaluation

We compare our HGO-CNN with the best plant identifica-
tion systems evaluated in the previous LifeClef2015 challenge
[12], [13], [31]. We also compare with the VGG-16 net [63],
which is fine tuned and trained purely on species labels using
the PlantClef2015 dataset. This is to measure the contribution
of correlation between organ and generic components in the
plant species classification. Table I shows the comparison
results. We observe that the HGO-CNN model achieves a
higher score compared to the VGG-16 net. This confirms the
importance of organ features used to discriminate between
plant species compared to using solely generic information for
plant classification. Apart from that, by applying the multi-
scaling technique mentioned in Sec. III-B, the multi-scale
HGO-CNN, abbreviated M-S HGO-CNN, outperforms all the
previous methods.

TABLE I: Performance comparison with other best plant
identification systems evaluated in the LifeClef2015 challenge.
Note that, M-S = Multi-scale.

Method Sobs Simg

GoogLeNet + Fisher Vectors (BD) [13] 0.592 -
GoogLeNet (MAV) [13] 0.609 0.581

GoogLeNet (content+ domain) [31] 0.633 -
GoogLeNet + softmax normalization [31] 0.624 0.590

5-fold GoogLeNet (MAV) [12] 0.667 0.652
5-fold GoogLeNet (BD) [12] 0.663 0.652

VGG-16 net(MAV) 0.663 0.638
VGG-16 net(BD) 0.664 0.638
HGO-CNN(MAV) 0.671 0.647
HGO-CNN(BD) 0.673 0.647

M-S HGO-CNN(MAV) 0.715 0.690
M-S HGO-CNN(BD) 0.717 0.690

TABLE II: Classification performance comparison of each
content based on Simg .

Method Branch Entire Flower Fruit Leaf LeafScan Stem
Choi [12] 0.498 0.531 0.784 0.602 0.600 0.766 0.326
Ge et al. [31] 0.416 0.448 0.738 0.558 0.524 0.694 0.291
Champ et al. [13] 0.398 0.453 0.723 0.559 0.501 0.713 0.302
Le et al. [4] 0.051 0.084 0.207 0.125 0.342 0.737 0.164
VGG-16 net 0.491 0.522 0.777 0.585 0.591 0.747 0.337
HGO-CNN 0.522 0.532 0.779 0.604 0.607 0.690 0.326
M-S HGO-CNN 0.568 0.603 0.798 0.653 0.652 0.803 0.411

(a) (b)

(c) (d)

Fig. 5: Species of stem images:(a)Acer pseudoplatanus L.(b)
and (d)Acer saccharinum L.(c) Aesculus hippocastanum L.

B. Detailed Scores for Each Plant Organ

In this section, we analyse the classification performance for
each organ based on the image-centered score, Simg . Instead
of calculating the average classification rate for each individual
plant based on all the n-th picture taken from the p-th plant, the
Simg considers only pictures illustrating a dedicated plant view
(organ). Table II illustrates the comparison results. We observe
that both of our proposed models, HGO-CNN and M-S HGO-
CNN show that scanned leaf and flower are the most effective
organs compared to others for plant identification. This is
similar to the results reported in [15]. Our HGO-CNN shows a
higher identification score for the ’Flower’ category compared
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Fig. 6: Visualization of the last convolution of generic, organ and species layer for the test images. Color contrast is digitally
enhanced. Figure is best viewed in electronic form.

to ’LeafScan’. In addition, using multi-scale training, M-S
HGO-CNN shows a major improvement in the ’LeafScan’
category. This indicates that multi-scale training data could
further improve the feature representation for multi-organ plant
images. Overall, our M-S HGO-CNN achieves the highest
Simg compared to other SOTAs. Although M-S HGO-CNN
leads to a better result for ’Stem’, the organ is still considered
as the least informative one compared to other organs. This
might be due to the intra and interspecies diversity of plants
in nature, resulting in a stem not vivid enough for species
identification. For example, Fig. 5 illustrates the confusion risk
for identifying plant species when only stem information is
used. These stem organs are considered hard to disambiguate
even by the botanists.

C. Qualitative Analysis

Besides the quantitative analysis, we go deeper into ex-
ploring, analyzing and understanding the learned features. We
use the deconvolution approach [16] to find which features
have been learned in each layer and observe their differences.
We subsample the top 2 activation feature maps in the last
convolution of each layer and reconstruct them back to image
pixels. Fig. 6 shows the learned activation maps as well
as the deconvolved images. For example, in the Fig. 6(a),
we observe that both organ and generic-based features show
complementary information, in which the organ layer mainly
focuses on the tree branch, while generic layer stimulates
at the twig. The species layer encapsulates both information
and reveals the portions that best represent the plant image.
Through this visualisation, it is clear that features learned in
both layers are not overlapped, but extracting complementary
information that could drive the network to better characterize
a plant species. Apart from that, we observe that the generic

layer erroneously considers non-plant object as one of the
discriminative features to distinguish species. For example, in
the Fig. 6(f), we observe that the generic features focus at the
irrelevant features of the stairs instead of the plant structures.
This indicates that although generic features can identify plant
species, it might learn irrelevant features that are inappropriate.
For this reason, in our work, we propose adding an additional
organ features to explicitly force the network to focus on the
organ regions in order to boost the species discrimination.

D. Model Improvement

In the previous experiments, we have proven the importance
of organ information in plant species predictive modeling. We
also have documented the significance of multi-scale training
in classifying different organs plant images. Then, we extended
and improved the generalization of the model using various
enhancement techniques. In this section, we analyze how
these techniques improve the previous model. In Table III, we
summarize their performance and compare them to our best
model (i.e. M-S HGO-CNN(BD)), obtained in the previous
set of experiments. In these experiments, besides Simg and
Sobs, we also compute the top-1 classification result to infer
the robustness of the system:

Acc = Tr/Ts (13)

where Tr is the number of true species prediction, Ts
represents total number of testing data

Full model finetuning (FMF): In the original set of
experiments, we fine tuned only the generic layer in the species
layer training, leaving the organ layer unaltered. Although we
could extract the pre-initialised organ information and combine
it with the generic information in the species layer training,
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organ and generic layer were not jointly trained. This process
constrains the network to learn the co-adaptation of features
between two components. In fact, in [64], it has been proven
that fixing the weights of the higher level layers of a network
will deteriorate the interaction between neurons, subsequently
affecting the network optimization.

To further enhance the model, we consider adding fine-
tuning on the organ layer together with the generic layer
during the species layer training. We set the learning rate to
be 10 times lower than the newly assigned species layer, so
that, the organ layer weights are not altered too much. By
doing so, the organ layer can be optimized so that it provides
a better connection with the generic layer and, at the same
time, retains its organ features. This improves the result by
1.7% for the top-1 classification measure compared to the
baseline provided by M-S HGO-CNN.

Feature space normalization (FSN): To improve the
training of M-S HGO-CNN, we employ a data layer
normalization technique – batch normalization (BN) [65]
that offers extra flexibility in learning the input distribution.
We found that by adding BN before and after the fusion
of organ and generic components helps enhancing the
learning capability of the network, boosting its representation
ability. The improvement achieved by this was 3.2% in the
top-1 measure of the classification result compared to the
baseline M-S HGO-CNN. Noted that, owing to data memory
constraint, we only add BN starting from the last convolution
layer (conv5_3_O and conv5_3) of each individual component
up to the fully connected layers (conv6, conv7, fc6 and fc7).
During species layer training, these layers have learning rate
10 times higher than the preceding layers.

Enhanced feature fusion (EFF): To enhance the
performance of M-S HGO-CNN, we tested a new fusion
function, gsum : xorg,xgen → ysum. It is employed at stage
L (after the last convolutional layer for both components as
shown in Fig. 3(a)). Note that, unlike the gcat, the function
gsum performs summation of the xorg and xgen features:
ysumi,j,k = xorgi,j,k + xgeni,j,k, where 1 ≤ i ≤ H , 1
≤ j ≤ W , 1 ≤ k ≤ Z. The feature maps ysum will
then go through convolution layers to learn the combined
representation of generic and organ features. We found that
by incorporating the two aforementioned techniques with
this new feature fusion, the improvement gained is 3.6% for
the top-1 measure of the classification result compared to
the baseline M-S HGO-CNN. This shows that with fusion
through summation can better amplify the important features
for the network.

Table III clearly shows that all model enhancement tech-
niques achieve a notable improvement in the top-1 accuracy as
well as the Simg and Sobs results. We further evaluate the clas-
sification performance of each organ and document it in Table
IV. We observe that, although ‘Branch’ and ‘Entire’ organs
show a significant improvement using the enhanced feature
fusion approach, other organs such as ’LeafScan’ or ’Stem’
show either not much improvement on or lower classification

TABLE III: Evaluation of the improvement strategies for M-S
HGO-CNN.

Method Acc Simg Sobs

BD MAV
Baseline 0.599 0.690 0.717 0.715

Full model finetuning 0.616 0.690 0.718 0.716
Feature space normalisation 0.631 0.704 0.730 0.730
Enhanced feature fusion 0.635 0.710 0.737 0.736

TABLE IV: Classification performance comparison of each
content based on Simg for the enhanced model.

Method Branch Entire Flower Fruit Leaf LeafScan Stem
Baseline 0.568 0.603 0.798 0.657 0.652 0.803 0.411
FMF 0.589 0.613 0.803 0.657 0.650 0.792 0.377
FSN 0.605 0.621 0.813 0.687 0.655 0.753 0.411
EFF 0.593 0.635 0.816 0.691 0.669 0.768 0.402

rate. This suggests that M-S HGO-CNN which operates on
each plant image individually is not robust enough to predict
all plant organs, especially those which are highly influenced
by intra and interspecies diversity. Henceforth, this motivates
us to explore the more sophisticated RNN architecture, which
exploits the dependencies between plant views capturing one
or more organs of a plant.

VII. EXPERIMENTS ON THE PLANT-STRUCTNET

Before initiating the training of the Plant-StructNet, we
firstly group the training and testing images into their respec-
tive observation ID. Note that, each observation ID consists of
T number of plant images captured from a p-th plant observed
by a u-th user. By doing so, we have 27907 and 13887 num-
bers of observation IDs for training and testing respectively.
We apply the similar multi-scaling image augmentation to
these plant images, and, extract their representation through
the enhanced M-S HGO-CNN which obtained by the EFF
approach mentioned in Sec. VI-D, we abbreviate it the E-CNN.
During training, the extracted features are fed sequentially to
each state t = 1, ..., T of the Plant-StructNet. We fix the order
of the plant images presented to the network based on the
following sequence: branch, entire, flower, fruit, leaf, leafscan
and stem. We test the performance of the Plant-StructNet using
different levels of image abstraction representation extracted
from conv7, fc6, and fc8 layers of E-CNN.

The Plant-StructNet is trained using the Tensorflow library
[66]. We use the ADAM optimizer [67] with the parameters
α = 1e−08, β1 =0.9 and β2 =0.999. We set the learning rate
to 0.0001. In all experiments, we use a mini-batch size of 30.
We evaluate the Plant-StructNet on the same PlantClef2015
dataset using the same evaluation metrics.

A. Performance Evaluation

In this experiment, we compare the performance of the
Plant-StructNet with E-CNN. We present a comparative per-
formance evaluation of the Plant-StructNet based on different
levels of image abstraction representation (conv_7, fc6 and
fc7). We also evaluate the performance of the Plant-StructNet
when only forward directional states modeling is taken into
consideration. For testing, we evaluate the architectures using
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TABLE V: Performance comparison between the Plant-
StructNet and the E-CNN. Note that, attn is the attention
mechanism, ns is the number of stages of the attention module
and Fsm is the forward states modeling.

Method Acc Simg

E-CNN 0.601 0.679
Fsm Plant-StructNet (conv7, 1 ns) + attn 0.514 0.587
Fsm Plant-StructNet (conv7, 3 ns) + attn 0.508 0.621

Fsm Plant-StructNet (fc6) 0.588 0.664
Fsm Plant-StructNet (fc7) 0.611 0.665

Plant-StructNet (fc6) 0.622 0.669
Plant-StructNet (fc7) 0.641 0.680

plant images that are isotropically rescaled to 256 × 256 pixels
as explained in the Sec. III-B. Table V shows the performance
comparison results.

To train the Plant-StructNet based on conv_7, we incorpo-
rate an attention mechanism [68] to enhance the representation
of the visual input. Such attention mechanism allows the model
to look for the most pertinent local features of a plant image in
each state. In some respect, it forces an explicit additional step
in the reasoning process, identifying salient regions in a plant
image by assigning different importance to features from dif-
ferent image regions. The attention mechanism is introduced
by the εt term, the weighted average of convolutional features
that depends on the previous activation:

ζt = Wa
T tanh(Wa1δt +Wa2

−−−→
ht−1) (14)

λt = softmax(ζt) (15)

εt = λT
t δt (16)

In this case, the attention term λt controls the contribution
of each convolutional feature at the t-th state. Large values
in λt indicate more importance of the corresponding region
to the target species class. Note that, for language modeling
tasks, based on images [69], [70], a similar image is refined by
attention model across all the steps of the RNN. However, in
our work, every step of the Plant-StructNet takes in different
plant views that do not have a form of sequences. The spatial
information captured by the attention mechanism in the current
state, will not be relevant for the next state input. To address
this issue, we introduce a multi-stage attention mechanism.
Specifically, we add in a cascaded attention module that can
refine every plant image in each state before proceeding to the
subsequent state. For example, the 3-stage cascaded attention
module as shown in Fig. 7. The new refined convolution
features for the first and second stages are generated through:
δtj+1

= λtj � δtj , where j = 1, 2. The computations
performed by a GRU with attention mechanism are described
as follows:

−→zt = σ(wzεεt +wz2
−−−→
ht−1) (17)

−→vt = σ(wvεεt +wv2
−−−→
ht−1) (18)

−→
ht = (1−−→zt)

−−−→
ht−1 +−→zt

−→
h̃t (19)

−→
h̃t = tanh(whεεt +wh2(

−→vt �
−−−→
ht−1)) (20)

Fig. 7: The 3-stage cascaded attention module

TABLE VI: Comparison of top-1 classification accuracy for
different categories of observation ID. Note that, Category A
= number of images < 2 per observation ID; Category B =
number of images ≥ 2 per observation ID

Category A B
Total number of testing images for each category 9905 11541

E-CNN 0.592 0.609
Plant-StructNet 0.542 0.745

TABLE VII: Classification performance comparison of each
content based on Simg .

Method Branch Entire Flower Fruit Leaf LeafScan Stem
E-CNN 0.564 0.573 0.801 0.657 0.666 0.759 0.384
Plant-StructNet 0.596 0.582 0.798 0.673 0.714 0.762 0.540

In Table V, we can see that using uni-directional states
modeling, the Plant-StructNet trained on either the fc6 or
fc7 features achieves much better results compared to the
conv_7 with attention mechanism. We think the reason for fc
layers to perform better than the conv layer is that fc layers
hold more class-specific features which are less complex to be
trained compared to the conv layer. Next, using bi-directional
states modeling is obviously better compared to uni-directional
state modeling. This is understandable as bi-directional state
modeling enables prediction of an image based on the holistic
collection of data extracted from a same plant as explain in
Sec. IV-A. We observe that the Plant-StructNet trained on fc7
can boost up the performance significantly, achieving a highest
top-1 accuracy of 0.641 (improvement of 4% compared to the
E-CNN). However, we found that its Simg does not seem to
show different or better results. We then explore the cause and
observe that most of the misclassification occurs when there
is only one testing image per observation ID.

Table VI shows that there is a total of 9905 observation
IDs that contains only one image, nearly 47% of the testing
set. It is noticeable that the Plant-StructNet performs better
for category B than A (top-1 accuracy of 0.75 compared to
0.54), while E-CNN performs almost equally in all cases for
category A and B (top-1 accuracy of 0.59 and 0.61). This can
be explained from the characteristic of both RNN and CNN
based models used in this context. To recognize a plant image,
the CNN based model is trained to look for similar patterns
on all different subfields of an image, while the RNN based
model is trained to look for higher level features modeling
the dependencies between series of images. Based on these
findings, we therefore deduce that the poor performance of
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TABLE IX: Performance comparison with SOTA based on Simg .

Method Branch Entire Flower Fruit Leaf LeafScan Stem Overall
GoogLeNet + VGGNet [71] 0.621

0.666∗
0.632
0.624∗

0.828
0.861∗

0.711
0.723∗

0.652
0.745∗

0.788
0.848∗

0.411
0.429∗

0.715
0.752∗

Plant-StructNet (fc7) + E-CNN 0.642 0.670 0.829 0.725 0.734 0.789 0.540 0.732

Fig. 8: Percentage of images that fall under category A for
each organ category (%).

the Plant-StructNet is mainly due to the inadequate samples
of plants given one observation ID.

Next, we compare the classification performance for each
organ based on the image-centered score, Simg . We observe
that the Plant-StructNet can essentially improve the recogni-
tion performance of each organ, especially the ‘stem’ organ
as shown in Table VII. The percentage increase is 40.65%
which is considerably significant compared to other organs.
This improvement is explained by the fact that the stem organ
has the least number of images falling under category A (as
shown in Fig. 8). That is the majority of stem images co-
exists with other plant images in one observation ID. For this
reason, we can see that although the stem organ is considered
as the least informative one compared to other organs, using
the Plant-StructNet, we can successfully boost its classification
performance.

We qualitatively evaluate the features learned in both the
Plant-StructNet and E-CNN by projecting them into a two-
dimensional space using t-SNE [17]. To ease the visualization
for it is impractical to show all 1000 classes within a limited
space, we have randomly selected 39 to clearly show in
Fig. 9 and 10. We extract the fc7 and ht features of the
testing images from both the E-CNN and Plant-StructNet
respectively. Fig. 9 visualizes the feature embedding of Plant-
StructNet features while the Fig. 10 visualizes the feature
embedding of E-CNN features. Note that, for Fig. 9(b) and
Fig. 10(b), each point depicts the learned feature, and, it
is represented by different color and symbol to distinguish
different species classes. We observe that the Plant-StructNet
features are semantically separable compared to E-CNN. This
indicates that the features learned in Plant-StructNet are more
discriminative compared to these of the E-CNN.

B. Assessing Performance in the Absence of Sequence

To model plant images in a sequential manner using the
Plant-StructNet, we initially fix the order of the plant images

TABLE VIII: Evaluation of the ensemble models

Method Acc Simg Sobs

BD MAV
E-CNN 0.635 0.710 0.737 0.736

Plant-StructNet (fc6) 0.662 0.708 0.720 0.721
Plant-StructNet (fc7) 0.683 0.717 0.726 0.724
Plant-StructNet (fc6) 0.671 0.726 0.746 0.744

+ E-CNN
Plant-StructNet (fc7) 0.685 0.732 0.747 0.746

+ E-CNN

presented to the network based on the sequence: branch, entire,
flower, fruit, leaf, leafscan and stem. However, we notice that
in reality, during their field work, botanists usually observe and
study simultaneously a plant from different vantage points, as
a whole and also analyse different organs. This drives us to
extend the analysis of the Plant-StructNet on its capability
of modeling plant views images irrespective of the order.
Hence, we train the Plant-StructNet using the fc7 features
based on random sequence, disregarding the order of the
plant images fed into the network. Indeed, we found that
training the Plant-StructNet by disregarding the order does
not affect much the performance. The Acc and Simg obtained
are 0.643 and 0.675 respectively which are comparable to
the Acc = 0.641 and the Simg = 0.680 obtained from
the model with sequence as shown in Table V. This finding
again shows that the Plant-StructNet is able to process the
complex structural dependencies between plant views/organ
images despite the absence of sequence.

C. Ensemble Models

In this experiment, we introduce an aggregate of ensemble
models to increase the performance of multi-organ plant clas-
sification. We incorporate the decisions of our proposed deep
networks, E-CNN as well as the Plant-StructNet. We combine
their softmax scores using an average fusion method. For
testing, we use all the scaled images mentioned in Sec. III-B.
Based on the experimental results shown in Table VIII, the
ensemble architectures can essentially boost the performance
of the individual E-CNN and Plant-StructNet, achieving the
highest metric scores of Simg and Sobs.

Finally, we compare our best model with the latest SOTA
[71] that proposed fine-tuning of pre-trained GoogLeNet [72]
and VGGNet [63] models using the PlantClef2015 dataset. To
make a fair comparison between our proposed method and
the latest SOTA [71], we train and test both the VGGNet and
GoogLeNet based on our proposed augmented multi-scaled
plant images (Sec. III-B). We train both models using the
reported training scheme in [71]. For testing, we first obtain
the prediction results for each model, and finally combine them
using their presented fusion technique.
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Table IX shows the performance comparison results. Note
that, values without (∗) are the results generated using our data
augmentation, while values with (∗) are the results originally
reported in [71]. We observe that our best model outperforms
the SOTA with an overall Simg of 0.732 compared to 0.715,
and, when comparing using the top-1 accuracy, our best model
achieves 0.685 compared to 0.647. One intriguing finding is
that, we essentially improve the classification performance of
each plant organ, especially the ’stem’ organ. This suggests
the importance of modeling the correspondence between plant
views (or organs) to further boost the discriminative power of
the plant classification system.

Apart from that, compared to the original proposed overall
Simg [71], it is noticeable using their data augmentation
technique that extracting and scaling random patches from the
original image, and subsequently augmenting them with image
rotation can better characterize the plant data. Henceforth, we
deduce that it is possible the classification performance of our
best model would improve if we further enhanced the diversity
of the plant dataset.

VIII. CONCLUSION

We have presented two plant classification frameworks:
(1) the HGO-CNN which uses an end-to-end deep neural
network to integrate both organ and generic features, and,
capture the correlation of these complementary information
for species classification; (2) the Plant-StructNet which offers
extra flexibility in learning the relationship between plant
views and supports classification based on varying number of
plant images captured from a same plant. It is worth noting that
using multi-scale training can further boost the discriminative
power of the HGO-CNN model. We have also presented and
analyzed in this paper various improvements we have made
to our basic HGO-CNN and described the evaluation results
which shown using enhanced feature fusion can better improve
the model performance.

Based on our findings, it is clear that using the Plant-
StructNet can essentially improve the classification perfor-
mance, especially for the less distinctive ’stem’ organ. This
suggests the importance of learning the correspondence be-
tween plant views to boost the overall species recognition
rate. Experiments on the PlantClef 2015 benchmark show
the robustness of the ensemble models of the E-CNN and
Plant-StructNet in classifying different plant organ images.
With the help of feature visualisation, we further confirmed
the effectiveness of our model. In the future, it would be
interesting to consider integration of both CNN and RNN
based models in order to simultaneously handle rich visual
representation learning and context dependencies modeling
within a fully end-to-end deep network.
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Fig. 9: Feature embedding visualizations of the Plant-StructNet using t-SNE. (a) Image visualization. (b) Scatter plot: points
with the same color and symbol are the features belonging to the same species class. Best viewed in electronic form.
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Fig. 10: Feature embedding visualizations of the E-CNN using t-SNE. (a) Image visualization (b) Scatter plot: points with the
same color and symbol are the features belonging to the same species class. Best viewed in electronic form.
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