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Abstract—Electroencephalogram (EEG), boasting the 

advantages of portability, low cost and high-temporal 

resolution, is a non-invasive brain-imaging modality 

that can be used to measure different brain states. 

However, EEG recordings are always contaminated 

with artifacts from different sources other than 

neurons, which renders EEG data analysis more 

difficult, and which potentially results in misleading 

findings. Therefore, it is essential for many medical 

and practical applications to remove these artifacts in 

the preprocessing stage before analyzing EEG data. In 

the last thirty years, various methods have been 

developed to remove different types of artifacts from 

contaminated EEG data; still though, there is no 

standard method that can be used optimally, and 

therefore, the research remains attractive as well as 

challenging. This paper presents an extensive overview 

of the existing methods for ocular, muscle, and cardiac 

artifact identification and removal with their 

comparative advantages and limitations. We also 

reviewed the schemes developed for validating the 

performances of algorithms with simulated and real 

EEG data. In future studies, researchers should focus 

not only on the combining of different methods with 

multiple processing stages for efficient removal of 

artifactual interferences but also on the development 

of standard criteria for validation of recorded EEG 

signals. 
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1. Introduction 
Noninvasive neuroimaging techniques including 

functional magnetic resonance imaging, functional 

near-infrared spectroscopy, and 

electroencephalogram (EEG) are emerging as key 

tools with which to explore and understand the 

functionality and dynamics of the brain [1-5]. The 

noninvasiveness, portability, low cost, and high 

temporal resolution make EEG the most preferred 

brain-imaging method. It measures the joint 

electrical activity of a population of neurons with an 

amplitude typically on the order of a few microvolts. 

These days, EEG is widely used in many fields such 

as neuroscience, psychology, cognitive science and 

psychophysiology research. EEG is also used 

extensively in clinical research for diagnosis and 

identification of many brain conditions such as sleep 

disorders, depression, epileptic activity, dementia, 

Alzheimer’s disease, and schizophrenia [6-11]. It is 

therefore very important to develop techniques that 

can be used to interpret hidden information in EEG 

signals. 

Its many advantages aside, EEG has a drawback, in 

that it is always contaminated with artifacts [12, 13]. 

Artifacts are undesirable signals that arise from 

sources other than neurons; they distort the original 

EEG activity and hence make its analysis more 

difficult. Whereas EEG ideally should include only 

neuronal activity, unfortunately it is often 

contaminated by eye movements, eye blinks, muscle 

activity, and cardiac activity [14, 15].  

Since artifact contamination alters the true EEG 

signal, it also affects the results of the desired 

application. For example, it has been proven that 

artifacts can diminish classification accuracy as well 

as the controllability of brain-computer interface 

(BCI) devices [16]. Furthermore, artifacts can also 

affect diagnosis and analysis in clinical research 

such as on sleep disorders, Alzheimer disease, and 

schizophrenia [6, 7]. It is therefore mandatory, in 

either clinical or practical research, to deal with 

these artifacts prior to the analysis of EEG signals. 

To do so, a method is required that not only can 

remove artifacts efficiently but at the same time, can 

preserve the true, distortion-free neuronal activity 

present in EEG signals. 

For these purposes, several manual and automated 

methodologies have been developed and utilized. 

One straightforward approach is to record EEG with 

many appropriate precautions; but requiring this and 

achieving it are two very different things. Another 
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commonly used technique is to remove the epochs 

from EEG data having extensive artifacts, though 

this also can cause the removal of useful EEG 

information. Alternatively, many semi-automatic 

and automatic methods have been developed to 

remove/reduce artifacts from EEG data [12-14, 17-

29]. Generally speaking, these methods can be 

divided into two main categories:  regression-based 

methods and blind source separation (BSS)-based 

methods. It is also very important to mention here 

that due to the diverse sources and characteristics of 

artifacts, most of the studies conducted thus far have 

considered the removal of only one type of artifact. 

However, recent studies showed more interest in 

removing multiple type of artifacts. Moreover, in the 

last few years, only a few new algorithms 

additionally to the classical regression and BSS 

approaches have been developed. Instead, 

researchers have focused on improving previous 

methods by combining different algorithms, by 

making algorithms automatic, and by using more 

appropriate performance metrics. However, to date, 

researchers in this area have not agreed on the 

optimal method for artifact removal that does not 

also distort the actual EEG signal [30-33].  

In order to spur efforts in that direction, this paper 

presents a comprehensive review of the existing 

state-of-the-art techniques that have been used to 

remove/reduce artifacts from EEG data. First, we 

briefly discuss EEG signals and the kinds of artifacts 

present therein. Next, we survey the existing artifact 

removal techniques and their advantages and 

limitations. Then, we present the most commonly 

employed performance metrics, which are the most 

basic means of evaluating algorithm performance. 

Additionally, we briefly discuss the importance and 

implementation of artifact removal in practical and 

clinical applications.  Finally, we conclude this 

review by discussing future directions and making 

recommendations. We believe that this review 

article can help researchers to choose more 

appropriate methods for their applications and to 

develop new methods to deal with artifacts.  

2. Background 

In this section, we will endeavor to provide an 

overview of the characteristics of EEG signals and 

the different types of artifacts present in them. 

2.1 EEG Characteristics 
A recorded EEG has a frequency somewhere within 

the 0.01 Hz – 100 Hz range. The frequency content 

can be divided into five major bands known as delta, 

theta, alpha, beta, and gamma [34]. Details on the 

frequencies associated with these bands are 

provided in Table 1. 
Table 1. List of Frequency bands and their associated 

frequencies. 

Frequency Band Name Frequency Bandwidth (Hz) 

Delta <4 

Theta 4-8 
Alpha 8-12 

Beta 12-30 

Gamma >30 

2.2 Types of Artifacts 

Basic knowledge on the different types of artifacts 

is necessary in order to develop or select suitable 

algorithms for removal of artifacts from EEG 

signals. Broadly, artifacts in EEG can be classified 

into two types, physiological and non-physiological 

[31]. Non-physiological artifacts include electrode 

displacement, interference from the environment, 

and movement artifacts. These artifacts can be 

reduced in number by proper subject instruction and 

experimental setup [30]. On the other hand, 

physiological artifacts include ocular artifacts, 

muscle artifacts and cardiac artifacts. In contrast to 

non-physiological artifacts, removal or reduction of 

these artifacts requires the use of a suitable handling 

algorithm. Another obstacle in EEG signal 

processing, specifically in source localization and 

connectivity studies, is to tackle volume conduction 

artifcats i.e., the activity of single brain region can 

be recorded at multiple electrodes and activity of 

multiple brain regions can be recorded at single 

electrode [35]. In literature several studies 

developed techniques to deal with the problem of 

volume conduction and superposition. The relevant 

references [35-37] can be consulted for more details 

on this problem.   Table 2 summarizes the types and 

origins of all commonly known artifacts. Since 

ocular, muscle, and cardiac artifacts are extensively 

handled in the literature, in this review we will 

survey only the commonly used methods that deal 

with them. Figure 1 shows the contamination of 

different physiological artifacts present in EEG 

signals. 
 

Table 2. List of different types of artifacts and their origins in 

EEG signals. 

Type Name Origin 

 

Physiological 

Ocular Eye blink, eye movement, 
eye flatter 

Muscle Chewing, swallowing, 

clenching, sniffing, 

talking 

Cardiac ECG pulse 

 

Non-

physiological 

Instrumental Electrode misplacement 

and cable movements 
Interferences High voltage machines in 

surroundings 

Movements Head and body movement 

 Volume 

Conduction 

and 

Superposition 

Measurement of neuronal 

activities from single 

brain region at multiple 

electrode 

 

 
Figure 1. Different physiological artifacts present in EEG 

signals. 
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3 Survey of Artifact removal algorithms 
This section provides a detailed overview of all the 

well-known methods that are used to remove/reduce 

artifacts in EEG data. We will summarize the main 

steps involved in the processing of these methods 

and also highlight some of the advantages and 

limitations as well. 

3.1 Artifact Avoidance 

The most straightforward way to reduce artifacts in 

EEG signals is to avoid movements that can incur 

them. For example, with regard to ocular artifacts 

produced due to blinking and eye movements, 

experimentalists can instruct subjects to avoid 

unnecessary eye movements, blinks, body 

movements and to try to remain still as much as 

possible. However, achieving this seemingly simple 

solution can be difficult. For instance, a human has 

no control over his pulse; therefore reducing EEG 

artifacts is next to impossible by artifact avoidance. 

Moreover, it is very difficult, and in fact next-to 

impossible, to control eye movements and blinking 

for relatively long periods of time. Furthermore, this 

type of solution is often unrealistic with applications 

such as BCI. 

3.2 Artifact Segment Rejection 

Another common solution used in early artifact 

removal studies was to remove all epochs that are 

highly affected by signals from non-neuronal 

sources. The most difficult part of this method is to 

identify artifactual epochs from large EEG datasets, 

as it requires much expertise in analysis of EEG data 

as well as a significant amount of time, making it 

unsuitable for applications like BCI. A major 

drawback of using this method, moreover, is the loss 

of important neuronal information present in 

artifactual epochs, which might lead to erroneous 

conclusions. In any case, due to the recent 

development of automatic artifact removal 

algorithms, the use of epoch rejection these days is 

not preferred. 

3.3 Single Methods 

3.3.1 Regression Methods 

Regression algorithms are the most simple and most 

commonly used methods to remove artifactual 

contamination from EEG data [38-40]. To identify 

artifacts from EEG signals, one or more reference 

channels are used. Regression methods are based on 

a simple methodology entailing the subtraction of 

artifactual signals from EEG signals after estimation 

of artifact propagation coefficients [41]. These 

propagation coefficients can be estimated using 

measured reference signal for particular type of 

artifacts i.e electrooculography (EOG) signals for 

ocular artifacts and electrocardiography (ECG) 

signals for ECG artifacts. In case of ocular artifacts, 

these propagation coefficients can be calculated as 

follows [27] 
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where α  and β  represent the propagation 

coefficients for vertical and horizontal EOG, 

respectively, and N and M represent the sample size 

for vertical and horizontal EOG, respectively. 

According to [27], samples with high vertical and 

horizontal EOG should be used to calculate these 

propagation coefficients. Finally, the corrected EEG 

can be obtained as 

HEOGVEOGEEGEEG conout ×−×−= βα  (2) 

where outEEG  is the corrected EEG, and conEEG  is 

the contaminated EEG. 
Due to their need for a reference channel, which 

limits their applications mainly to EOG and ECG, 

regression methods have been replaced by more 

enhanced methodologies [31, 32, 42]. Furthermore, 

while removing artifacts using EOG signals as 

reference, this method makes an invalid assumption, 

which is that the neuronal activity in EEG and EOG 

signals is uncorrelated [32, 43]. As a result, 

regression analysis eliminates, from EEG signals, 

the neuronal activity common to both EEG and EOG. 

Regression methods are computationally simple, but 

their outcomes are highly affected by bidirectional 

contamination [12, 21]. However, in more enhanced 

regression methods, this issue of bidirectional 

contamination is addressed. Filtering EOG signals 

with a low-pass filter is the most straight forward 

way to overcome this issue [28, 44, 45]. The 

argument used to validate this approach is that most 

of the high-frequency content in recorded EOG 

belongs to the neuronal activity, and that therefore, 

filtering that part will highly reduce the bidirectional 

contamination effect [44]. In literature, there is no 

consensus on the optimal low-pass filtering of EOG 

signals, and it is therefore an open problem for future 

research.  Contrarily, some authors argue that all 

frequency bands are contaminated with neuronal 

activity [46]. However, regression methods are still 

used as the gold standard for comparison of the 

performances of all newly developed methods. 

Figure 2 and Table 3 provides a schematic and a list 

of studies on the regression methods.

 
Figure 2. General schematic of Regression algorithms. 

3.3.2 Filtering Algorithms In this section, we will summarize different filtering 

approaches used to reduce/remove artifacts in EEG 
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signals. A simple classical filtering approach can be 

used but only when dealing with a specific 

frequency band, for instance 50/60 Hz interferences. 

However, for efficient removal of major artifacts, 

alternative filtering techniques should be adopted. 

The recorded contaminated EEG signal 
N

icEEG
×ℜ∈ 1 is a combination of the true EEG 

signal N
itEEG

×ℜ∈ 1  and artifactual contamination 

iv . Mathematically, 

  iii vtEEGcEEG +=  (3) 

where i represents the channel and N the sample size. 

The purpose of filtering is to minimize the mean 

square error between output EEG N
ioEEG

×ℜ∈ 1  

and the true EEG by estimating the optimal filtering 

parameter β , i.e., 

  
2

min ii oEEGtEEG −
β

 (4) 

There are a number of filtering approaches available 

that can be used to deal with artifacts in EEG signals, 

though adaptive filtering is the most commonly 

employed. 

Adaptive filtering assumes that there is no 

correlation between the true EEG signal and 

artifactual activities [27]. A reference signal is used 

to estimate the artifactual signal that is correlated 

with an artifact. Then, the estimated signal is 

subtracted from the recorded EEG signal to obtain 

the artifact-free EEG signal. Achieving the best 

results using adaptive filtering is highly dependent 

on the choice of the reference signal [31]. For 

instance, EOG signals can be used to remove ocular 

artifacts from EEG data [47] and/or ECG can be 

used to measure the reference signal that can be used 

to remove cardiac artifacts [48]. Finally, an 

optimization algorithm can be used to obtain an 

optimal set of parameters that best estimates the 

artifacts present in EEG signals. The least mean 

squares (LMS) algorithm is the most commonly 

employed adaptive algorithm for adjustment of a 

weight vector [49]. Another most commonly used 

algorithm is recursive least squares (RLS)-based 

adaptive filtering [47, 50]. RLS algorithms perform 

better than LMS-based filters but also incur high 

computational cost relative to LMS. Online 

implementation, no preprocessing/calibration and 

ease of use are the few advantages of adaptive filters, 

whereas the requirement of a reference signal using 

extra sensors is the limitation. 

 
Figure 3. General schematic of filtering algorithms. 

 

There are other filters, such as Kalman, Wiener and 

Bayes filters that can be used for artifact removal; 

however, these techniques have not been explored 

extensively in the literature of EEG artifact removal 

[32, 51-54]. Figure 3 illustrates a general schematic 

of the filtering approaches to the removal of artifacts 

from EEG signals. Table 3 shows the list of studies 

on filtering techniques.

 
Table 3: Studies using regression and filtering algorithms for removal of different artifacts. 

Study Year Method Validation Artifact 

Type(s) 

Reference Applications 

Hilyard and Gallambos [55] 1970 Regression  Ocular EOG General 

Whitton et al., [56] 1978 Regression  Ocular EOG General 

Barlow and Dubinsky [57]   1980 Regression  Cardiac ECG General 

Woestenburg et la., [58] 1983 Regression  Ocular EOG ERP 

Gratton et al., [59] 1983 Regression  Ocular EOG ERP 
Gasser et al., [60] 1985 Regression  Ocular EOG General 

Elbert et al., [39] 1985 Regression Simulated Ocular EOG ERP 

Kenemans et al., [61] 1991 Regression Simulated Ocular EOG General 

Gasser et al., [44] 1992 Regression  Ocular EOG Schizophrenia  

Filligoi et al., [62] 1994 Adaptive  Ocular EOG ERP 

Berg-Lenssen et al., [41] 1994 Regression  Ocular EOG Spontaneous 
EEG and ERP 

Rao and Reddy [63] 1995 Adaptive  Ocular EOG General 

Sahul et al., [64] 1995 Adaptive  Cardiac ECG General 

Sadasivan and Dutt [43] 1996 Adaptive  Ocular EOG General 

Sadasivan and Dutt [65] 1997 Adaptive  Ocular EOG General 

Croft and Barry [38] 1998 Regression Simulated Ocular EOG General 
Meier et al., [66] 1998 Regression Visually Ocular EOG Schizophrenia 

Selvan and Srinivasan [67] 1999 Adaptive  Ocular EOG General 
Jervis et al., [49] 1999 Regression Simulated Ocular EOG General 

Croft and Barry [42] 2000 Regression Experimental Ocular EOG ERP 

Croft and Barry [18] 2000 Regression Experimental Ocular EOG General 
Croft and Barry [68] 2000 Regression  Ocular EOG General 
Croft and Barry [69] 2002 Regression  Ocular EOG ERP 

Moretti et al., [70] 2003 Adaptive Visually Ocular + 

Muscle 

EOG+EMG General 

Jervis et al., [71] 2004 Adaptive Simulated Ocular EOG Online 

He et al., [50] 2004 Adaptive Visually Ocular EOG General 
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Puthusserypady and Ratnarajah 

[47] 

2005 Adaptive Simulated Ocular EOG General 

Gasser et al., [72] 2005 Regression Visually Muscle No Alzheimer 

Erfanian and Mahmoudi [73] 2005 Adaptive  Ocular EOG BCI 

Puthusserypady and Ratnarajah 

[74] 

2006 Adaptive Simulated Ocular EOG General 

Schlogl et al., [75] 2007 Regression Visually Ocular EOG Online 

He at al., [40] 2007 Adaptive Simulated Ocular EOG General 

Kierkels et al., [53] 2007 Kalman Simulated Ocular ET Signal trail EEG 

Correa et al., [48] 2007 Adaptive  Ocular + 

Cardiac 

EOG+ECG General 

Noureddin et al., [76] 2012 Adaptive Simulated Ocular fEEG + ET General 

Kilicarslan et al., [77] 2016 Adaptive Classification Ocular EOG BCI 

Garg and Kohli [78] 2017 Adaptive Simulated Ocular EOG General 

Sun et al., [79] 2018 Regression Classification Ocular EOG BCI 

Li et al., [80] 2018 Adaptive Classification Ocular EOG BCI 

Somers et al., [54] 2018 Wiener Simulated All No General 

 

3.3.3 Blind Source Separation 

BSS is one of the most popular and widely used 

techniques for removal of artifacts from EEG data 

by separating source signals of neuronal activity 

from artifacts [30-32]. One of the major advantages 

of BSS is that it does not require any prior 

information (in some cases very limited 

information) about the mixing of different sources. 

Let X be multi-channel EEG signals with linear 

mixing of sources S; then, mathematically, 

  ASX =   (5) 

where A is the mixing matrix. BSS can be used to 

generate an un-mixing matrix W to separate the 

original sources 

  WXS =
∧

  (6) 

where 
∧

S  is the estimation of the sources. Once all 

of the neuronal and artifactual sources are known, 

the latter can be removed to obtain artifact-free 

EEG. Figure 4 shows the general schematic of 

artifact removal using BSS algorithms. 

There are many BSS algorithms developed to 

remove artifacts from EEG signals, including 

independent component analysis (ICA), principal 

component analysis (PCA), canonical correlation 

analysis (CCA), and morphological component 

analysis (MCA).   

 
Figure 4. General schematic of BSS algorithms. 

3.3.3.1 Independent Component Analysis 
ICA is the most commonly employed BSS technique 

in EEG artifact removal studies [22, 23, 25, 81-83]. 

In general, ICA decomposes multichannel EEG data 

from different sources into independent components 

(ICs). ICA is applied under the assumption that the 

signals from different sources are independent and 

linearly mixed. Recently, ICA emerged as a valuable 

tool for removal of artifacts from EEG data, because 

it does not suffer the limitations that afflict 

parametric methods such as adaptive filtering. For 

instance, ICA does not require any prior information 

or additional reference channel for removal of 

artifacts. The effectiveness of ICA is based on the 

statistical independence of the sources and mixing 

matrix. ICA has shown promising results in 

removing artifacts from EEG data, even in cases 

where the neuronal and artifactual sources are not 

completely independent [84]. Since ICA is a 

statistical approach, the reliability of its results 

highly depends on the amount of data provided to 

the algorithm [32, 85]. To achieve the best results 

with ICA, the maximum amount of data should be 

used when the sources are reasonably spatially 

stationary. Different authors have suggested 

different amounts of data to be used for best results; 

for instance,  [85] suggested the use of 10 sec of data, 

while [14] argued that the sample size should be 

several times the square of the number of channels. 

Contrastingly, a few authors have reported that 

AMUSE and SOBI work well with short durations 

of data as well, since they are based on minimization 

of the correlation between signals [32, 85].  

Although the performance of ICA is promising, it 

should be employed with care [86]. Most of the ICA-

based studies have focused extensively on the 

removal of artifacts from EEG signals [87], while 

the effects of the method on the neuronal part of the 

signal have been neglected [17]. Additionally, the 

selection of artifactual components has been 

performed by visualizing topographic maps and 

time series of ICs, and thus is highly dependent on 

the expertise of the researcher [88]. Usually manual 

identification of this sort leads to divergent results. 

However, in recent years, researchers have proposed 

different features that can be used to automatically 

identify artifactual components [23, 82, 88-92]. 

These automations have proved to be effective in 

terms of computational cost and artifact reduction, 

though the problem of the loss of neuronal 

information by completely rejecting artifactual ICs 

remains un-addressed. Another disadvantage of ICA 

is that it cannot be applied to a single channel (or a 

few channels), as it assumes that the number of 
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channels must be equal to or greater than the number 

of sources. The complex iterative procedure of ICA 

is another drawback, as it limits its use in 

online/real-time applications. Many modifications 

of ICA have been proposed in the literature, for 

instance JADE [15], fast ICA, SOBI, InfoMax [93], 

constrained ICA [94], AMICA [95] and AMUSE 

[20]. In [96], the authors discuss fifteen different 

variants of ICA methods for removal of artifacts 

from EEG signals. Table 4 lists the studies that have 

utilized ICA algorithms. 

3.3.3.2 Principal Component Analysis 

PCA is a statistical method that converts time-

domain observations of possibly correlated variables 

into a set of values of linearly uncorrelated variables 

using orthogonal transformation. These linearly 

uncorrelated variables are called principal 

components (PCs), which are less than or equal to 

the number of channels used in EEG recordings. The 

transformation is designed such that each PC has the 

highest variance possible under the constraint of 

being orthogonal to the preceding PC. 

In EEG analysis, spatial distribution of eye activity 

was first determined using PCA in 1991 [97]; since 

that time, many authors have used PCA to remove 

artifacts from EEG data [19, 98-100]. It has notably 

been reported that PCA performs better then 

regression-based artifact removal [97]. The major 

drawback of PCA, though, is its assumption of 

orthogonality, which generally does not hold for 

neuronal activity and artifacts. Whenever the 

amplitude of the neuronal and artifactual activity is 

similar, then, PCA fails to determine the artifactual 

components [93, 101]. Extensions of PCA include 

robust PCA [102] and kernel PCA [103]. Even 

though PCA has performed better in removing 

certain types of artifacts, most researchers prefer 

alternative methods such as ICA [32]. Table 4 lists 

the studies using PCA algorithms. 

3.3.3.3 Canonical Correlation Analysis 
CCA is a statistical method developed to investigate 

the underlying relationship between two datasets in 

terms of finding correlation between them. In 

literature, many studies showed the feasibility and 

potential of CCA for removing artifacts from EEG 

signals [104, 105]. CCA is used to find the basis 

vector for two sets of variables in such a way that 

the correlation between the projections of the 

variables onto the basis vector are mutually 

maximized. Let )(tX  be the recorded multi-channel 

EEG signal, )(tY  be a temporally delayed version of 

the data such that ),1()( −= tXtY and their linear 

combination Xwx
T
x

= and .ywy
T
y=  CCA finds the 

weight vectors xw  and yw  after removing mean of 

each row from X and Y, that maximize the 

correlation between x and y by solving problem 

[104] 
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where xxC  and yyC  are the auto-covariance 

matrices of X and Y respectively, and xyC  is the 

cross-covariance matrix of X and Y. An eigenvalue 

problem can be obtained by setting the derivatives 

of equation (7) with respect to xw and yw to zero as 

follows 
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where ρ  is the canonical correlation coefficient. 

The components with minimum auto-correlation 

correspond most closely to artifacts. 

CCA, moreover, is a BSS method that uses second-

order statistics with less computational cost than 

ICA [30]. Unlike ICA, CCA is used to determine 

components derived from their uncorrelated sources 

[31]. Additionally, CCA, unlike PCA and ICA, does 

not require the assumptions of orthogonality and 

Gaussian distributions. Previous artifact removal 

studies have demonstrated CCA’s superior 

performance over ICA [26, 104, 106, 107]. CCA has 

been successfully applied to remove muscle artifacts 

from EEG signals, and has shown improved 

performance over ICA [26]. This might be due to the 

fact that muscle artifacts do not have stereotyped 

topography, and consequently, ICA does not 

separate muscle artifacts efficiently. Table 4 lists the 

studies using CCA algorithms. 

3.3.3.4 Morphological Component Analysis 
MCA is a method used to decompose a signal into 

components that have different morphological 

aspects. Each component is sparsely represented in 

an over-complete dictionary made up of different 

waveforms, and can be used to describe different 

source signals. A dictionary Ω  is a collection of 

waveforms or atoms, such as columns of wavelet, 

Fourier and Dirac basis [108]. A signal is sparse in 

Ω  if it can be represented using a linear 

combination of a few atoms only. By merging 

several complete dictionaries, an overcomplete 

dictionary is constructed. Although the signal 

representation is no longer unique, the class of 

signals that can be sparsely represented using the 

dictionary is much larger. MCA assumes that a 

signal N
S ℜ∈  can be represented as a linear 

combination of m morphological components [108, 

109] 
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and )(iα  is a coefficient vector corresponding to 

dictionary )(iΦ . Each component, )()()( iii
S αΦ=  

represents a signal type that has different 

morphological structures. A morphological 

structure that is sparse in a particular dictionary )(iΦ  
will generally not be sparse in other dictionaries. 

Therefore, )(iΦ  can play an important role in 

discriminating different signals contents. The 

problem of finding the sparsest representation can be 

formulated as 

  
=

m

i

i
1

0
)(min α

α
 subject to αΦ=S  (10) 

Because this problem is inherently combinatorial, 

and therefore intractable, the basis pursuit method 

  
=

m

i

i
1

1
)(min α

α
 subject to αΦ=S  (11) 

suggests the substitution of the 0l -norm by the 1l -

norm that also promotes sparsity in the solutions. 

In EEG analysis, signals can be represented as a 

linear combinations of three morphological 

components using MCA theory [108]. For instance, 

the spikes in EEG signal can be represented by Dirac 

basis, background EEG and ERPs can be 

represented by discrete cosine transform basis, and 

artifcats having transient properties like ocular and 

muscle can be represented by Daubechies wavelet 

basis. MCA is used to remove ocular and muscle 

artifacts from EEG data, and has been reported to be 

a better method than stationary wavelet transform 

[108-110]. The major limitation of this method is 

that it always requires a database containing 

morphologies of different types of artifacts, and 

therefore, its performance is highly dependent on the 

available templates of artifacts. Table 4 lists the 

studies using MCA algorithms.

Table 4: Studies using BSS algorithms to remove different artifacts. 

Study Year Method Validation Artifact Type(s) Auto Applications 

Breg and Scherg [97] 1991 PCA  Ocular No General 

Makeig et al., [111] 1996 ICA  Ocular + Muscle No ERP 

Lagerlund et al., [101] 1997 PCA  Ocular + Cardiac No General 

Jung et al., [112] 1997 ICA Simulated Ocular No ERP 

Vigaro et al., [84] 1997 ICA Simulated Ocular No General 

Jung et al., [81] 2000 ICA  Ocular No ERP 
Jung et al., [85] 2000 ICA Visually All No General 

Tong et al., [90] 2001 ICA  Cardiac No General 

Nam et al., [113] 2002 ICA Visually Ocular + Muscle No Epilepsy 

Iriarte et al., [15] 2003 ICA  All No General 

Delorme and Makeig [14]  2004 ICA  All No General 

Casarotto et al., [98] 2004 PCA Simulated Ocular No ERP 
Urrestarazu et al., [114] 2004 ICA Visually All No Epilepsy 

Joyce et la., [115] 2004 ICA  Ocular Yes General 

Tran et al., [87]  2004 ICA Visually Ocular + Muscle No Speech EEG 
Bian et al., [89] 2005 ICA Simulated All Yes General 

Flexer et al., [116] 2005 ICA  Ocular No General 

Li et al., [82] 2006 ICA Visually Ocular Yes General 

LeVan et al., [117] 2006 ICA Classification All Yes Seizures 

Ting et al., [20] 2006 ICA  Ocular + Muscle Yes ERP 

Liu et al., [100] 2006 PCA  Ocular No General 
Teixeira et al., [19] 2006 PCA  Ocular Yes General 

Frank and Frishkoff [118] 2007 ICA  Ocular Yes General 

Clercq et al., [26] 2007 CCA Simulated Muscle Yes General 

Vergult et al., [104]  2007 CCA Experimental Muscle Yes Epilepsy 

Delorme et al., [22] 2007 ICA Simulated Ocular + Muscle Yes General 

Devuyst et al., [119] 2008 ICA Simulated Cardiac Yes General 
Crespo-Garcia et al., [120] 2008 ICA Simulated Muscle No General 

Mammone and Morabito [83] 2008 ICA  Ocular + Muscle Yes General 

Viola et al., [91] 2009 ICA Visually Ocular + Cardiac Yes General 

Gao et al., [106] 2009 CCA Simulated Muscle Yes General 

Zhou et al., [121] 2009 ICA  Ocular Yes General 

Vos et al., [107] 2010 CCA Experimental Muscle Yes ERP 

Gao et al., [122] 2010 ICA Classification Ocular Yes Online 

Gao et al., [123] 2010 CCA-ICA Simulated Muscle + Ocular Yes Online 

Gao et al., [124] 2010 ICA Classification Ocular Yes Online 
Mognon et al., [23] 2011 ICA Visually Ocular Yes ERP 

Winkler et al., [92] 2011 ICA Visually All Yes BCI 

Plochl et al., [88] 2012 ICA Visually Ocular Yes ERP 

Zhang et al., [125] 2012 CCA Simulated Ocular Yes Online 

Kong et al., [126] 2013 ICA Simulated Ocular Yes Online 

Winkler et al., [25] 2014 ICA Classification  Yes BCI 
Frølich et al., [127] 2015 ICA Visually All Yes Online 

Chaumon et al., [128] 2015 ICA Visually Ocular + Muscle Yes General 

Zou et al., [129] 2016 ICA Classification All Yes BCI 

Fitzgibbon et al., [130] 2016 ICA Visually Muscle Yes Clinical EEG 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2842082, IEEE Access

Somers et al., [131] 2016 CCA Simulated Ocular Yes Wireless EEG 

sensor network 

Hou et al., [132] 2016 ICA Simulated Ocular Yes High-density 

EEG 

Gerla et al., [99] 2017 PCA Classification Ocular + Muscle Yes Big Data 
Analysis 

Chen et al., [133] 2017 IVA Simulated Ocular + Muscle Yes General 

Çınar et al., [134] 2017 ICA Experimental Ocular Yes ERP 

Drisdelle et al., [135] 2017 ICA Experimental Ocular Yes ERP 

Singh and Wagatsuma [109] 2017 MCA Simulated Ocular  General 

Pontifex et al., [136] 2017 ICA Simulated Ocular Yes General 
Szentkirályi et al., [137] 2017 ICA Visually Ocular + Muscle Yes Driving 

simulators 

Barthélemy et al., [138]  2017 ICA Visually Ocular Yes Online 

3.3.4 Wavelet Transform 
WT is a method that decomposes a time-domain 

EEG signal into specific time-frequency 

representations obtained by dilations and shifts of a 

unique function ψ  called the mother wavelet [105]. 

WT is the inner product of the time-domain signal 

and basis wavelet function. When the signals are 

discrete, the discrete WT (DWT) can be applied, and 

a set of basis functions is defined on a dyadic grid in 

a time-scale plane as 

  )2(2)( 2
, ktt

j
j

kj −= −
−

ψψ  (12) 

where j governs the amount of scaling and k 

represents the amount of time shifting. In the DWT 

algorithm, the discrete time-domain signal is 

decomposed into high-frequency or details 

components and low-frequency or approximation 

components through successive low-pass and high-

pass filters [32]. The step-wise process to remove 

artifacts is as follows [105]: 

1. Decompose EEG signal into number of 

detailed components 

2. Threshold details coefficients to denoise 

signals from artifacts 

3. Reconstruct artifact-free EEG signal by 

removal of threshold components. 

WT is ideal for biomedical applications, due to its 

robustness and versatility. WT has been widely used 

to remove artifacts from EEG data [105, 139, 140]. 

Even though this method has been used as a valuable 

tool to denoise EEG signals on its own, recently 

many researchers have combined it with other 

methods for more efficient artifact removal. One 

major drawback of wavelet-based methods is that 

they cannot remove artifacts completely if the 

spectral properties of the measured signal overlap 

with the spectral properties of the artifacts [30, 32]. 

Table 5 list the studies using WT algorithms. 

3.3.5 Empirical-Mode Decomposition 

Empirical-mode decomposition (EMD) is a data-

driven method that decomposes a time-domain 

signal into a set of intrinsic mode functions (IMFs) 

with the advantages of adaptivity and flexibility 

[141]. More precisely, each of these IMFs must 

satisfy the following two conditions [142]: 

i. In the whole dataset, the number of extrema 

and the number of zero crossings must be 

equal or differ at most by one. 

ii. At all points, the mean value of the 

envelopes defined by the local minima and 

local maxima must be zero. 

The procedure of the EMD method can be 

summarized as follows [142]: 

1. Identify all local maxima and local minima 

of the given signal. 

2. Interpolate between maxima to estimate the 

upper envelope and between minima to 

estimate the lower envelope. This can be 

done by using cubic spline interpolation. 

3. Calculate the mean of the two envelopes 

and subtract it from the given signal. 

4. Repeat steps 1-3 until the stopping criteria 

are fulfilled. 

The sifting process stops when the final residue r(t) 

is a constant, a monotonic function, or a function 

with only one maxima or one minima from which no 

more IMFs can be derived. Finally, the decomposed 

signal can be represented as [141] 

  
=

+=
p

i
i trtdtS

1
)()()(  (13) 

where p is the total number of IMFs and d represents 

the IMFs. In general, EMD performs better than 

Fourier or wavelet transform (WT) because the basis 

of its decomposition is adaptively derived from data 

rather than manual settings. 

EMD has been successfully used to remove artifacts 

from EEG data [141, 143] and also in combination 

with other methods (See section 3.4). Furthermore, 

EMD, as it is very sensitive to noise, has been 

modified to deal with mode-mixing complications.  

Enhanced EMD (EEMD) is developed that has the 

average number of IMFs from EMD as the optimal 

IMFs providing a noise-assisted data analysis 

method [144]. Table 5 lists the studies using EMD 

algorithms. 

3.3.6 Signal Space Projection 
Signal space projection (SSP) is a method in which 

a signal-optimized subspace is defined from 

measurement data and the data projected into the 

signal subspace [145]. This method can be used to 

improve the signal-to-noise-ratio and source 

localization of EEG and MEG signals [146, 147]. 

SSP relies on the assumption that the subspace of the 
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neuronal signals is orthogonal or sufficiently 

different from the subspace of the artifactual 

activities. Generally, PCA is used to determine SSP 

of the artifactual data. The projection operator is 

then estimated using the strongest PCs.  This 

operator can be estimated using data contaminated 

with very high artifacts elicited due to ECG or EOG. 

In MEG signal analysis, artifactual subspace can be 

constructed using data acquired in empty room to 

reduce environmental artifacts. In the past, few 

studies successfully removed artifacts from EEG 

and MEG datasets using SSP algorithm. For 

instance, Nolte and Hämäläinen did a theoretical 

analysis of partial SSP algorithm to remove artifacts 

from MEG data [148]. Taulu and Hari developed an 

algorithm using SSP theory to remove artifacts from 

MEG data [149]. Recently, a study proposed a SSP 

based method to remove muscle artifacts from TMS-

evoked EEG data [150]. References [151-154] can 

be visited for more detailed understanding of using 

SSP algorithms to remove artifacts from EEG and 

MEG data. SSP is also implemented in open source 

software’s which can be used to visualize, analyze 

and remove artifacts from EEG and MEG datasets 

[155-157]. 

3.3.7 Beamforming 
In sensor array signal processing methods,  

beamforming or spatial filtering is a technique used 

for directional transmission or reception of signals 

[158]. Most commonly this technique has been 

widely used in communications and signal 

processing applications. Recently, these techniques 

have also been employed to analyze and process 

brain signals. Generally speaking, these techniques 

has been mainly used for source localization in 

MEG and EEG studies. Beamformers can be 

designed to pass the neuronal activities from a 

specific source while debilitate activities from all 

other external or internal sources [159] and 

references therein. However, beamforming based 

methods has been used to extract and remove 

artifacts from EEG and MEG signals using the same 

principal. For instance, Nazarpour and co-authors 

developed a space-time-frequency (STF)-

time/segment modelling and beamforming based 

methodology to remove eye blink artifacts from 

EEG data [159]. Another study used beamformers to 

reject artifacts in simultaneous EEG-fMRI recording 

[160].  Hipp and Siegel showed that beamformers 

based analysis not only map the EEG signal to the 

cortical space of interest, but also efficiently remove 

muscle artifacts from signals [161]. In another study, 

beamforming based methodology was used to 

remove transcranial alternating current stimulation 

artifacts from MEG signals [162]. Recently, 

beamforming was combined with ICA to analyze the 

effects of microsaccadic artifacts in EEG signals 

[163]. They showed that beamforming can be used 

to validate the successful removal of artifacts from 

the data. For more detailed insight, we recommend 

readers to visit the references [36, 164-170]. 

 

Table 5: Studies using wavelet transform, empirical-mode decomposition, signal space projection and beamformers algorithms to 

remove different artifacts. 

Study Year Method Validation Artifact Type(s) Applications 

Zikov et al., [140]  2002 WT Visually Ocular General 

Krishnaveni et al., [139]  2006 WT Experimental Ocular General 

Iyer and Zouridakis [171]  2007 WT Simulated Ocular + Muscle General 
Nazarpour et al., [159] 2008 BF Experimental Ocular General 

Maki and Ilmoniemi [150] 2011 SSP  Muscle TMS-EEG 

Oostenveld et al., [165] 2011 BF  Ocular + Muscle General 
Yong et al., [172] 2012 WT Simulated Ocular + Muscle BCI 

Molla et al., [141] 2012 EMD  Ocular General 

Gramfort et al., [156] 2013 SSP  All General 

Hipp and Siegel [161] 2013 BF Experimental Muscle General 

Keshava and Khan [143] 2014 EMD  Ocular General 

Daud and Sudirman [173] 2016 WT  Ocular + Muscle General 

Craddock et al., [163] 2016 BF Experimental Muscle General 

Patel et al., [174] 2016 EMD Experimental Ocular General 
Khatun et al., [175] 2016 WT Visually Ocular General 

Guarascio and Puthusserypady 

[144] 

2017 EMD Simulated Ocular General 

Chavez et al., [176] 2018 WT Visuals and 

Simulated 

Ocular + Muscle General 

 *BF: beamformers

3.4 Hybrid Methods 
Since each method discussed earlier has advantages 

as well as limitations, recently, researchers have 

developed methods that combine two or more 

methods. The idea is to use methods’ advantageous 

features to develop a modality that can completely 

remove artifacts from EEG signals. In this section, 

we will discuss some of these methods. Table 6 lists 

the studies using hybrid algorithms. 

3.4.1 Adaptive Filtering and Blind Source 

Separation 
Adaptive filtering and BSS (BSS: ICA) have been 

combined to develop this hybrid method. ICA is 

used to decompose EEG signals into ICs. Since it is 

a proven fact that identified artifactual ICs also 

contain weak neuronal signals, removing these ICs 

could cause distortion in EEG signals [17]. Hence, 

in this method, artifactual ICs are furthered 

processed by an adaptive filter to retain the neuronal 
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information present in them. Klados et al. [2011] 

developed a hybrid method by combing adaptive 

filtering and ICA for efficient removal of artifacts 

from EEG data [34]. A similar method was 

developed in [24], combing adaptive filtering and 

BSS for removal of ocular artifacts. One of the 

limitations of these methods is that there is no 

criterion for automatic selection of artifactual 

components; accordingly, they apply adaptive 

filtering to all ICs, which can cause loss of neuronal 

information from non-artifactual ICs as well as 

increased computational cost. To overcome this 

issue, Mannan et al. developed a hybrid AF-BSS 

method that automatically identifies artifactual 

components and processes those ICs only to remove 

ocular artifacts from EEG data [12, 13]. A similar 

method was developed by combing the auto-

regressive exogenous model with ICA for removal 

of ocular artifacts from EEG data [177]. General 

schematic of combined BSS and adaptive filtering to 

remove artifacts from EEG data is shown in Figure 

5. 

 
Figure 5. General schematic of BSS and adaptive filtering algorithms. 

3.4.2 Empirical-Mode Decomposition and Blind 

Source Separation 
EMD and BSS also have been combined to remove 

artifacts from EEG data. In this method, EMD is 

applied to EEG signals to obtain IMFs, and then the 

BSS method is applied to IMFs for detection and 

removal of artifactual components. In some studies, 

authors have reported on the EMD-BSS method 

[178, 179] whereas in others, BSS-EMD [180, 181]. 

The only difference is which method is applied first 

to EEG signals. Figure 6 illustrates the schematic of 

BSS-EMD algorithm. 

3.4.3 Wavelet Transform and Blind Source 

Separation 

In this method, the WT and BSS methods are 

combined for removal of artifacts from EEG data. 

Most commonly, this method is applied as follows 

[182, 183]: 

1. Decomposition of EEG signals by ICA or 

CCA to obtain ICs or CCs 

2. Decomposition of ICs or CCs by WT 

3. Removal of artifactual components by 

thresholding 

4. Reconstruction of artifact-free EEG 

signals. 

Another version combining WT and BSS applied 

WT as the first step and then BSS as the second. In 

the literature, WT’s combination with either 

ICA[182] or CCA [183] has been reported. Figure 6 

show the schematic of this algorithm.

 
Figure 6. General schematic of BSS-EMD and BSS-WT algorithms. 

 

3.4.4 Adaptive Filtering and Empirical-Mode 

Decomposition 
This hybrid method is based on the combination of 

adaptive filtering and EMD. A step-wise procedure 

of this hybrid method is as follows [184] 

1. Decomposition of EEG signals to obtain 

IMFs using EMD. 

2. Calculate frequency of each component 

using power spectrum density. 

3. Find range of frequency from reference 

artifactual signal having non-significant 

portion of energy. 

4. Construct a signal by combining 

components having frequencies greater 

than the upper limit of the above range and 

a signal with components having 

frequencies less than the upper limit of the 

above range. 

5. Remove artifacts with adaptive filtering 

with recorded artifactual signals as 

reference input. 

6. Reconstruct clean EEG by adding second 

signal from step 4 and cleaned signal from 

step 5. 

Removal of ECG artifacts using this method has 

been reported in [184]. 

3.4.5 Adaptive Filtering and Wavelet Transform 
Peng et al. developed a method by combing adaptive 

filtering and WT [185]. They used DWT and an 

RLS-based adaptive noise canceller to remove 

ocular artifacts from EEG data. This method can be 

applied as follows [185] 

1. Wavelet decomposition of recorded EEG 

signals. 

2. Thresholding wavelet coefficients. 

3. Reconstruction of reference signal by 

inverse wavelet transform. 

4. Apply adaptive filtering to contaminated 

EEG signals with reconstructed reference 

from step 3 as input. 

5. Clean EEG signals.

6.  
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Table 6: Studies using hybrid algorithms for removal of different artifacts. 

Study Year Method Validation Artifact 

Type(s) 

Auto Reference Applications 

Shoker et al., [186] 2005 ICA-SVM Classification Ocular Yes No General 

Castellanos and Makarov 

[17] 

2006 ICA-WT Simulated All Yes No General 

Halder et al., [187] 2007 ICA-SVM Classification Ocular + 

Muscle 

Yes No BCI 

Ghandeharion and 

Erfanian [188] 

2010 ICA-WT Classification Ocular Yes EOG General 

Lindsen and Bhattacharya 

[181] 

2010 ICA-EMD Simulated Ocular Yes No General 

Chan et al., [189] 2010 AF-ICA Simulated Ocular Yes No General 

Raghavendra and Dutt 

[183]  

2011 ICA-WT Experimental Ocular + 
Muscle 

Yes No General 

Klados et al., [34] 2011 AF-ICA Simulated Ocular No EOG General 

Vázquez et al., [190] 2012 BSS-WT Simulated All Yes No Seizure 

Guerrero-Mosquera and 

Navia-Vazquez [24] 

2012 AF-ICA Experimental Ocular Yes No General 

Mammone et al., [191] 2012 ICA-WT Simulated All Yes No General 

Jafarifarmand and 

Badamchizadeh [192] 

2013 AF-NN Visually All Yes Yes Online 

Li et al., [193] 2012 WT-ICA Simulated Ocular Yes No Online 
Wang et al., [194] 2013 ICA-SVM Experimental All Yes No epilepsy 

Peng et al., [185] 2013 AF-WT Simulated Ocular Yes No Portable 

Chen et al., [179] 2013 EMD-CCA Simulated Muscle Yes No General 

Zeng et al., [195] 2013 SSA-EMD Simulated Ocular No No General 

Wang et al., [177] 2014 ICA-AF Simulated Ocular Yes No General 

Zhao et al., [196] 2014 WT-AF Simulated Ocular Yes No Portable 

Hamaneh et al., [197] 2014 ICA-WT Experimental Cardiac Yes No Epilepsy 

Chen et al., [178] 2014 BSS-EMD Simulated Muscle Yes No ambulatory 
Mammone and Morabito 

[198] 

2014 ICA-WT Simulated All Yes No General 

Cassani et al., [6] 2014 ICA-WT Classification All Yes No Alzheimer 

Navarro et al., [184]  2015 EMD-AF Simulated Cardiac Yes ECG Infant EEG 

Burger and van den 

Heever [199] 

2015 ICA-WT-NN Simulated Ocular No No General 

Mahajan et al., [182] 2015 ICA-WT Experimental Ocular Yes No General 

Mingai et al., [200] 2015 ICA-WT Simulated Ocular Yes No BCI 

Gao et al., [180] 2015 ICA-EMD Visually Ocular Yes No ERP 
Yang et al., [201] 2015 ICA-EMD-AF Classification Ocular Yes No BCI 

Mowla et al., [202] 2015 BSS-WT Experimental Ocular + 

Muscle 

Yes No VEP 

Daly et la., [203] 2015 WT-ICA Classification All Yes No BCI 

Labate et al., [8] 2015 ICA-WT Experimental All Yes No Alzheimer 

Mannan et al., [12] 2016 ICA-AF Simulated Ocular Yes EOG General 
Mannan et al., [13] 2016 ICA-AF Experimental Ocular Yes ET General 

Bono et al., [204] 2016 EMD-WT Simulated Ocular + 

Muscle 

Yes No General 

Bono et al., [204] 2016 ICA-WT Simulated Ocular + 

Muscle 

Yes No General 

Chen et al., [205] 2016 EMD-CCA Simulated Muscle Yes No ambulatory 

Zeng et al., [206] 2016 EMD-ICA Simulated Ocular + 

Muscle 

Yes 

 

No Epilepsy and 

Seizure 

Kanoga et al., [207] 2016 ICA-WT Experimental Ocular Yes EOG General 
Patel et al., [208] 2016 EMD-PCA Experimental Ocular Yes EOG General 

Wang et al., [209] 2016 ICA-EMD Simulated Ocular Yes EOG General 

Bai et al., [210] 2016 EMD-CCA Simulated Ocular + 

Muscle 

Yes No TMS–EEG 

Hsu et al., [211] 2016 ICA-RLS Experimental Ocular Yes No High-density 

EEG 
Maddirala and Shaik 

[212] 

2016 SSA-AF Simulated Ocular Yes No Portable 

Jafarifarmand et al., [213] 2017 ICA-AF Experimental Ocular Yes No BCI 

Patel et al., [214] 2017 EMD-REG Experimental Ocular + 

Cardiac 

Yes No Single Channel 

EEG 

Quazi and Kahalekar 

[215] 

2017  AF-NN Simulated All Yes No General 

Al-Qazzaz et al., [216] 2017 ICA-ET Experimental All Yes No Clinical 

Yang et al., [142] 2017 CCA-EMD Classification Ocular Yes No BCI 

Radüntz et al., [217] 2017 ICA-ANN Classification All Yes No General 

Anastasiadou et al., [218]  2017 CCA-WT Simulated Muscle Yes No General 

Dursun et al., [219] 2017 DWT-CC Classification Ocular Yes No General 

Lin et al., [220] 2017 CCA-GMM Visual Ocular + 

Muscle 

Yes No General 
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Maddirala et al., [221] 2018 ICA-SSA Simulation Ocular + 

Muscle 

Yes No General 

Mammone [9] 2018 ICA-WT Visually All Yes No Alzheimer 

Chen et al., [29] 2018 MEMD-CCA Simulated Muscle Yes No General 

Tamburro et al., [222] 2018 ICA-SVM Classification All Yes No General 
Gabard-Durnam et al., 

[223] 

2018 wICA Visual All Yes No General 

4 Performance Evaluation 
Performance evaluation is a means of verifying or 

checking the ability of an algorithm to remove 

artifacts from EEG data. Since the underlying 

neuronal activity in recorded EEG data is unknown, 

it is a difficult task, therefore, to completely verify 

an algorithm’s performance. In the literature, this 

problem is overcome through the use of simulated 

EEG data [12, 34]. In simulated EEG, clean signals 

(EEG signals recorded and analyzed with care so 

that there are no major artifacts) and artifacts are 

mixed using very simple as well as very complex 

techniques [22, 34, 224]. However, simulated EEG 

cannot achieve real contamination as in recorded 

EEG. Therefore, an algorithm should also be 

verified through the use of experimental EEG data. 

In our opinion, an algorithm should go through a 

three-step verification procedure. First, evaluation 

of the algorithm should be done using simulated 

EEG signals. Next, self-recorded EEG signals 

should be used to verify the effectiveness of the 

algorithm. Finally, real EEG signals available at 

verified EEG databases should be utilized in this 

regard. This verification procedure will testify as to 

the true performance, reliability, and reproducibility 

of any artifact removal approach. 

4.1 Evaluation Metrics for Simulated EEG Data 
In this section, we will overview most of the 

commonly used metrics to evaluate the performance 

of EEG data. One of the advantages of using a 

simulated EEG signal is that the true EEG signal is 

known and can be used to assess the performance of 

an algorithm. 

4.1.1 Mean Square Error 

In the time domain, the mean square error (MSE) 

can be used to assess the performance of an 

algorithm by calculating the differences between 

true EEG N
in iEEG

×ℜ∈ 1
)(  and corrected EEG 

N
out iEEG

×ℜ∈ 1
)( . MSE can be calculated as [12] 

 ( )
2

1
)()(

1

=

−=
N

i
inout iEEGiEEG

N
MSE  (14) 

4.1.2 Root Mean Square Error 
Root mean square error (RMSE) is another 

commonly employed metric to quantify the amount 

of information preserved by an algorithm. RMSE 

can be calculated as [204] 
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4.1.3 Normalized Mean Square Error 

Normalized mean square error (NMSE) is also used 

in EEG artifact removal studies as an evaluation 

metric. NMSE can be calculated as [206] 
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4.1.4 Relative Error 
Relative error (RE) is another time-domain metric 

that has been used in several studies to evaluate the 

effectiveness of algorithms in removing artifacts 

from EEG data. RE can be calculated as [13] 
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where .  denotes the norm calculations for a vector. 

4.1.5 Signal-to-Artifact Ratio 
Signal-to-artifact ratio is the metric commonly used 

to evaluate improvements in the corrected EEG 

signal as compared with the contaminated EEG 

signal. Signal-to-artifact ratio for contaminated EEG 
N

con iEEG
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)(  signals can be calculated as [225] 

    





=

=

−

=
N

n
incon

N

n
in

B

EEGEEG
N

EEG
NSAR

1

2

1

2

1

1

 (18) 

where BSAR  is the signal-to-artifact ratio before 

artifact removal, and noiseEEGEEG incon += . 

Signal-to-artifact ratio for corrected EEG can be 

calculated as  
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where ASAR  is the signal-to-artifact ratio after 

artifact removal. An effective artifact removal 

algorithm will remove all artifacts and will have 

higher ASAR  values; consequently, BA SARSAR > . 

The gain in signal-to-artifact ratio γ  can be 

calculated as  
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the γ  value being positive if the signal-to-artifact 

ratio is improved, negative if decreased, and zero if 

there is no improvement. 

4.1.6 Mutual Information 
The amount of mutual information (MI) between 

EEG corrected by an artifact removal algorithm and 
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true EEG can be calculated to analyze the 

effectiveness of an algorithm in extracting true EEG 

signals from contaminated EEG signals. 

Mathematically, MI can be calculated as [12] 
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where ),( baf  is the joint pdf and )(af  and )(bf  

are the marginal pdfs. Corrected EEG and true EEG 

signals are closely related if and only if the MI 

between them is large. 

4.1.7 Mean Absolute Error 
In the frequency domain, mean absolute error 

(MAE), which can be used as an evaluation metric 

to measure the distortion in different frequency 

bands, can be calculated as [12] 

  ,outEEGinEEG PPMAE −=  (22) 

where P denotes the power spectrum density. 

4.2 Evaluation Metrics for Real EEG Data 
Since the underlying true EEG is unknown in 

experimental EEG signals, there is no consensus 

between researchers on the validation of artifact 

removal techniques when applied to real EEG 

signals. However, a number of researchers have 

proposed schemes for verification and validation of 

algorithms [32, 226-231]. For instance, Croft et al. 

developed a scheme based on correlation of 

reconstructed EEG and the EOG reference channel 

and ERP consistency as associated with eye 

movements in EOG channels [229]. However, this 

validation has two limitations, which are its 

dependence on the recorded EOG and the use of an 

entire epoch for “standard deviation validation” that 

includes irrelevant data. Pham et al. addressed these 

limitations and proposed a revised improved version 

of the validation scheme [227]. It is important to 

mention here that those validation schemes are only 

for ocular artifact correction. 

Another attempt in this regard was made by 

McMenamin et al. for muscle artifacts [228]. They 

proposed to evaluate whether a method successfully 

removes/reduces artifacts (its sensitivity) and 

whether it preserves neuronal signals (its specificity) 

using a region of interest. Although this is an 

attractive approach, its implementation is not easy. 

Finally, experts in EEG signal analysis have been 

called to visually inspect the outcomes of artifact 

removal algorithms by inspecting factors such as 

time series and frequency spectrum before and after 

the removal process. The limitation of this 

validation is that it is highly dependent on the 

expertise of the researcher in providing indications 

of whether the artifact removal algorithm improved 

or decreased the quality of the EEG signal. Several 

authors have used this scheme to validate and 

compare the performance of their algorithms with 

others, for instance [12, 13, 26-28, 107, 227, 232]. 

 

5 Artifact Removal in EEG Applications  
Although the focus of this article is to review the 

most commonly used artifact removal algorithms for 

physiological artifacts in EEG signals, however, it 

will be beneficial to briefly describe application-

based studies specifically for BCI and high-density 

EEG. It is widely accepted within the BCI research 

community that in any BCI system, neurological 

phenomena are the only source of control. Artifacts, 

unwanted electrical signals that arise from sources 

other than the brain, can interfere with neurological 

phenomena. Such artifacts might alter the 

characteristics of neurological phenomena or even 

be mistakenly used as the source(s) of control in BCI 

systems [16]. If not removed, these artifacts could, 

as indicated above, be mistakenly used to control the 

BCI system, which is the most significant artifact-

related problem [233]. As failing to deal with 

artifacts can result in deterioration of BCI system 

performance during practical applications, it is 

necessary to develop automatic methods to handle 

artifacts or to design BCI systems robust to them. 

Bashashati et al. showed that dealing with eye 

artifacts in EEG data can enhance the performance 

of a self-paced BCI system [234]. Erfanian and 

Mahmoudi used recurrent neural networks based 

adaptive filtering to automatically suppress ocular 

artifacts for improved EEG-based BCI performance 

[73]. Recently, Yong et al. combined stationary 

wavelet analysis with adaptive thresholding to 

automatically remove ocular artifacts from EEG 

data in an EEG- and eye-tracker-based self-paced 

BCI system [172]. There method is independent of 

EOG and can be used for real-time processing. In 

another study, wavelet decomposition and ICA were 

combined to remove artifacts from EEG data for 

BCI applications [203].  This method was termed as 

FORCe and does not require any additional 

reference channels like EOG or ECG. More 

recently, a study developed a real-time methodology 

to detect and remove blinking artifcats using digital 

filtering with an automatic thresholding algorithm 

[235]. Another study developed an adaptive noise 

cancelling scheme using H-infinity filtering for 

removing ocular artifacts and signal drifts. They 

showed that adaptive filtering based artifact removal 

can enhance the decoding accuracy of brain-

machine interfaces [77]. Zou and co-authors 

developed an ICA based method in which hierarchal 

clustering of features extracted from ICs is proposed 

to remove physiological and non-physiological 

artifacts from EEG data for BCI applications [129]. 

In a recent study, BSS algorithms were used to 

remove eye blink artifacts for online processing of 

the EEG signals [138]. Although they have not 

shown the performance of their algorithm for BCI 

application, but the online removal of artifacts can 

be used as a guiding tool for making BSS algorithms 

useable with BCI applications in future research. In 

a more recent study, a novel method termed as filter-

bank artifact rejection algorithm was developed for 

real-time removal of artifacts from EEG signals 
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[236]. This method divides EEG signal into different 

frequency band, extract features and use machine 

learning to remove artifacts. Another advantage of 

this method is that it can be implemented only with 

few channels or even with one channel EEG data. 

Results of their algorithm showed that this algorithm 

outperformed FASTER [224]. The relevant 

references [16, 80, 170, 187, 237-240] and 

references therein could be visited for deep insight 

on artifact removal in BCI application. Moreover, 

high-density EEG is another important and recent 

application for getting more insights into brain 

functionality during real-world activities [241]. Few 

studies also developed algorithms to remove 

artifacts to analyze high-density EEG data. For 

instance, a study developed a modified ICA 

algorithm in which a subset of channels was 

randomly selected and decomposed with ICA 

algorithm [132]. Subsequently, an artifact relevance 

index was calculated by template matching scheme. 

They showed that their method can successfully 

remove blinking artifacts from high-density EEG 

data. More recently, Tamburro and co-authors 

developed a combined ICA-SVM method to identify 

and remove all physiological artifacts from high-

density EEG [222]. Another study develop an 

automatic processing pipeline which uses wICA 

with automatic ICs rejection for removing artifacts 

[223]. They showed that their scheme can 

successfully remove artifacts from high-density 

EEG signals. We suggest that readers consult the 

applicable references [211, 242-245] for more 

details on the analysis and removal of artifacts from 

high-density EEG signals. Furthermore, artifacts can 

also affect diagnosis and analysis in clinical research 

such as on sleep disorders, Alzheimer disease, and 

schizophrenia [6-9]. It is therefore mandatory, in 

either clinical research or practical applications, to 

deal with these artifacts prior to the analysis of EEG 

signals. 

6 Discussion  

EEG is the most commonly utilized brain-imaging 

device in medical and application-based research. 

The major issue of EEG is that it is always 

contaminated with artifacts from different sources 

such as eyes, muscles, cardiac noise, electrode 

misplacement, and movements in the environment 

[31]. It is proven that these artifacts can alter the 

results of applications such as BCI [16], high-

density EEG [222] and disease diagnosis [6]. It is 

therefore essential to remove these artifacts before 

analyzing EEG data for the final goal of the 

application. Figure 7 shows the number of artifact 

removal research articles that used the described 

methods from 1991-2018. Research on artifact 

removal has almost monotonically increased in 

number each five year, as it can be seen in Figure 7. 

This trend indicates that physiological artifact 

removal from EEG signals is still an important and 

challenging research topic. 

 
Figure 7. The number of published artifact removal articles 

each five year from 1991 to 2018 (March). 

 
Figure 8. The percentage of published articles using each 

algorithm discussed in this paper. 
In this paper, we reviewed most of the commonly 

employed algorithms dealing with physiological 

artifacts in EEG signals. Figure 8 provides the pie 

chart showing the percentages of the number of 

articles published using various algorithms. In single 

method studies, ICA (24%) is the most highly used 

algorithm for removing artifacts. Overall, due to the 

high effectiveness, most of the studies developed 

and implemented hybrid algorithms (33%). 

Removal performance, manual/automatic 

processing, offline/online/real-time 

implementations, single/multi-channel signals, 

reference channel requirements, and robustness can 

be considered as important metrics to select and 

compare each artifact removal algorithm. BSS 

algorithms, especially ICA, are the most frequently 

used methods for removal of artifacts from EEG 

data, due to the fact that they are implementable 

without the need of any reference signal [31], but 

they also suffer with some disadvantages and 

limitations. For instance, ICA on its own cannot 

automatically identify artifactual ICs to be removed 

from data. It requires visual expertise to accurately 

remove artifacts from signals and large amount of 

time [12, 82, 88]. However, many recent studies 

combined ICA with other statistical tools to 

automatically classify artifactual components [12, 

23, 92, 115, 198, 216, 222] (see Table 4). Also, it has 

been proven that artifactual ICs also include leaked 

neuronal activity and removing these ICs cause 

considerable amount of data loss [17]. Requirement 

of large amount of data and large number of 

channels are the few limitations of ICA [32, 85], 

however, recent studies tried to overcome these 

issues [221], but these issues need more attention in 

future studies. PCA on the other hand assumes the 

orthogonality of activity and artifactual signals 

which does not hold whenever both have same 

amplitudes, and consequently PCA fails to split 

artifactual activities from EEG data [93, 101]. 
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Although MCA has recently been used for artifact 

removal, but it has a drawback that it always require 

a morphology database of artifacts [108, 109]. In 

contrast, CCA is comparatively fast and does not 

pose conditions like Gaussianity, orthogonality and 

pre-defined database like ICA, PCA and MCA dose 

[26, 30-32], therefore should be explored more for 

all type of artifacts in future research. Overall, BSS 

algorithms can be used to deal with all types of 

artifacts present in EEG signals without the need of 

any extra reference signals. Alternative to BSS, 

regression/filtering methods has the limitation of 

requiring particular reference signals to remove 

particular types of artifacts from EEG data [32]. 

Furthermore, regression methods are highly effected 

by bidirectional contamination which cause to 

remove common neuronal activity from EEG 

signals [12, 34]. But few studies suggested that low-

pass filtering of EOG signal can reduce the 

bidirectional effect [28, 44, 45]. However, simple, 

fast, no preprocessing and online/real-time 

implementation for BCI-type applications are few 

advantages of regression and filtering algorithms. 

WTs are proven to be ideal for biomedical 

applications due to their robustness and versatility, 

but they fail to remove artifacts whenever the 

spectral properties of artifacts and neuronal 

activities overlapped [31, 32]. EMD method is 

suffered by the limitation of mode-mixing but it has 

the advantages of adaptivity, robustness and 

flexibility [144]. It can be concluded from the above 

discussion that every method has advantages as well 

as disadvantages and limitations. To this end, few 

studies combined two or more methods such that the 

combination method can ensure advantages of each 

method to be maximized and drawbacks to be 

minimized. The idea of combining different 

methods can be used to deal with the problems faced 

by classic algorithms in EEG signal analysis. 

Recently, a few researchers who combined two or 

more methods to remove/reduce artifacts from EEG 

data have claimed that the combined methods can 

perform better than single algorithms [12, 17, 178, 

197] (see Table 6). Also, it can be seen from Figure 

9 that recently researchers showed very high interest 

in developing and implementing hybrid algorithms 

as compared to single methods. Most algorithms 

though, regardless of being used as a single modality 

or in a combined way, deal only with one type of 

artifact, which in fact limits their utility to particular 

applications (Table 3-6). Figure 10 shows the pie 

chart describing the percentages of articles 

published dealing with single artifact (67%) and 

multiple artifacts (33%). However, recent studies 

showed more interest in developing algorithms for 

processing multiple artifacts (Figure 10b).  

Furthermore, there is no standard validation rule 

applicable to algorithms that remove artifacts from 

real EEG data [30, 32]. Next, we will discuss and 

compare methods for removal of particular types of 

artifacts from EEG data. 

 
Figure 9. The trend of publishing articles using different 

algorithms. 

 
Figure 10. Comparison of the number of published articles 

for dealing with single or multiple artifacts. (a) Percentage 

of the published articles. (b) Number of articles published 

with single and multiple artifcats each five year from 1991-

2018. 
Ocular/EOG artifacts are EEG signal 

contaminations due to eye movements and blinks, 

and are always present in EEG signals [59]. Due to 

this, ocular artifacts have been extensively treated 

by many researchers in the literature (Table 3-6). In 

early studies, it is possible to measure reference 

channel signals for ocular artifacts; therefore, 

regression/filtering methods have been the most 

commonly used for removal of such artifacts from 

EEG data until early 90’s [18, 21, 27, 28, 246, 247]. 

On the other hand, if there is no reference signal 

available, ICA is the most commonly employed 

algorithm to remove ocular artifacts [14, 15, 22, 111, 

112]. Initially, artifactual ICs were identified by 

visual inspection of time series and topographies 

[111, 112, 116]; but later on, many researchers, in 

order to make the ICA procedure automatic, 

proposed the use of features based on the temporal 

and spatial properties of ICs [22, 23, 89, 115]. As it 

can be seen from Table 4, other variants of BSS 

algorithms such as PCA, CCA and MCA have not 

been used extensively to remove ocular artifacts 

from EEG signals; in fact, a few studies have used 

only PCA [19, 97, 100, 101]. Furthermore, in the 

literature, only a few authors have used WT and 

EMD to treat ocular interferences [139, 144, 174]. 
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Since all of these methods have limitations, more 

recently, many researchers have combined different 

methods to remove ocular artifacts, their rationale 

being that the methods thus devised utilize only the 

advantageous features of each method and thus are 

more efficient in removing ocular artifacts from 

EEG data [13, 34, 142, 180, 188]. Unfortunately 

though, most of those studies have determined the 

efficacy of their methods by visual inspection on 

experimental data or by use of simulated EEG 

signals under different conditions and circumstances; 

therefore, it is very difficult to comment on which 

methods perform better than others. However, it is 

very easy and common to acquire EOG signals as a 

reference for ocular artifacts. Also, the pattern of 

ocular artifact is very consistent with specific 

dynamics and ICA can successfully decompose it 

into separate ICs. Therefore, in our opinion, 

adaptive filtering, ICA or their combination could be 

a good choice for removal of ocular interferences 

from EEG data, depending upon the specific 

application (i.e., availability of reference, 

offline/online/real-time, etc.). The relevant 

references [18, 21, 28, 45, 175, 229, 246, 247] can 

be consulted for more details on removal of ocular 

artifacts.  

The presence of unwanted muscle activities in EEG 

signals is known as muscle/electromyography 

(EMG) artifact. Generally, it is more difficult to 

remove muscle artifacts from EEG data as compared 

with EOG artifacts, because the reference signal for 

muscle artifacts is rarely available [81]. Even if extra 

electrodes are used to measure the reference signals 

for muscle artifacts, it is ineffective, due to the 

activation of multiple muscles involved in their 

generation [33]. Therefore, regression methods 

cannot be used as effective muscle artifact removal 

tools. Even though ICA is successfully used to 

remove muscle artifacts [120, 130], it is, unlike the 

case of EOG artifact removal, very difficult to 

separate muscle artifacts in different ICs, due to the 

fact that these artifacts are superimposed onto some 

ICs [104, 113, 114, 232]. Therefore, disagreement 

exists in the literature as to whether ICA is an 

effective tool for removal of muscle interferences 

[33, 228, 230, 231]. Recently, CCA has been used to 

remove muscle artifacts, and the authors showed 

improved performance over ICA [26]. Three other 

studies also have reported the successful use of CCA 

to remove muscle interferences from EEG [104, 

106, 107]. Furthermore, the combination of CCA 

and EMD also has been developed to efficiently 

remove muscle artifacts [178, 179, 205]. Despite the 

fact that there are many algorithms available for 

removal of EMG artifacts, there is as yet no standard 

method for dealing with muscle artifacts. Recording 

EMG signals for removing muscle artifacts is not as 

easy as in the case of ocular artifacts, therefore, 

adaptive filtering cannot be used as an optimal 

method for removing muscle artifacts. However, 

ICA and CCA have the capabilities of decomposing 

signals such that source signals for muscle artifacts 

can be identified and removed, and several studies 

showed the successful application of these methods 

in removing muscle artifacts [26, 104-106, 120, 178, 

183, 231, 232]. Therefore, in our opinion, ICA, CCA 

and their combination with other methods could be 

good choices for removal of muscle artifacts, 

depending on the specific application. For more 

details on the removal of muscle artifacts from EEG 

signals, we suggest that readers consult the 

applicable references [33, 105, 230, 232]. 

Artifacts due to heart beat are known as 

cardiac/ECG artifacts. In literature, ECG are the 

least treated artifacts as compared with EOG and 

EMG artifacts. One reason for this might be the 

specific temporal dynamics and time-frequency 

characterization of cardiac artifacts, which do not 

pose difficulties as great as those that ocular and 

muscle artifacts do. Also, it is possible to measure 

reference signals for cardiac artifacts with ECG. The 

earliest method to deal with ECG artifacts was 

ensemble average subtraction [57]. Since it is very 

common practice in clinical environment to measure 

ECG along with EEG, regression and filtering 

methods can be used to remove cardiac artifacts [64, 

119]. ICA is reported to remove cardiac 

interferences from EEG signals by visually 

identifying ICs related to ECG activity [90, 119]. 

Furthermore, ICA is combined with wavelet 

transform to enhance the artifact removal process 

[197]. As discussed earlier, cardiac artifacts have 

specific dynamics; as such, they can be easily 

separable in different ICs, and therefore, in our 

opinion, ICA or methods combined with ICA could 

be good choices for dealing with cardiac artifacts in 

EEG.  

Next, we will consider studies that deal with two or 

more types of artifacts. In the literature, ICA is the 

most common method to deal with multiple 

artifacts. In 2003, ICA was used for the first time to 

remove all types of artifacts from eighty EEG 

signals [15]. The authors showed the efficacy of 

their results by visual inspection and by analysis of 

correlation, frequency spectrum and isopotential 

maps. Since then, many authors have reported the 

successful use of ICA both manually and 

automatically to remove all three types of artifacts 

[89, 92, 127, 129]. Furthermore, a number of authors 

have proposed the use of features that make the ICA 

process automatic. In some of those studies, WT was 

combined with ICA to enhance the performance of 

the artifact removal process [17, 191, 198, 203, 216]. 

Other methods, for example BSS-WT [190], 

adaptive filtering and neural networks [192, 215], 

ICA and support vector machine [194], also have 

been reported to successfully remove all types of 

artifacts. Ocular and muscle artifacts have been 

treated using ICA [20, 22, 83, 111, 128, 137], WT 

[172, 173] and hybrid approaches [202, 206, 210] as 
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well. On the other hand, ocular and cardiac artifacts 

have seen the least attention in the literature [48, 91, 

101, 214]. Again, it is very difficult to compare the 

performances of different algorithms, since all of the 

pertinent studies have used different measures to 

validate their algorithms.  

In light of the foregoing discussion, there is no single 

method that can be selected as the optimal choice for 

removal of all types of artifacts, due to their 

respective limitations. Although many combined 

methods have been developed to deal with single 

and multiple artifacts, still, there is no method with 

standard validation procedures specifically for 

experimental EEG data. To this extent, it is our 

future plan to perform an empirical evaluation of 

different methods for comprehensive analysis of the 

advantages and disadvantages/limitations of each 

method and in what ways the limitations can be 

conquered. Furthermore, development and 

implementation of artifact removal algorithms for 

online/real-time processing with single/few 

channels is the need of future BCI applications. 

Moreover, methods for high-density EEG of real-

life activities has great room for improvements. For 

instance, this could be beneficial for future EEG 

applications to use dry electrodes which can highly 

reduce the time required for preparing experiments 

with wet-electrode EEG systems. Finally, we 

conclude this review by recommending that 

researchers consider the following aspects in their 

future studies:  i) improvement of different methods 

for factors such as automation, online/real-time 

implementation, requirement of reference channel, 

and computational cost for medical and practical 

applications, ii) development of hybrid techniques 

with multiple processing stages to deal with 

different types of artifacts, iii) development of 

methods for generation of simulated EEG signals 

that can truly replicate the effects of real EEG 

signals for validation purposes, iv) development of 

standard validation procedures to verify algorithms 

on real EEG signals, viii) development and 

implementation of artifact removal algorithm for dry 

electrode EEG signals.  

6 Conclusion  
EEG, a portable brain-imaging device, is always 

contaminated with artifacts from different sources, 

which artifacts can alter results. In the past few 

years, many researchers have focused on developing 

methods to deal with the removal of artifacts from 

EEG data, which removal remains an attractive 

research topic. In this paper, we presented an 

extensive review of the many existing methods for 

physiological artifact identification and removal 

along with a comparison of their advantages and 

limitations. We also provided an overview of the 

most commonly used metrics to verify an algorithm 

for simulated and experimental EEG data. Although 

there are methods that can be used for particular 

types of artifacts in a particular scenario, to date 

there is no single method that can be used optimally 

to remove artifacts from EEG data. In future studies, 

researchers should focus not only on combining 

different methods with multiple processing stages 

for efficient removal of artifactual interferences but 

also on developing standard criteria for validation of 

recorded EEG signals.  
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