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Find who to look at: Turning from action to saliency
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Abstract—The past decade has witnessed the use of high-
level features in saliency prediction for both videos and images.
Unfortunately, the existing saliency prediction methods only
handle high-level static features, such as face. In fact, high-level
dynamic features (also called actions), such as speaking or head
turning, are also extremely attractive to visual attention in videos.
Thus, in this paper, we propose a data-driven method for learning
to predict the saliency of multiple-face videos, by leveraging
both static and dynamic features at high-level. Specifically, we
introduce an eye-tracking database, collecting the fixations of 39
subjects viewing 65 multiple-face videos. Through analysis on our
database, we find a set of high-level features that cause a face
to receive extensive visual attention. These high-level features 4 b
include the static features of face size, center-bias and headFig. 1. Examples of visual attention (viewed by 39 subjects)rultiple-face
pose, as well as the dynamic features of speaking and headvideos influenced by different actions. Each row shows one video with their
turning. Then, we present the techniques for extracting these attention heat maps. Some selected frames of these videos are provided in
high-|eve| features. Afterwards, a novel model, name|y mu|tip|e each column. In the first and second columns, visual attention is attracted by
hidden Markov model (M-HMM), is developed in our method the action of head turning (_profile—tg—front and fr'ont—t'o—profile). !n the third
to enable the transition of saliency among faces. In our M- column, the action of speaking receives substantial visual attention. Note that
HMM, the saliency transition takes into account both the state of the videos are chosen from our database, to be discussed in $ection II.
saliency at previous frames and the observed high-level features gnd orientation together. However, Itti's model [7] mainly fo-

at the current frame. The experimental results show that the . . . . L
proposed method is superior to other state-of-the-art methods cuses on images. For video saliency prediction, the initial work

in predicting visual attention on multiple-face videos. Finally, IS [8], in which Itti's model was extended by incorporating two
we shed light on a promising implementation of our saliency dynamic features, i.e., motion and flicker contrast. Both [7] and

prediction method in locating the region-of-interest (ROI), for  [8] are low-level based methods, which explore and integrate
video conference compression with high efficiency video coding gome low-level features for saliency detection. Afterwards,

7 < 'y | ! #ig

(HEVC). low-level based video saliency prediction evolves alongside
Index Terms—Video analysis, saliency prediction, face. directions of feature exploration and feature integration. In
exploring saliency-related featuresirpriseis defined in[[9] as
. INTRODUCTION . . .
A. Background the Kullback-Leibler divergence (KL) between spatio-temporal

osterior and prior beliefs across video frames. Then, a

When people are exposed to a large scene, they use t a{glesian framework was developed|in [9] to calcukateprise

L%‘Z? tr?e r:g:]cselvnea?nnelar(iﬁeof ”e]:?rr?z:;lvltrg hi:)gnhsreastroelutlgpc.e'li'\?gr predicting video saliency. Besides, sparse representation of
g ' y perp 9 ! b Iggrnt texture atoms (SR-LTA) was proposed[in|[10] as low-

W'th low reSOIl.Jt'On' Thereforg underthe_ limitation of human[sével features to predict saliency, benefiting from the recent
brain processing capacity, visual attention enables humans _to

effectively process considerable amounts of visual dgkta [ ccess of dictionary learning. Besides, some compressed do-
y P ain features, such as motion vector(in/[11] and bit allocation

Over the past decades, visual attention modeling has bgg , were also utilized as low-level features for low-level

broadly studied in the fields of neurophysiology, Cornlet%rased video saliency prediction. In integrating saliency-related

vision and multimediall2]. Saliency prediction is an EffeCtiv‘f’\eatures some advanced works were proposed. In particular, a

way to model the deployment of possible visual attention i . .
on images or videos. Recently, saliency prediction has be%raph based visual saliency (GBVS) was proposetLin [13] for

widely applied in object detectiofl[3], image retargetiily [4 aliency prediction, which applies graph model in combing

. . . . ow-level features of color, intensity and orientation. There
visual quality assessmell [5] and video codifig [6]. also exist dynamic saliency models [14] ard1[15] fusing

spatio and temporal visual features to generate saliency maps.

B. Related work Later, Guoet al. [16] proposed to integrate four low-level
Saliency prediction can be traced back to Itti's model [7features (two color features, one intensity feature and one
which combines the center-surround features of color, intensityotion feature) using the phase spectrum of quaternion Fourier
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high-level features (e.g., object, text and face) are the maeristing video saliency prediction methods consider the impact
evident cues to receive a great amount of visual attentiarf. multiple high-level dynamic features on visual attention,
Thus, a large number of methods have recently employddspite single high-level dynamic feature of speaking being
high-level features for the saliency prediction of imades [18ell embedded in those methods [34]5[38]. It is worth men-
[24], and these methods can be seen as high-level basieding that most recently, human actions have been explored
methods. Those high-level based methods can be classi{@g] to find the key person for event detection in videos
into the saliency prediction of generic images and face image$. basketball games, in the area of recognition. However,
For generic saliency prediction, Judd al. [I8] combined the prediction of the key person does not produce saliency,
high-level features (e.g., face and text), middle-level featurbecause the correlation between the detected key person and
(e.g., gist) and low-level features together, via learning thedround truth attention is not investigated . Moreover, it is
corresponding weights with SVM. Most recently, Huaag limited to basketball videos with human bodies.

al. [19] have proposed the saliency in context (SALICON)

method to incorporate the high-level semantic features
objects in saliency prediction, in light of deep neural ne
works (DNN). Similarly, Bruceet al. [25] proposed a fully  In this paper, we propose a novel method to predict
convolutional networks (FCN) based model to automaticalipe saliency of multiple-face videos, by modeling temporal
extract high-level features in saliency prediction and salietiansition of saliency with regard to high-level static and
object segmentation. In addition, Shabal. [26] used DNN dynamic features. We found out that the most popular videos
to extract semantic features fusing with low-level features awl YouTube contain dialogue scenes (such as TV programs,
saccadic amplitude to predict scanpath. For face images, Qedvies, etc), including one or more faces. Thus, this paper
et al. [20] proposed to add face as an additional feature intoainly concentrates on multiple-face videos, in which faces
Itti's model [7], such that the saliency prediction accuracy caand their high-level dynamic features are indeed useful in
be dramatically improved. The impact of face in the salienajetermining saliency as illustrated in Figdre 1. It is worth
prediction of face images was further investigated [inl [21jointing out that the demand on video conferencing, like Face-
Later, Xu et al. [22] proposed to precisely model saliencylime and Skype, is undergoing the growth explosion, posing
of face region, via learning the fixation distributions of fac¢éhe bandwidth-hungry issue. To relieve this issue, this paper
and facial features. Meanwhile, Jiamg al. [23] developed discusses a potential implementation of our method in high
several face-related features at high-level to predict saliencysifiiciency video coding (HEVC) [40] of video conferencing,

a scene with multiple faces. These high-level features includdich can improve subjective quality at limited bit-rates via
face size, pose and location. locating a salient face as the region-of-interest (ROI).

There have also emerged some high-level based methodSpecifically, we established an eye-tracking database, which
[27]-[130] that make use of high-level features, for videts comprised by fixations of 39 subjects viewing 65 multiple-
saliency prediction. Specifically, Pargt al. [27] proposed face videos. We mine our database to investigate how im-
to explore the high-level based information of eye movemeportant the high-level static/dynamic features are in drawing
patterns, i.e., passive and active states$ [31], to model attentiisual attention. Our investigation revealed that most of human
on videos. Later, Huat al. [28] proposed to learn middle- attention is attracted by one among multiple faces in a video,
level features, i.e., gists of a scene, as the high-level basegich is correlated with the size, center-bias and pose of the
cues in video saliency prediction. Rudey al. [29] proposed face (seen as high-level static features). These features are
to predict the saliency of a given frame, conditioned othus leveraged in our method as the high-level static features
the detected saliency of previous reference frames. In th#r predicting the visual attention of each video frame. This is
method, high-level features (e.g., people) and low-level fesimilar to the work of[[28], which refers to saliency prediction
tures are integrated to perform saliency prediction for curreniynong multiple faces in images. Beyond|[23], we find that
processed frames. In_[30], the high-level feature of camettze high-level dynamic features of speaking and head turning
motion was incorporated for video saliency prediction. Mostttract even more visual attention, and hence, they are utilized
recently, DNN has been developed [n[32],][33] for learnings high-level dynamic features for videos. Then, we propose
some high-level features to predict video saliency. The salienaymultiple hidden Markov model (M-HMM) to predict the
prediction of face images has been extensively studied in [2@]ynamic transitions of saliency between faces across video
[23]. Similarly, several works[[34]5[38] have been devotettames, according to the above high-level features (either static
to saliency prediction of face videos, which focus on talkingr dynamic). The difference between [23] and our method is
face and consider the influence of sound on visual attentighat [23] is proposed for predicting the saliency of multiple-
However, most of them only concentrate on the conversatitate images with only high-level static features, whereas our
videos and do not aim at predicting the salient face amongethod aims at applying M-HMM to predict the saliency
multiple faces. transition of multiple-face videos upon both static and dynamic

In fact, it is intuitive that some high-level dynamic featuredeatures.
also called actions, may attract extensive visual attention in aln summary, we make four contributions in this paper. (1)
face video. For example, Figure 1 illustrates that most attentitve argue that high-level static and dynamic features can draw
is focused on one face, related to the actions of speakiextensive attention in multiple-face videos, based on a thor-
or head turning. Unfortunately, to our best knowledge, feaugh analysis using our eye-tracking database. (2) We develop

f . o
g. Our work and main contributions
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TABLE |
VIDEO CATEGORIES IN OUR DATABASE
[ Category [ TV play/movie [ group interview [ individual interview [ video conference] variety show | music/talk show[ group discussion[ overall |
| Number of videos | 12 | 12 | 8 | 6 | 7 | 10 | 10 | 65 ]

Fig. 2. One example for each category of videos. From le
conference, variety show, music/talk show, and group discussion. 5%

techniques to extract the actions of speaking and head turning, s

as the high-level dynamic features for saliency prediction. '

(3) We propose an M-HMM method to take advantage of |
observed high-level features, achieving the temporal transition v

of saliency across multiple faces in videos. (4) We provide a 79% 95%

promising implementation of our saliency prediction method, = Face Background = Face = Background
Ioc;tmg a salient face as the ROI for video conferencing (a) Fixation proportion (b) Pixel proportion
coding.

Fig. 3. Proportions of fixations and pixels in face and background over all
65 videos of our database.
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Il. DATABASE ESTABLISHMENT

This section describes how we conducted the eye-trackir
experiment to establish our database, which is comprised |
fixations of 39 subjects viewing 65 multiple-face videos. Ou
eye-tracking database is specialized for multiple-face video
First, we asked 3 volunteers to randomly find videos fron
YouTube and Youku, with the criterion that the videos shoult
contain obvious faces. Then, a set of 65 videos at 720p we
collected, which contain various numbers of faces varyin
from 1 to 27. All of these videos were compressed usin,
H.264. The duration of each Video was cut down to be arouﬁ@. 4, Proportions of fixations faIIing into one face and otfexes, for all
20 seconds. Note that these 65 videos are with either indoor 9 >/ects: . . .
outdoor scenes, and they can be classified into 7 cateﬂori]:?s?'“tat'r,‘g future researc_h, our database is available online:
(see Tabld]l and Figurgl 2 for more details). Also note thg{tps://g|thub.com/yufanL|u/f|r|d.
the audio track is removed in our database and eye-tracking 1. DATA ANALYSIS

experiment, to make our approach focus on visual cues Ofiy sectiorf], we have shown the intuition that face, together
saliency. . i with its high-level features, is an evident cue to attract vi-
Next, 39 subjects (26 males and 13 females, aging from &0 4tention in a multiple-face video. In this section, we
to 49), with either corrected or uncorrected normal eyesiglf, o, ghly analyze the collected eye-tracking data of our
participated in our eye-tracking experiment to watch all 6g,tanase; to further predict the visual attention on multiple-
videos. Among these subjects, two were experts working {fice videos. According to the analysis, several observations
the field of saliency prediction. The other subjects did nofe ihvestigated, to be discussed in the following. Note that
have any experience on saliency prediction, and they W&, |andmarks, features and actions of faces (i.e., speaking
also naive to the purpose of our eye-tracking experiment. Thgq head turning) for the following observations are manually
eye fixations of the 39 subjects on viewing each video WeLg,qatefl The annotation results of all videos in our database

recorded by a Tobii X2-60 eye tracker at 60 Hz. For the eyge 5150 downloadable, together with our eye-tracking results.
tracker, a 23-inch LCD screen was used to display the test

videos at their original resolutions. A. Face vs. attention

During the eye-tracking experiment, all subjects were re- Observation 1: In multiple-face videos, faces draw a signif-

quired to sit on a comfortable chair with the viewing diStan(‘i%ant amount of attention. At each video frame, the attention

being N6O. cm from the !‘CD screen. Before viewing V.'deo.SOf different subjects consistently focuses on one face among
each subject was required to perform a 9-point callbratloqI faces

for the eye tracker. Subsequently, the subjects were askeuat igure (3 shows the proportions of fixations and pixels

free-view videos displayed at random order. In order to avobdelonging to face and background, in our database. We can

eye fatigue, the 65 test videos were divided into 3 sessions, f his fi hat despi i i t th
and there was a 5-minute rest after viewing each sessigRC oM this figure that despite taking up o %_9 the

. : iXels, faces receiv&9% of the fixations. This verifies that
Moreover, a 10-second blank period with black screen W$S

. ) : . _Taces attract almost all visual attention in multiple-face videos.
inserted between two successive videos for a short rest. Fin J@urel} further plots the proportions of fixations falling into
the eye-tracking data on viewing all 65 videos were collecte P prop 9

for our database, containing 1,011,647 fixations in total. FOrzthe jandmark features of face were manually annotated with a Matlab

software, and the software was provided along with our database in http-

INote that the categories of our video dataset are based on the categai#igithub.com/yufanLiu/find. Then, the ground truth landmarks were obtained
of YouTube, Youku and the standard test set of video coding. by averaging over the annotation results of four subjects.

Proportuibs of fixations

m Fixations on single face m Fixations averaged over other faces
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Fixations per face

(a) One frame (b) All videos
Fig. 5. Comparison of attention in front and profile faces. Note that (a) is the results of three frames of a randomly selected video. Also, note that t
statistical results in (b) are averaged over the fixation data of all 65 videos in our database. In (b), fpatitace are shown for frontal and profile faces,
respectively.

one face and the sum of those falling into other faces. We can

conclude from this figure that human attention of different 0.8
subjects is consistent in being attracted by one face among

. . . . . 0.6
all faces. Besides, the subjective examples presented in Figure
[ also imply that faces, normally one face, draw most visual 0.4
attention in a video. Meanwhile, there are only 14% of the »

fixations falling into torso and limbs. This implies that face

attracts considerably more attention than the regions of torso .

and limbs. (@) Four videos
Observation 2: The amount of attention on each face has a

small positive correlation with face size. 2
Does the largest face receive more fixations than other 15

faces in a video frame? To answer this question, we measure 10

the correlation between the ranking of face Bize a video 5

and the corresponding saliency, via Spearman rank correlation 0 topleft  topright  ottom left bottom right average by

coefficients [[41]. Note that the Spearman correlation coef- all

ficient is a nonparametric measure of rank correlation. We mSpeaking m No speaking

also report the Pearson correlation coefficient results in the

following analysis, to further verify our observations. The (b) Number of fixations per frame

Spearman rank correlation coefficients and Pearson correlati Speaking period Non-speing period

coefficients are calculated according to the fixation number ar

face size of each face in a video frame. Then, the Spearm

rank correlation coefficient and Pearson correlation coefficiel

of all frames, averaged over the 65 videos in our database, ¢

0.25 (p-valuep = 0.039) and 0.32 p = 0.016), respectively.

Therefore, the positive correlation values suggest that a larg Frames

face may draw more attention, which is consistent V\EIE [42] (c) Speaking and non-speaking versus fixations

Fig. 6. Human fixations in speaking and non-speaking faces. (a) is the fixation
B. Static feat ttenti maps of 4 randomly selected videos at different crowd levels, containing 2, 3,
. atic features vs. attention 6, and 16+ persons. (b) shows the numbers of fixations per frame in speaking

Observation 3: Humans are more likely to fixate on the fa@@d non-speaking faces, for each individual video of (a). In (b), the bar of

: : . Jsaverage by all” shows the numbers of fixations per face, averaged over all
that is close to the video center, among all the faces at a Vldgaaseaking and non-speaking faces of all 65 videos in our database. (c) shows

frame. the actions of speaking and non-speaking versus normalized fixations of one
The center-biag]2][[43] is an obvious cue to predict humdgee of a selected video. In (c), fixations are normalized, by dividing the
fixations on generic videos. It is also intuitive that people apéatlon number of each face with the maximal fixations among all faces.
likely to pay their attention on the face that is close to the ope gpservation to explore is the relationship between
video center. We hence investigate the correlation of attentiggya| attention and head pose for each face in multiple-face
on a face with the Euclidean distance of this face to the vidgRjeos. In this paper, we defireead posedy two categories:
center. To quantify such correlation, we evaluate the averaggnt and profile. Front is one case of pose that the angle
Spearman rank correlation coefficiept¢ —0.22,p = 0.019)  petween face-viewing and image plane is less ten Profile
and Pearson correlation coefficient £ —0.19,p = 0.007), s the other case of pose that the angle is in the range of
following the same way a®bservation 2The negative values [g5° 90°], There are in total 110,544 frontal faces and 30,007
of p andy indicate that humans probably fixate on the face thgfofile faces in our database. Figilile 5 shows that the frontal
is close to the video center. According o [44], human attentigice is more attention-capturing than the profile face in a
on the center face is mainly due to the photographer bifgeo frame. We further find that when speaking, frontal faces
which means that the photographer or video editor normallyceive 12.6 fixations per face, while profile faces only draw
places the important face near the center of the video. 7 g fixations per face.

Observation 4: In multiple-face videos, visual attention on opservation 5: Visual attention is almost irrelevant to face
each face is correlated with its head pose. attractiveness.
One hypothesis is that the attention on different faces in
SHere, the size of each face is calculated by the number of pixels of the It Iypf id b | f hetic. Wk
face region. In this paper, the face region is determined by contours of facth MU tiple-face vi eq may be relevant to face aesthetic. We
landmarks. therefore analyze this relevance. We follow the way/[of [45]

25

Fixations per frame

i
ST T

& =

by

Normalized fixations on face
s = = =
S

_°
ST
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Fig. 7. Correlation between fixations and head turning. Fixation change per video averaged over all 65 videos in our database, when head turns from f
to profile (F— P) and from profile to front (R~ F). (b) Fixation maps for the frames of head turning.

to measure the attractiveness of faces. Twenty-eight subjects IV. FEATURE DETECTION

partipipate(_j in rating the attractiveqess of each face, over allgj,ce Sectiof Tl has found that visual attention is highly
65 videos in our database. The rating score ranges from 1qig e|ated with some high-level features of face, this section
10, and a larger score means a more beautiful face. Then, gy discusses the techniques for detecting these features.
scores of all 28 subjects are a\(eraged to obtain the attrac“é‘f)'ecifically, Sectiof IVA describes the preliminary for face-
ness value of each face. We find that the average Spearm@gieq feature detection, including tracking faces and their
rank correlation coefficient ip = 0.05 with p = 0.266, @ |andmarks in videos. After tracking facial landmarks, the
the correlation between attention and face attractiveness. W&, and center-bias of face can be easily obtained. Section
corresponding Pearson correlation coefficientyis= —0.03  [7B]proposes a technique to monitor the action of speaking.

with p = 0.268. Surprisingly, visual attention is almostgection V-G presents a way to detect features of head pose
irrelevant to face attractiveness. This is probably due to theq nead turning.

fact that visual attention is normally drawn by face actions, as
revealed in the following observations. A. Preliminary

Observation lverified that a face is an obvious cue to draw
visual attention in a video. Accordingly, we need to detect
faces in multiple-face videos. Additionally, the landmarks of

Observation 6: A speaking face attracts a large amount &fces are necessary to detect high-level features, such as speak-
visual attention. ing. Thus, this section concentrates on the detection of face and

Figure [6 shows the relationship between the action &icial landmarks for multiple-face videos, as the preliminary
speaking and the fixations in multiple-face videos. We can s@kour saliency prediction method. The recent work [of| [46]
from the subjective results in Figur 6-(a) that human tends&gnstructed a unified model for face detection, pose estimation
look at the speaking face. Note that the interview-like vided¥d landmark estimation, in multiple-face images. Here, we
(with microphones) are chosen as examples, because fifd utilize [4€] to detect faces and their landmarks at each
microphones in these videos help readers locate the speall@ge of a video, in which both frontal and profile faces can
face. Figur€b-(b) quantifies the numbers of average fixation Bf located. To improve face detection performance, we follow
speaking and non-speaking faces, for the examples of Higjur®8! recent work[[47] to manage some harsh situations, such
(a). More importantly, the statistical results of “average by al®S partial occlusion and poor light conditions, by exploring
in Figure[®-(b) are averaged over all 65 videos in our databat@mnporal information of videos. To be more specific, we match
which verifies that speaking action attracts approximately 20 faces across frames, by searching for the face with nearest
fixations per frame, whereas non-speaking action attracts I&84lidean distance. We then identify the nearest faces of two
than 9 fixations per frame. Figure 6-(c) also plots the actions g#nsecutive frames as the matched face of the same person,
speaking and non-speaking versus visual attention for a vid@éovided that their distance is less than a threshold:

In summary, we can observe from Figlile 6 that the speaking . D)
action (i.e., mouth motion) may draw extensive visual atriention the =5 x Vw? + 12, (1)
to the corresponding face in multiple-face videos. where w and h are the width and height of the detected

Observation 7: In multiple-face videos, visual attention of@ce, respectively. Otherwise, we regard them as non-matching
each face is highly correlated with head turning. faces, belonging to different persons. [ (4)is a parameter

It is also interesting to find out the correlation betweel control the sensitivity of face matching, and it is simply set
visual attention and head turning, in multiple-face video? 0.5 in this paper. When matching faces across frames, some
Figure[T-(a) illustrates that fixations drop when head turfi@ces may be missed due to occlusion or light conditions. For
from front to profile, and that attention increases when he&gtecting these missed faces, the linear interpolation of faces is
turns from profile to front. Note that the statistical result8Pplied to neighboring frames within a sliding window. In this
of Figure[7-(a) are obtained by averaging over all videos RaPer, the length of the sliding window is empirically chosen
our database. Figufd 7-(b) provides some examples to shigwpe 17, to make the face detection results appropriate. The
how visual attention is attracted by head turning. We caxperimental results have verified that the above technique is
observe from Figur&l7 that the front-to-profile head turningfmple yet effective in matching faces of our database, which
significantly reduces visual attention, while the profile-to-frorfi@n also handle camera motion; thus, it is not necessary to
head turning receives increasing visual attention. utilize another advanced tracking algorithm.

C. Dynamic actions vs. attention
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Fig. 8. Framework of the speaking detection algorithm. Is framework, [[46] is applied for face detection and alignment, such that both frontal and profile
faces can be processed. Likewise, there are 68 and 39 landmarks for frontal and profile faces, respectively. For profile faces, the calculation of elongatic
different, which uses different landmarks to compute the corresponding variables.

Next, we also use[]46] to locate facial landmarks in N .
multiple-face videos. In our method, [46] is directly used ° R . e
to locate 39 landmarks for profile faces. Then, we improve . vavee. e N el
the performance of [26] in landmark localization for frontal MR LI o
faces, via applying the latest work &f [48] to track landmarks T Lt

for each detected frontal face. After faces are interpolatedy o jiumination for the height and width of outer and infiips by facial
some video frames, we implement our previous work_ of [4Tndmarks. Left is the facial landmark graph, and right is the landmarks of
to predict the facial landmarks upon the matched faces B¢ mouth. _ _
neighboring frames. As a result, multiple faces, either frontdj "eSPectively. Refer to Figuid 9 for more details. Then, the
or profile, can be detected and matched in a video with weftlongation of the mouth can be calculated by

located landmarks. a+c

Finally, the size and center-bias of each face should be esti- V= b+d 2)

ma(;edhusingr:acial I;]a\ndmark_s in a videol, simdnles.ehrv;ltior?s 2 Also, the texture change of the mouth region is incorporated
and 3 ave s own that at'Fe.ntlon Is correlated with t € SIZ€ aj speaking detection. The previous work bf][51] has found
center-bias of face. Specifically, the contour and region of e

‘ t speaking may change the distribution of gray values in the
face are extracted by connecting the related landmarks. Th uth region. Specifically, if most pixels of mouth region are

the number of pixgls belonging to the face region is considerg very low gray scale, the person is more likely to speak. It
]EO be rt]hef face size. Basetlj OT;) the g:ontomsr of dthe eEXtrT‘_gﬁEdoecause when speaking, mouth cavity decreases the average
a_lce, the face Cemer can aso_ e estimated, and its Eucl ﬁﬁ@nsity of mouth region due to black region. Here, we follow
distance to the video center is calculated as the center-tg% to use the gray values of the mouth region as one feature
of each face. Note that both the size and _center-b|as 9f 4§ speaking detection. The binary process is conducted on the
detected face should be normalized by video resolution. érllay image of the mouth region, with regard to a predefined

addition, the performance of our saliency prediction meth(?ﬂresholdthg. Then, the average binary value of the mouth
relies on the results of the above face detection and trackil%ion is computed by

algorithm, which is the basis of our method.
B Z(;c,y)ER b(z,y)

B. Detection on speaking and non-speaking #(R) ’

3)

Observation éhas shown that speaking may attract a largehere#(R) is the total number of pixels in the mouth region
amount of visual attention. Thus, we now present an algorithRy, and b(-) is the binary value of each pixel in the mouth
to detect the actions of speaking. The procedure of orggion.
algorithm is summarized in Figufd 8, and it learns to detectNext, we estimate the intensity of mouth motion based on
the speaking action using the motion, geometry and textureaytical flow. Here, the mouth region in a video frame, defined
mouth regions. In general, we first incorporate a classic motiby R, is extracted by connecting landmarks of the outer lips.
detection approach, optical flow [49], to measure the intensity the mouth region, we apply the Lucas-Kanade algorithm
and orientation of mouth motion. Second, we leverage tfi€9] to detect pixel-wise optical flow. Then, the intensity of
detected mouth landmarks to measure the elongation of theuth motion can be estimated by averaging the optical flow
mouth for quantifying the geometry variation of speakingf all pixels in the mouth region:

Third, the gray scale value of the mouth region pixels is
utilized to find the texture variation of speaking, similar to 0= 2yer llo@ )l 4)
[50] and [51]. Finally, our algorithm applies SVM as the binary #(R) 7

classifier of speaking, with respect to the features of optic\%ereo(,) is the optical flow vector of each pixel.

flow, mouth elongation and gray values. o We further compute the orientations of mouth motion, also
Specifically, the geometry of the mouth variation is useghsed on optical flow. Given the vectors of optical flow at
as a feature to make a judgement on speaking. Toward swghyth regionR, the orientations of mouth motion can be

a geometry, the height and width of outer and inner lips afgpresented by the following histogram:
measured on the basis of mouth landmarks. We define the

height and width of the outer lip by andb, respectively, and ) 2 eyer llor@ y)ll2
the height and width of the inner lip are denotedcaand hist, = #(R) JA=12,..L (5
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Fig. 11. Overview structure for HMM.
In B), oi(+) is the orientations of optical flow belonging to

the [-th orientation. There aré equal bins for the orientation Yay, ) =)
histogram of [(b), i.e., the bin width i860°/L. In this paper, .\\/ & Z
we setL to be 8, corresponding to 8 directions of mouth )

movement.

Finally, SVM with the radial bias function (RBF) kernel isFig- 12. Structure of M-HMM. Note that the fully-connected layer is different
S . . . \ee . from that in deep learning, because no weight needs to be learnt in this layer.
used in our algorithm to train the binary classifier for speaking

and non-speaking. The input feature vector of SVM considiaéthod, we extend HMM to be M-HMM, by allowing more
of mouth motion intensityD, mouth motion orientation his- than one interactive state at one time period. Besides, each
togram [hist;, ..., histx], mouth elongationy’ and average State in M-HMM depends on the observed features and the

binary valueB at three neighboring frames. As a result, thBrévious states. More details about HMM and M-HMM are to

action of speaking can be detected, as one of the high-leD§ discussed in Sectiohs U-A and V-B, respectively. Finally, a
features for our saliency prediction method. post-processing step is adopted to generate saliency maps of
multiple-face videos, as discussed in Secfion]V-C.
C. Detection on head pose and head turning ) )
A. HMM for single-face saliency

It has been demonstrated idbservation 4that visual First, we concentrate on the application of HMM in our
attention on face is relevant to its pose. We thus need to detecﬁenc’ rediction method. Fi uIEpIpll shows the structure of
the head pose as a feature for predicting video saliencyﬁ yp - 19

M. In HMM, we treat high-level static/dynamic featufe
[46], 68 landmarks are detected for frontal face, whereas ; .
landmarks are found for profile face. In this paper, we estim scussed in SectiolL1V) as the observed feature at:#he

the head pose on the basis of the number of landmarks of [ane. States;, the sequential unit in HMM, stands for the

. . L variation of saliency attended to one face. In our application,
tracked face (by Section IVA). That is, the face is weweslve havesS, € {-01.0, 3}, whered; (> 0) andds (> 0)

as a frontal face when it has 68 landmarks; otherwise, it (Ijsfine the amounts that saliency increase and decrease for a
considered to be a profile face given 39 landmarks. Note t at o y .
e. MoreoverS; = 0 indicates that the saliency of the face

a detected face_ can only have 68 landmarks (frontal) or remains unchanged across frames. In HMM, the value of the
landmarks (profile). . . .
currently processed statg relies on its previous staté,

Observation 7has pointed out that visual attention is also d observed featurt. As such. the saliency mab of a video
correlated with head turning. Due to this, we further dete?{1 5. ' y map

the action of head turning, which has two categories: front-t fame is determined by its observed high-level features and

profile or profile-to-front. In fact, head turning can be tracke%]e saliency of the face at the previous frame. However, HMM

in a straightforward manner according to the change of heé%n only deal with one face, since there is one state in each

pose (defined above). We empirically find that the duration ' _ﬁl\ﬁ&r'gﬁ I)?irt:rr':ﬂm. Irr]et(?iitntﬁ): ;;Iki)esr?c(:m%?’r\;vsrgrtiZingﬁgr
head turning is normally 1 second. Thus, once a head p sge 9 P y
change is detected, the corresponding face of adjacent frarfes

within 1 second is annotated as head turning. B. M-HMM for multiple-face saliency

V. SALIENCY PREDICTION For M-HMM, multiple HMMs are adopted and combined,

After extracting the above features, our method introducegch of which is in accordance with the saliency of one face.
the M-HMM model and postprocessing step to generate salidrigure [I2 shows the structure of our M-HMM, in which
cy maps of multiple-face videos. The overall pipeline of ouhere areN states in total for a time period. In our saliency
method is summarized in Figufe]10. As can be seen in thigediction method, each state (amaWgtates) means saliency
figure, the input is frames of multiple-face videos, and theariation of one face at theth frame, and they are denoted
output is the corresponding saliency map. After face detectias {St(")}f)’:l. Consequently, M-HMM can be applied to the
and feature extraction, M-HMM is used to predict the attentiomultiple-face scenarios. As witly,, the possible values of
weight of each face by exploring the temporal transition cﬂ’f") are € {+01,0,—3d2}. Then, all N states in M-HMM
salient faces across video frames. In our saliency predictiare simultaneously transited along with the processed video
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frames. Similar to HMM, the states ¢6."’}»_, depend on weighting the Gaussian modéf” in @). Assuming that\™

their corresponding observations of high-level featuffe@, is the Euclidean distance of theth face to the video center

as well as their previous statéé*fﬁ)l N at thet-th video framecgn) of () can be calculated using the
In the following, we introduce a fully-connected networKollowing Gaussian model:

in M-HMM, via adopting the basic idea of RNN_[52].

Observation 1has pointed out that most visual attention is (n) (di”) — min,, dﬁn))2

attracted by one face among all faces. In other words, if one G =P~ 2 :

face receives a large amount of attention in a video frame,

then the other faces normally draw few fixations. That ig @), o is the standard deviation of the Gaussian model,
saliency maps of different faces are(nr)ng]ply correlated Wijhich reflects the degree of center-bias. Note that Gaussian
each other in a video frame. Thug5; ™'}, at one time center-bias weights of¥9) are only imposed on conspicuity of
period need to be interactive with each other. Accordinglgach face in our method, rather than all pixels as_in [53].
our M-HMM algorithm takes into account the interaction of Nq, the remaining task is to learn the parameters of our
(M N i ’
state set{S; "}, by ac(lg)ln]% a fully-connected network.ny_ymm for estimatingz{™, such that the conspicuity of each
Specifically, we denote(z;, "' },,_; (€ [0,1]) as the set of face can be yielded by(8). At the beginning, all initial states
weights, reflecting the proportions of attention belonging t9§n) are simply set to0 for M-HMM. Next, the matrices
different faces in a video frame. Ac(igitionallxj,q:g”}ﬁ:l is of transition probabilities and emission probabilities are two
the intermediate units for computidg, 2[:1-;\°;hlghefxt important parameters of M-HMM to be learnt. In our M-
corresponds to a Iargeé”). Assuming thaty",_, 2,"” =1, HMM, the matrices of these two parameters are identical
the following softmaxactivation function is used to formulateacross different HMMs. It is because transition probabilities

9)

g

Weights{zt(") N_in M-HMM: and emission probabilities of each HMM are independent of
(n) other HMMs, as can be seen in Figlird 12. In our method, we

2 = exp(t; ") _ (6) apply the maximum likelihood estimation [54] to learn these

Zﬁf,zl eXp(JcEn )) two matrices from training data. Given the learnt matrices,

the Viterbi algorithm[[55] is adopted to perform the transition
between the previous state and the current state, based on the

2™ =" g, (7) observed dynamic featurg™ of each face.

wherez!") is defined as

In (@), a:ﬁ”’ of one face is determined by saliency variation

Sg") (i.e., states of M-HMM) and the weight of face attentiorC. Feature integration

2, at the previous frame. They are modeled as hidden units . . .

otf tlhe fully-connected network in our M-HMM structure (as According toObservations 6 and, &he high-level features

shown in FigurdT2) ft(") can be the actions of speaking and head turning, for
Finally, M-HMM i.s able to output Weights{z(”)}N predicting video saliency. Accordingly, we define the set of

’ t n=1- . . n .

Given {Zt(n)}fyzl, we can make use of the dynamic featur%he) high-level dynamic features a{#t(vk)}kKﬂ‘ Specifically,

7™ to predict the visual attention on each face at thd fi,i € {1,0} means whether the face speaks (=1) or does

frame. In this paper, the predicted visual attention of the facet (=0).ft(f§) € {1, 0} indicates whether the head turns from

channel is modeled using the conspicuity fhagenoted as front to profile, andft(fg) € {1,0} indicates whether the face

MF. It can be computed by has the profile-to-front turning. Besides, sindbéservation 4
N has shown that the frontal face receives more attention than
M! = Z Zt("L)cg’L)an7 (8) the profile face, we further include the static feature of head

n=1 pose ft(_’i), which stands for frontal face=( 1) or profile

where M/ denotes the conspicuity of the-th face upon face  0). At the k-th frame, we can generate the set of

feature £, andc{" is the center-bias weight of each faceface conspicuity map§MYF, }4_,, corresponding to different
In our method,M!™ is calculated by the latest Worwz]’features{f(")}ﬁ '
tk Sk=1"

which models the conspicuity map of a face with the Gaussmn.l_hen, we need to combine all conspicuity maps of

mixture model (GMM). It is worth pointing out that ig [P2] the.{]Mfk}ﬁ:l for predicting the face saliency of multiple-face
conspicuity map of each face is proportional to its size, W't\ndebs LetSF be the face saliency of theth video frame
the relationship learnt from training data. As such, face si tecan be cortn uted by the linear c%mbination' '
is already considered in our method, satisfyi@gservation P y '

2 of this paper. In additionObservation 3has revealed that 4

visual attention is also correlated with the center-bias feature SF = Zwkajkv (10)
of faces in multiple-face videos. Therefore, we follow the way
of [53] to take into account the face center-bias feature by

_ _ ~ wherewy, is the weight of thek-th conspicuity map.
4Note that saliency produced by the channel of a single feature is defined aﬁ:. I 0 di i f
the conspicuity map, to differentiate from the saliency map that is generated Inally, we can ComDUtm ) to predict saliency maps o

by all features. multiple faces in a video, once the values {fy, };_, are

k=1
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Frames TABLE I
(Y L EVALUATION ON SPEAKING DETECTION BY OUR AND OTHER TWO
Original '5“ COMPARATIVE ALGORITHMS.
- F-measure| Accuracy | Pen | Prp
Ffongan Our 0.63 0.80 0.38 | 0.13
51 0.35 0.35 0.36 | 0.76
50 0.45 0.37 0.06 | 0.84

For speaking detection, the threshold of binary process on
gray scale mouth was empirically to bés = 28, in our
experiments. Furthermore, the SVM (with the RBF kernel) of
the LIBSVM toolbox [56] was applied, which detects speaking
actions of all test videos in 5-fold cross validation. In the LIB-
SVM toolbox, the penalty parametét and kernel parameter
~ were tuned by grid search on training data. Specifically,
the grid search was divided into two steps: one for loose grid
search onC = 27° 274 ...,22 andy = 2715,2714 29
(the optimal results areC = 22 and g = 2°), and then
the other for a fine grid search ofi = 22,222,...,2% and
v = 24242 26 The final optimized parameters were
C = 6.96 (i.e., 228) and v = 18.38 (i.e., 2*2) for our
experiments.

For saliency prediction, the values of latent stafg, in
M-HMM were tuned to bej; = do = 0.38. When training
the matrices of the transition and emission probabilities for
Fig. 13. Saliency maps for different frames of a video setedtem our  \|-HMM, the values ofzfn) were obtained by computing the
database. These maps are generated by ground truth human fixations, our . . .
method, Xuet al. [22], SALICON [19], Jianget al. [23], OBDL [I2], Rudoy Proportion of human fixations on theth face to fixations on
et al. [29], PQFT [16], Surprise[19] and GBV$ [1L3]. all faces. When training the weight of each high-level feature
channel in[(Il1), the fixations on face regions in the training
frames were smoothed with a two-dimensional Gaussian filter
(with the cut-off frequency being dB) to obtain{S/*}~ .

Xu

SALICON

OBDL

Surprise

GBVS

8> i

e e

known. In fact, the weights aofy;, can be learnt from training
data via solving the following optimization formulation:

L 4 4 In addition, all fixations of each training frame were smoothed
argmin E I E wiM[ 5 —=8{™|2, s.t. E wy, = 1w, = 1 > Owith the same Gaussian filter, to train the weights of channels
4
{wrkicr 1=1 k=1 k=1 (11) on face and low-level features.

where{M/;}L | are the conspicuity maps af&*}L | are
human fixation maps, for all training video frames. In this . ) ) . )
paper, we apply the disciplined convex programming (CVX) N this section, the extraction of high-level features is eval-
to solve the above optimization formulation. uated, as it is the foundation of saliency prediction. First, we
In order to consider both low-level and high-level featuredvaluate the performance of our speaking detection algorithm
in saliency prediction, our method combines face saliegigy Proposed in Section [ViB. Recall that the manually annotated
with saliency maps of three low-level features of GBVS] [13]P€aking results are available in our eye-tracking database
(i.e.,S! for intensity,SC for color andS? for orientation). In https://glthub.com/yufanLlulf!nd), and '_[hey are considered to
addition, the weights for the linear combination are determin&§ the ground truth for speaking detection. The state-of-the-art
through the least square fitting on training data. Afterward@f Speaking detection algorithnis [51] and [50] were compared

the final saliency ma$, of each video frame can be yielded""th our algorithm. The metrics of F-measure, accuracy, false

B. Evaluation on feature detection

for multiple-face videos. positive rate Prp) and false negative raté’f n') are measured
for evaluation. Here, F-measure is calculated as follows,
VI. MODEL EVALUATION 2Prp
. F = , (12)
A. Setting 2Prp + Prp + Ppn

In our experiments, we tested all 65 videos in our eyevherePrp represents the true positive rate. Note that accuracy
tracking database (mentioned in Secfidn Il). Here, 5-fold croissthe ratio of correctly detected speaking and non-speaking
validation was applied, in which 65 videos were equallfaces to the total number of faces, at all frames of test
divided into 5 non-overlapping sets. One set was used for thideos. Table[]l reports the results of the three algorithms
test with the others being training sets. Following this waypr all test videos in 5-fold validation. It can be seen that
all 5 sets can be tested. In this paper, the saliency predictimmr speaking detection algorithm is significantly superior to
results are reported by averaging over all 65 videos in {B1] and [50], in terms of overall performance measured by
fold cross validation. Note that both speaking detection afdmeasure and accuracy. Althou@hl![50] has the smallest false
saliency prediction were trained and tested with the same riegative rate Pry = 0.06), its false positive rate is extremely
fold cross validation. Besides, we simply utilized the fackigh (Prp = 0.84). By contrast, our algorithm achieves the
detector and head pose detector provided by [46], which hlest false positive raté?p = 0.13) and its false negative rate
been already trained over the external datd_of [46]. (Pry = 0.38) is comparable to that of other algorithms. In
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TABLE IIl 10
ACCURACY OF SALIENCY PREDICTION BY OUR METHOD AND8 OTHER METHODS AVERAGED OVER ALL TEST VIDEOS IN THE5-FOLD CROSS
VALIDATION .

Our Our+manual Xuwet al. [22] SALICON [19] Jianget al.[23] GBVS [13] Rudoyet al.[29] PQFT [16] Surprise[[9] OBDLI[IR]

NSS 3.61 3.88 3.14 2.96 0.97 1.23 1.42 0.88 0.88 1.62
CC 0.66 0.72 0.61 0.52 0.29 0.33 0.36 0.22 0.21 0.30

other words, our algorithm performs the best among all three
algorithms on speaking detection. Note that our database is Humn
tough for speaking detection because there are multiple face:

in the videos and some of them are small, blurry and partially ~ ©«
occluded. Meanwhile, our speaking detection algorithm relies

on the face alignment algorithin [46] to handle occlusion, pose  **
changes and illumination.

Moreover, we show the effectiveness of our detection
method on head pose and head turning. For head pose de
tection, we found from our experiments that its accuracy is
approximately 99.1%, averaged over all test videos, which is
close to the 99.9% accuracy reportedin|[46]. For head turning
detection, the average accuracy is 90.1%, which is similar to
the accuracy of head pose detection as head turning is base
on the results of detected head pose. In a word, head pose an
head turning can be effectively detected in our method.

SALICON

C. Evaluation on saliency prediction

In this section, we compare our method with 8 conventional
saliency prediction methods, including Xu et al.l[22], Jiatg
al. [23], SALICON [1€], GBVS [13], Rudoyet al.[29], PQFT Fig. 14. Saliency maps for several frames selected fromrdiftevideos in
[16], Surprise [9] and OBDL [12]_ Additionajy, [22], [23], our database. These maps are generat_ed by ground truth human fixations, our
[19] and [13] are image saliency prediction methods. To e;?"[g'gf’(‘féﬁ'f[[zﬁlﬁlSS/'LLr:JCriSeNlgl]gghj'aggf}ffl[gfl' OBDL [12], Rudoy
more specific,[[22] and [23] work on face saliency prediction ) ) )
of images, which incorporate the high-level static features gfSS and CC compared with [22]. These improvements are due
face. We compare our method to these two high-level basgfthe following reason: The saliencies of all faces have equal
methods, as there is no face saliency prediction method faiportance in [[22], whereas the use of high-level dynamic
videos. On the contrary, [19] is a state-of-the-art deep neufahtures enables our method to precisely predict salient faces
network (DNN) method that automatically learns hierarchicakross frames. Moreover, note that both our method [afd [22]
static features for saliency prediction. Besides), [13] is a |OV&Te Superior to [23], which imposes unequa| importance on
level based method, which provides the saliency of low-levglfferent faces in an image. The main reasons are as follows:
features for our method. Therefore. [19] andI[13] are al§@) The predicted saliency of [23] suffers from incorrectly
included in our comparison. detected faces because it is based on image face alignment

Note that we use our multiple-face tracking technique {@g], and (2) the utilization of high-level static features[inl[23]
detect faces for[[22], since it only handles the single-faggay predict incorrect salient faces in a video. Conversely, the
scenario. high-level dynamic features of our method are highly effective

The most recent work of [$7]/[58] reported that normaln finding the salient faces in a video.
ized scanpath saliency (NSS) and correlation coefficient (CC)gjnce the above comparison takes into account the influence

perform the best among all metrics in evaluating salienqy center-bias embedded in saliency prediction methods, we
prediction accu.raa/ Thus, we compare our method with & rher compare the saliency prediction performance in terms
other methods in terms of NSS and CC. Teble 11l reports thg shffled AUC, which removes the influence of center-bias.
comparison results of saliency prediction, averaged over @llp ey reports the shuffled AUC results of our method and
test videos in the 5-fold cross validation. As shown in thig , o al.[22], Jianget al.[23] and GBVS [13] methods, which
table that our method is much better than all other methogss the saliency prediction toward the center. It can be seen
in predicting the saliency of multiple-face videos. Specifically, 4t our method still performs better than the other methods,
our method significantly outperforms all video saliency Preyhen removing the influence of center-bias in saliency pre-

diction methods in both NSS and CC. Moreover, our methQfl-tion. In Section VI-D, we further analyze the influence of
performs much better than the latest DNN method SALICONgter.pias in our saliency prediction method in more detail.

with 0.65 and 0.14 increases in NSS and CC, respectlvely.Next, we move to the comparison of subjective results. We

Furthermore, our method has 0.47 and 0.05 |mprovementsS 0w in FigureCTB the saliency maps of several frames in

5 [67] also showed that area under ROC (AUC) is the worst metric i V|deo_’ ger_]er"’.‘ted by our methOd. and 8 other methOdS- As
measuring the accuracy of saliency prediction. shown in this figure, our method is capable of finding the

L
-
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0.68

TABLE IV
SHUFFLED AUC OF SALIENCY PREDICTION BY OUR METHOD AND3
OTHER STATEOF-THE-ART METHODS.

Our Xuetal [22] Jiangetal.[23] GBVS [13]

0.66

0.64

0.62

0.6
T 060

0.58

Shuffled AUC  0.61 0.58 0.44 0.53
0.54
37 0.66 0.52
3.6 0.65 Sl -05-0200 05 1 L5 2 25 3 a0 w5020 05 1 15 2 25 3
35 0.64 logo log o
3.4 0.63 I
% 33 0.62 a) NSS b) CC
“ 32 I . I S = | @ ()
:cl. I I I I I 222 I I I I I Fig. 16. Saliency prediction performance versus different center-bias param-
o 0.58 etero of @).
T S A 2 T S
%, 9, e, o, %, %, “, , . i i
%, %, T %, e, NSS improvement or a 0.06 CC improvement, when using
Methods Methods manual annotation instead of automatic annotation on high-
(@) NSS (b) CC level features. Thus, the performance of our method can
be further improved, via advancing the technique of feature

Fig. 15. Performance comparison of our method with different features al .
the method of{[22]. Sktraction.

salient face according to high-level dynamic features. ConseNext, we analyze the performance of each individual feature
quently, the saliency maps of our method are more accuraigd the feature integration in our method. Figliré 15 plots
than those of other methods. For example, we can see frgte NSS and CC of our method with each single feature
Figure[I3 that the face of the girl is much more salient thand with all features integrated together. Additionally, the
the other, when she is speaking (the first column) or turnimgsults of [22] are also provided, since our method weights
her head (the last column). Moreover, the man’s face is matee detected salient faces df _[22] with respect to several
salient, when he is speaking (the second and third columns)poposed features. Obviously, we can see from Figure 15 that
the girl's face is profile. In contrast, [22] finds all three facesll single features perform better than J[22], validating the
as salient ones, and [23] misses the salient face of the spealgffgctiveness of each single feature in our method. Besides,
man because he is far from the video center. In additiodne may observe that the feature of speaking is more effective
although the predicted saliency 6f[19] involves some detectgtthn the features of head turning and head pose in predicting
faces benefiting from the learned features of DNN, it fails teideo saliency. More importantly, Figuie]15 shows that the
predict the transition of the salient face. It is mainly becausetegration of all high-level features is superior to each single
[19] focuses on image saliency prediction, without considerirgature in saliency prediction. This verifies the effectiveness
temporal information or high-level dynamic features. Figuref the feature integration in our method.

4 provides the saliency maps of the frames selected from i1y it is necessary to investigate the effectiveness of the
videos. It is worth pointing out that in the fourth video Ofeapyre of face center-bias in our method. To this end, standard
Figure[14, all 9 faces are singing simultaneously. In this casgwiationos in @) is traversed, imposing different impact of
p_eople usually_look at each singer, and the_n concentrate on center-bias on saliency prediction. Figliré 16 plots the
singer located in the center. Fortunately, Fidurk 14 shows thggs and CC results at different averaged over all training

our method can successfully detect the salient face, benefitiigeos of the 5-fold cross validation. It is clear that the best
from the incorporated center-bias feature. Similarly, the last formance is achieved onee= 10-°-2. and thusg was set
column of Figure T further shows that our method is abig 102 i our above experiments. This figure also shows that

to locate the salient face by taking advantage of the cent@fren, increases from0—2 to 10%. the accuracy of saliency

bias feature, when one face is speaking and some of the ofiR(jiction slightly decreases. This implies that the feature of

faces are acting. We can further see from the fourth columi}.e center-bias is effective in our method, since its impact
of Figure[I4, our method can still find the salient face Whe(ﬂ‘ramatically decreases ifil (9) for= 10-%2 — 10%. On the

more than one face speaking, benefitting from other featur§i$,er hand. a small value of causes our method to only
(e.g., the center-bias feature). Again, this figure verifies thgfeict the face closest to the video center as the most salient
our method is able to precisely locate salient faces by turnigge according to{8) and(9). Whenis as small as0~"

from actions to saliency. the NSS of our method is- 3.16, reflecting the performance

of the single feature of face center-bias.

) ] ] . For time complexity, our method consumes roughly 2.37
Section[VI-C has validated that the high-level dynamigecongds per frame. Our method was implemented in Matlab

features are rather effective in improving the performance ghbo16p and run on a computer with a Intel Core i7-6700K
saliency prediction for multiple-face videos. However, theS@PU@4_00 GHz and RAM 32.0GB. Specifically, the time con-
features are automatically detected by the technique of Sectiginstion of our method includes face detection and landmark
[Vl which may incur some detection errors as verified iycajization (2 s per frame), face tracking (287 ms per frame),
Section[VI-B. Thu;, it is interesting to see th_e llnﬂuence 9bature extraction (52 ms per frame), M-HMM (0.6 ms per
the feature detection errors on saliency predlct|_on. In Ta%me) and feature integration (40 ms per frame). To improve
[ we present the NSS and CC of our method with manuallye speed of our method, some fast algorithms of face detection
annotated dynamic features. We find that there is a 0.244 |andmark localization may be applied, e.lg.] [48].

D. Performance analysis of saliency prediction
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Fig. 17. The framework of our perceptual RC on the basis of alierscy (@) Jorgnnyp ) (b) Kristenknd a)ra
prediction method.
VII. | MPLEMENTATION IN VIDEO COMPRESSION s
. R . =
The proposed saliency prediction method has potential to be = .
implemented in some tasks of video processing. For instance, E
in human-centered multimedia, our method may be utilized to -
. . . . @
locate salient faces in a video, seen as ROI. Then, the quality % e
of experience (QoE) of video conferencing can be improved Z. S o
by assigning more coding bits to salient faces, during video Bit rates (Kbps)
compression. In this section, we present a simple implementa- (c) FourPeople

tion of our saliency prediction method in the compression 519- 18. Rate-distortion curves of our and conventional schemes.

video conferencing, which is embedded into the latest HEVCDMOSCOMPARISONOFHEV(-EAABI\IIE)EO\(JRAPPROACHAT300 KBPS BIT

standard. RATE.
. i Test Sequence| DMOS (conventional) | DMOS (our) DMOS difference
A. Method for video compression Johnny 32.08 28.99 3.09
; inla. ; KritenAndSara 45.23 36.14 -9.09
When encoding a multiple-face video frame by HEVC; FourPeople P 555 &

our implementation allocates target bits to each coding trge
unit (CTU) according to the video saliency predicted by our =7 . o )
method. Specifically, our implementation is embedded inF timization, and) I ; is the quantization parameter (QP) as

e output of RC. In additiory,; ; andj; ; are the parameters
the -\ rate control (RC) scheme _[59] of HEVC. In thetq estimate the » relationship;c; and ¢, are the fitting

conventional HEVC, the RC schemle_[59] estimates the bi N ;
per pixel (bpp) at each CTU given a target bit-rate, for rat arameters for QP estimation. Refer[to][59] for more details on

) i S : ow to update these parameters alongside compressed frames.
distortion optimization. Instead, we follow our previous work_. ) ;
. ! . . inally, each frame of video conferencing can be encoded by
[60] to define bit per saliency weight (bpw), for perceptual . . .
. . o EVC, on the premise of the CTU-wise QPs estimated by our
rate-distortion optimization (also called the perceptual R . .
) . . perceptual RC. Figufel7 summarizes the overall procedure of
scheme) in HEVC. For theth frame, assuming thapyw, ; is our implementation in perceptual RC for HEVC-based video
the bpw of thei-th pixel, the target bit, ; for the j-th CTU b percep

can be determined by compression.
B. Results of video compression
rej= 3 bpw,,, (13) P

= In this section, we report the compression results to validate
) ) ) ) . the performance of the above implementation. Since our
wherel, ; is the set of pixels in thg-th CTU. Before encoding g5jiency prediction method is capable of locating salient faces
a frame of a multiple-face videohpw,; in ([I3) can be i, 5 myitiple-face video, our experiments test on the sequences
obtained from the saliency maj generated by our saliency ot |55 E (the class of video conferencing) from the JCT-
prediction method. Le8, (i) be the predicted saliency valué\,c qatahase[a1]. In the JCT-VC database, Class E consists
of the i-th pixel at thet-th frame. Then, we have of three 720p raw sequencedohnny KristenAndSaraand
Se(7) -1 FourPeople The HEVC reference software HM 16.0 (in the
> el S, (i)’ LowDelay configuration) was used to compress all those three

. . sequences at different bit-rates, with its conventional
wherer, andI, are the target bit-rate and pixel number of th%m?j our perceptual RC schemes [59]
t-th frame, respectively. !

. . Here, the eye-tracking weight PSNR (EWPSNR)][62] is
Next, the average bpw in each CTU can be estimated b3ﬁsed to evaluate the distortion of compressed sequences at
bpw, ;= —bd . (15) various bit-rates. Note that EWPSNR weights PSNR with
T # (L) human fixation maps, thereby well reflecting the subjective
where#(I, ;) indicates the overall number of pixels in tfie guality of compressed sequences. Figlré 18 plots the rate-
th CTU. Then, we maképw, ; instead of average bpp in thedistortion curves of compressing all three test sequences, in
conventional RC schemg [59], such that the following exist§ms of EWPSNR. We can see from this figure that EWPSNR
for perceptual RC in HEVC: of our perceptual RC implementation is much better than the
conventional HEVC compression, with approximately 1-2 dB
improvement. Thus, we can conclude that the implementation
of our saliency prediction method is able to improve the per-
QP ; =c1-In(A ;) + ca, (16) ceptual quality of HEVC compression on video conferencing.

(18), for each LCU,)\;; is the Lagrange multiplier of

bpw, ; = (14)

At = ap; - (bpw, ;)P
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(a) Conventional HEVC (b) Our approach
Fig. 19. Subjective quality comparison #fristenAndSara(a) and (b) are the 320thframe compressed at 100 Kbps by the conventional and our scheme,

respectively.

We further compare the subjective quality of our impleRNN is an efficient deep learning approach, which shares a
mentation and conventional compression in Figure 19. Osinilar sequential structure with the proposed M-HMM. Thus,
may observe from this figure that our implementation yieldspplying RNN to saliency prediction is another promising
more satisfactory quality in ROI (the salient face) with somiiture work. (4) Our method only focuses on the visual cues to
quality loss in non-ROI, compared to the conventional HEV@redict saliency of video. Actually, audio may also have impact
compression. To quantify the subjective quality, we conducted visual attention. Therefore, it is an interesting future work
the difference mean opinion score (DMOS) experiment usinig consider the audio cues in saliency prediction of multiple-
the single stimulus continuous quality scale (SSCQS) prodace videos.
dure of Rec. ITU-R BT.500[€3]. In the DMOS experiment, REFERENCES
12 subjects were asked to rate the quality of sequences

Compressed at 300 KbpS. The quality rate scales are dividé’d G. T. Buswell, “How people look at pictures: a study of the psychology
and perception in art.” 1935.

as: excellent (100-81), _gOOd (80-61), fair (60-41), poor (40[2] A. Borji and L. Itti, “State-of-the-art in visual attention modelingZEE

21) and bad (20-1). Since DMOS measures the difference Transactions on Pattern Analysis and Machine Intelligeneel. 35,

of the rated scores between uncompressed and compreSS(]amNo-leé’Pt-k 185—50} FJaa”M201”3- “Ontimal o for faster obrect
. . . . . . J. bUtko an . R ovellan, ptimal scanning for faster objec

sequences, smaller DMOS indicates better subjective qgallt@. detection,” inComputer Vision and Pattern Recognition (CVPR)09,

Table[V tabulates the DMOS results of our and conventional pp. 2751-2758.
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; : ; ; .~ study of image retargeting,ACM transactions on graphics (TOG)
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In this paper, we have proposed a novel saliency prediction conversational hevc coding with hierarchical perception model of face,”

o ; ; ; IEEE Journal of Selected Topics on Signal Processiag 8, no. 3, pp.
method for multiple-face videos, which learns to predict the 475-489. Jun. 2014,

salient face with regard to some static and dynamic high-leve}; | 'y, c. koch, and E. Niebur, “A model of saliency-based visual at-
features of faces. First, we established an eye-tracking databasetention for rapid scene analysi$EEE Transactions on Pattern Analysis
consisting of 65 multiple-face videos. Then, we found out and Machine Intelligencevol. 20, no. 11, pp. 1254-1259, Nov. 1998.

f datab that vi | attenti . ltiole-f id @] L. Itti, “Automatic foveation for video compression using a neurobiolog-
rom our datapbase that visual attention in multiple-tface videos" .5 model of visual attentionJEEE Transactions on Image Processing

is highly correlated with both static and dynamic features of vol. 13(10), pp. 1304 — 1318, Dec 2004.
face at high-level. These features include face size, centd®] L. Itti and P. Baldi, “Bayesian surprise attracts human attentidfgfon

. . . . research vol. 49, no. 10, pp. 1295-1306, Jun. 2009.
bias, speaking, head turning and head pose. Accordingly, W& M. Xu, L. Jiang, Z. Ye, and Z. Wang, “Bottom-up saliency detection

developed the techniques to extract these features. Next, a NeW with sparse representation of learnt texture atorRaftern Recognition
M-HMM algorithm was proposed to integrate the observed 2016.

features and saliency transition from previous frames intol’d! Y- Fang, W. Lin, Z. Chen, C.-M. Tsai, and C.-W. Lin, "Video saliency
detection in the compressed domain,”ACM international conference

uniform framework. This way, the high-level features, such as on multimedia (ACM MM) 2012, pp. 697—700.
actions of speaking and head turning, can be turned to vide?] S. Hossein Khatoonabadi, N. Vasconcelos, I. V. Bajic, and Y. Shan,

saliency, for predicting who to look at. The experimental re- wsﬁgngigyngefﬁﬁezggﬁi(f)‘r’]r (fz ff/t:;“F;g‘lsStopge Salenteemputer
sults demonstrated that our method is able to advance state[pj]— 3. Harel. C. Koch. and P. Perona ’“Grap;]_based visual saliency;” in

the-art saliency prediction on multiple-face videos. Finally, we = Advances in neural information processing systems (NIRG)6, pp.

provided a potential implementation of our saliency predicti0[r114] 5645L—55§- 5 Le Calet and b. Barba. “Predicting visual fixa
. . . . Le Meur, P. Le Callet, an . barba, redicting visual fixations
method in V_'deo comp_ress_lon. on video based on low-level visual feature¥jsion researchvol. 47,
There exist three directions for the future work. (1) Our no. 19, pp. 2483-2498, 2007.
database and analysis at the current stage may be lacKidy S. Marat, T. H. Phuoc, L. Granjon, N. Guyader, D. Pellerin, and

At ; ; . e A. Guérin-Dugué, “Modelling spatio-temporal saliency to predict gaze
generalization, as it mainly handles limited high-level features, direction for short videos,International journal of computer visign

e.g., speaking, head turning, and so forth. In the future, the vol. 82, no. 3, p. 231, 2009.

database can be extended to include more general scenafiék,C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency

and some other high—IeveI features, such as gesture and detection mod(_el and its applications in image and video compression,
. - . . D IEEE Transactions on Image Processingl. 19, no. 1, pp. 185-198,

expression, may be incorporated into the saliency prediction jan. 2010.

framework. (2) There is still room to improve saliency predidi7] M. Xu, L. Jiang, X. Sun, Z. Ye, and Z. Wang, “Learning to detect video

tion accuracy by refining the speech detection algorithm. For \S;g:iezngyn"g“hl h;g’c sfgg“ggg"EZ%';T”‘”S""C“O”S on Image Processing
instance, the audio component of videos may be taken ”H@] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to predict

account in the speaking detector for saliency prediction. (3) where humans look,” ifProc. ICCV, 2009, pp. 2106-2113.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2837106, IEEE
Transactions on Image Processing

14

[19] X. Huang, C. Shen, X. Boix, and Q. Zhao, “Salicon: Reducing thpi4] P.-H. Tseng, R. Carmi, I. G. Cameron, D. P. Munoz, and L. Itti,
semantic gap in saliency prediction by adapting deep neural networks,” “Quantifying center bias of observers in free viewing of dynamic natural
in International Conference on Computer Vision (ICC2015, pp. 262— scenes,’Journal of vision vol. 9, no. 7, pp. 4—4, 2009.
270. [45] Y. Eisenthal, G. Dror, and E. Ruppin, “Facial attractiveness: Beauty and
[20] M. Cerf, J. Harel, W. Einhauser, and C. Koch, “Predicting human gaze the machine, Neural Computationvol. 18, no. 1, pp. 119-142, 2006.
using low-level saliency combined with face detection,’Advances in [46] X.Zhu and D. Ramanan, “Face detection, pose estimation, and landmark

neural information processing systems (NIPZ)08. localization in the wild,” inComputer Vision and Pattern Recognition
[21] Q. Zhao and C. Koch, “Learning a saliency map using fixated locations  (CVPR) |EEE, 2012, pp. 2879-2886.

in natural scenesJournal of vision 2011. [47] Y. Liu, H. Hu, and M. Xu, “Subjective rate-distortion optimization
[22] M. Xu, Y. Ren, and Z. Wang, “Learning to predict saliency on face  in hevc with perceptual model of multiple faces,” 2015 Visual

images,” ininternational Conference on Computer Vision (ICC2015. Communications and Image Processing (VCIPEEE, 2015, pp. 1-4.
[23] M. Jiang, J. Xu, and Q. Zhao, “Saliency in crowd,” Buropean [48] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps

Conference on Computer Vision (ECCV)Springer, 2014, pp. 17-32. via regressing local binary features,” omputer Vision and Pattern

[24] S. Marat, A. Rahman, D. Pellerin, N. Guyader, and D. Houzet, “lmprov-  Recognition (CVPR)2014, pp. 1685-1692. o
ing visual saliency by adding face feature mapand center t@amghitive [49] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying
Computation vol. 5, no. 1, pp. 63-75, 2013, framework,” International journal of computer visigrvol. 56, no. 3,

[25] N.D. Bruce, C. Catton, and S. Janjic, “A deeper look at saliency: Feature ~ PP. 221-255, 2004. L o ) -
contrast, semantics, and beyond, Froceedings of the IEEE Conference[50] S. Siatras, N. Nikolaidis, M. Krinidis, and I. Pitas, “Visual lip activity

on Computer Vision and Pattern Recogniti@016, pp. 516-524. detection and speaker detection using mouth region intensi@Gasylits
[26] X. Shao, Y. Luo, D. Zhu, S. Li, L. Itti, and J. Lu, “Scanpath prediction ~ and Systems for Video Technology, IEEE Transactionsa@n19, no. 1,
based on high-level features and memory bias,Initernational Con- pp. 133-137, 2009.

ference on Neural Information ProcessingSpringer, 2017, pp. 3-13. [51] R. Ahmad, S. P. Raza, and H. Malik, “Visual speech detection using an

[27] D. Pang, A. Kimura, T. Takeuchi, J. Yamato, and K. Kashino, “A unsupervised learning framework,” Machine Learning and Applica-
stochastic model of selective visual attention with a dynamic bayesian tons (ICMLA), 2013 12th International Conference, onol. 2. IEEE,
network,” in International Conference on Multimedia and Expo (ICME) 2013, pp. 525-528. . ) .

2008, pp. 1073-1076. [52] I. Goodfellow, Y. Bengio, and A. CourvilleDeep learning MIT Press,
] - it 2016.

[28] Y. Hua, Z. Zhao, H. Tian, X. Guo, and A. Cai, “A probabilistic . . r . .
saliency model with memory-guided top-down cues for free-viewing 23! ll;stl:)?irt]i’a(II:)-/ \Avlv:| g;]ﬁt'(\eﬂc;a?jyisLs.in?illggiytya"n?rgb Fm“p'utve'f“\ilsﬁf::'e;:é’ ‘g)‘;ttf::':n
in International Conference on Multimedia and Expo (ICME)13, pp. " ’

e po (ICME)13, pp Recognition (CVPR)2011, pp. 473-480.

[29] D. Rudoy, D. B. Goldman, E. Shechtman, and L. Zelnik-Manor, “LeamLS4] S{: I\I:I ZB(i)%réop,Pattern recognition and machine learningspringer New
ing video saliency from human gaze using candidate selection,” [g5] orK, '

ffgjfuter Vision and Pattern Recognition (CVPRP13, pp. 1147— \?dl%lfggﬁeg’ ;; “2T6fg9_ z\/;grtiigsgorithm,’Proceedings of the IEEE

[56] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector

[30] T. V. Nguyen, M. Xu, G. Gao, M. Kankanhalli, Q. Tian, and S. Yan, . ,, h ;
wtat f ) - . : ) machines,”ACM Transactions on Intelligent Systems and Technology
Static saliency vs. dynamic saliency: a comparative study,AM vol. 2, 1o, 3, pp. 1-27, Mar. 2011.

international conference on Multimedia (ACM MM)013, pp. 987-996. [57] J. Li, C. Xia, Y. Song, S. Fang, and X. Chen, “A data-driven metric

oot s & sl s o o 1 Comprehense eiluaion of Saency models ermatonsl
P p P '’ Conference on Computer Vision (ICG\2015.

1 e oo, o i 28 2. DY, T2, A Ola, A Toraba, and F. e, “ha
si. networyk fér . atioteﬁ oral visual atteniio ¥Xiv preprint arx- do different evaluation metrics tell us about saliency modelXiv
ty P p rarAlv prep preprint arXiv:1604.036052016.

iv:1603.08199 2016. ) : ) « ; :

N . . . [59] B. Li, H. Li, L. Li, and J. Zhang, “Domain rate control algorithm for

(33] W. ang:’ J. _Shen, gnd L._Shao, Deep learning for video sallenéy high efficiency video coding,JEEE transactions on Image Processing
detection,”arXiv preprint arXiv:1702.0087,12017. vol. 23, no. 9, pp. 3841-3854, 2014

[34] A. Coutrot and N. Guyader, “An efficient audiovisual saliency modeﬂeo] S. Li, M. Xu, X. Deng, and Z. Wang, “Weight-basedhrsate control

to predict eye positions when looking at conversations,”Signal for perceptual hevc coding on conversational videSgghal Processing:
Processing Conference (EUSIPCO), 2015 23rd Europe#EE, 2015, e eatanoL 56, . 2015 ¢

pp. 1531-1535. _ _ [61] J-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
[35] ——, “An audiovisual attention model for natural conversation scenes,” * «comparison of the coding efficiency of video coding standardsincluding

in Image processing (ICIP), 2014 IEEE international conference on high efficiency video coding (HEVC)JEEE Transactions on Circuits

IEEE, 2014, pp. 1100-1104. , _ _ _and Systems for Video Technolpgyl. 22, no. 12, pp. 1669—1684, Dec.
[36] ——, “How saliency, faces, and sound influence gaze in dynamic social 5012,

scenes,Journal of vision vol. 14, no. 8, pp. 5-5, 2014. [62] Z.Li, S.Qin, and L. Itti, “Visual attention guided bit allocation in video
[37] T. Foulsham and L. A. Sanderson, “Look who’s talking? sound changes compression,Tmage and Vision Computingol. 29, no. 1, pp. 1-14,

gaze behaviour in a dynamic social scendgual Cognition vol. 21, Jan. 2011.

no. 7, pp. 922-944, 2013. _ o ~[63] ITU, “Methodology for the subjective assessment of the quality of tele-
[38] L. Hirvenkari, J. Ruusuvuori, V.-M. Saarinen, M. Kivioja, A. Perakyla, vision pictures,”BT. 500-11, International Telecommunication Union,

and R. Hari, “Influence of turn-taking in a two-person conversation on  Geneva, Switzerlancp. 53-56, 2002.
the gaze of a viewer,PLoS Onevol. 8, no. 8, p. e71569, 2013.

[39] V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K. Murphy, and
L. Fei-Fei, “Detecting events and key actors in multi-person videos,”
Computer Vision and Pattern Recognition (CVPR)16.

[40] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standardEEE Transactions on
Circuits and Systems for Video Technolpgyl. 22, no. 12, pp. 1649 —
1668, Dec. 2012.

[41] R.L.Iman and W.-J. Conover, “A distribution-free approach to inducing
rank correlation among input variable€Zommunications in Statistics-
Simulation and Computatiorvol. 11, no. 3, pp. 311-334, 1982.

[42] A. Rahman, D. Pellerin, and D. Houzet, “Influence of number, location
and size of faces on gaze in videdgurnal of Eye Movement Research
vol. 7, no. 2, pp. 1-11, 2014.

[43] B. W. Tatler, “The central fixation bias in scene viewing: Selecting
an optimal viewing position independently of motor biases and image
feature distributions,Journal of vision vol. 7, no. 14, pp. 4-4, 2007.

1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



