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Find who to look at: Turning from action to saliency
Mai Xu, Senior Member, IEEE,Yufan Liu, Student Member, IEEE,Haoji Hu and Feng He

Abstract—The past decade has witnessed the use of high-
level features in saliency prediction for both videos and images.
Unfortunately, the existing saliency prediction methods only
handle high-level static features, such as face. In fact, high-level
dynamic features (also called actions), such as speaking or head
turning, are also extremely attractive to visual attention in videos.
Thus, in this paper, we propose a data-driven method for learning
to predict the saliency of multiple-face videos, by leveraging
both static and dynamic features at high-level. Specifically, we
introduce an eye-tracking database, collecting the fixations of 39
subjects viewing 65 multiple-face videos. Through analysis on our
database, we find a set of high-level features that cause a face
to receive extensive visual attention. These high-level features
include the static features of face size, center-bias and head
pose, as well as the dynamic features of speaking and head
turning. Then, we present the techniques for extracting these
high-level features. Afterwards, a novel model, namely multiple
hidden Markov model (M-HMM), is developed in our method
to enable the transition of saliency among faces. In our M-
HMM, the saliency transition takes into account both the state of
saliency at previous frames and the observed high-level features
at the current frame. The experimental results show that the
proposed method is superior to other state-of-the-art methods
in predicting visual attention on multiple-face videos. Finally,
we shed light on a promising implementation of our saliency
prediction method in locating the region-of-interest (ROI), for
video conference compression with high efficiency video coding
(HEVC).

Index Terms—Video analysis, saliency prediction, face.

I. I NTRODUCTION
A. Background

When people are exposed to a large scene, they use their
fovea to perceive an area of interest with high resolution. The
other regions, namely the peripheral regions, are perceived
with low resolution. Therefore, under the limitation of humans
brain processing capacity, visual attention enables humans to
effectively process considerable amounts of visual data [1].
Over the past decades, visual attention modeling has been
broadly studied in the fields of neurophysiology, computer
vision and multimedia [2]. Saliency prediction is an effective
way to model the deployment of possible visual attention
on images or videos. Recently, saliency prediction has been
widely applied in object detection [3], image retargeting [4],
visual quality assessment [5] and video coding [6].

B. Related work

Saliency prediction can be traced back to Itti’s model [7],
which combines the center-surround features of color, intensity
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Fig. 1. Examples of visual attention (viewed by 39 subjects) on multiple-face
videos influenced by different actions. Each row shows one video with their
attention heat maps. Some selected frames of these videos are provided in
each column. In the first and second columns, visual attention is attracted by
the action of head turning (profile-to-front and front-to-profile). In the third
column, the action of speaking receives substantial visual attention. Note that
the videos are chosen from our database, to be discussed in Section II.

and orientation together. However, Itti’s model [7] mainly fo-
cuses on images. For video saliency prediction, the initial work
is [8], in which Itti’s model was extended by incorporating two
dynamic features, i.e., motion and flicker contrast. Both [7] and
[8] are low-level based methods, which explore and integrate
some low-level features for saliency detection. Afterwards,
low-level based video saliency prediction evolves alongside
directions of feature exploration and feature integration. In
exploring saliency-related features,surpriseis defined in [9] as
the Kullback-Leibler divergence (KL) between spatio-temporal
posterior and prior beliefs across video frames. Then, a
Bayesian framework was developed in [9] to calculatesurprise
for predicting video saliency. Besides, sparse representation of
learnt texture atoms (SR-LTA) was proposed in [10] as low-
level features to predict saliency, benefiting from the recent
success of dictionary learning. Besides, some compressed do-
main features, such as motion vector in [11] and bit allocation
in [12], were also utilized as low-level features for low-level
based video saliency prediction. In integrating saliency-related
features, some advanced works were proposed. In particular, a
graph-based visual saliency (GBVS) was proposed in [13] for
saliency prediction, which applies graph model in combing
low-level features of color, intensity and orientation. There
also exist dynamic saliency models [14] and [15] fusing
spatio and temporal visual features to generate saliency maps.
Later, Guoet al. [16] proposed to integrate four low-level
features (two color features, one intensity feature and one
motion feature) using the phase spectrum of quaternion Fourier
transform (PQFT). Most recently, support vector machine
(SVM) [17] has been utilized for learning to integrate low-
level features in video saliency prediction.

However, the relationship between low-level features and
human visual attention is rather complicated, as the under-
standing of the HVS is still in its infancy. On the contrary,
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high-level features (e.g., object, text and face) are the more
evident cues to receive a great amount of visual attention.
Thus, a large number of methods have recently employed
high-level features for the saliency prediction of images [18]–
[24], and these methods can be seen as high-level based
methods. Those high-level based methods can be classified
into the saliency prediction of generic images and face images.
For generic saliency prediction, Juddet al. [18] combined
high-level features (e.g., face and text), middle-level features
(e.g., gist) and low-level features together, via learning their
corresponding weights with SVM. Most recently, Huanget
al. [19] have proposed the saliency in context (SALICON)
method to incorporate the high-level semantic features of
objects in saliency prediction, in light of deep neural net-
works (DNN). Similarly, Bruceet al. [25] proposed a fully
convolutional networks (FCN) based model to automatically
extract high-level features in saliency prediction and salient
object segmentation. In addition, Shaoet al. [26] used DNN
to extract semantic features fusing with low-level features and
saccadic amplitude to predict scanpath. For face images, Cerf
et al. [20] proposed to add face as an additional feature into
Itti’s model [7], such that the saliency prediction accuracy can
be dramatically improved. The impact of face in the saliency
prediction of face images was further investigated in [21].
Later, Xu et al. [22] proposed to precisely model saliency
of face region, via learning the fixation distributions of face
and facial features. Meanwhile, Jianget al. [23] developed
several face-related features at high-level to predict saliency in
a scene with multiple faces. These high-level features include
face size, pose and location.

There have also emerged some high-level based methods
[27]–[30] that make use of high-level features, for video
saliency prediction. Specifically, Panget al. [27] proposed
to explore the high-level based information of eye movement
patterns, i.e., passive and active states [31], to model attention
on videos. Later, Huaet al. [28] proposed to learn middle-
level features, i.e., gists of a scene, as the high-level based
cues in video saliency prediction. Rudoyet al. [29] proposed
to predict the saliency of a given frame, conditioned on
the detected saliency of previous reference frames. In their
method, high-level features (e.g., people) and low-level fea-
tures are integrated to perform saliency prediction for currently
processed frames. In [30], the high-level feature of camera
motion was incorporated for video saliency prediction. Most
recently, DNN has been developed in [32], [33] for learning
some high-level features to predict video saliency. The saliency
prediction of face images has been extensively studied in [20]–
[23]. Similarly, several works [34]–[38] have been devoted
to saliency prediction of face videos, which focus on talking
face and consider the influence of sound on visual attention.
However, most of them only concentrate on the conversation
videos and do not aim at predicting the salient face among
multiple faces.

In fact, it is intuitive that some high-level dynamic features,
also called actions, may attract extensive visual attention in a
face video. For example, Figure 1 illustrates that most attention
is focused on one face, related to the actions of speaking
or head turning. Unfortunately, to our best knowledge, few

existing video saliency prediction methods consider the impact
of multiple high-level dynamic features on visual attention,
despite single high-level dynamic feature of speaking being
well embedded in those methods [34]–[38]. It is worth men-
tioning that most recently, human actions have been explored
[39] to find the key person for event detection in videos
of basketball games, in the area of recognition. However,
the prediction of the key person does not produce saliency,
because the correlation between the detected key person and
ground truth attention is not investigated . Moreover, it is
limited to basketball videos with human bodies.

C. Our work and main contributions

In this paper, we propose a novel method to predict
the saliency of multiple-face videos, by modeling temporal
transition of saliency with regard to high-level static and
dynamic features. We found out that the most popular videos
of YouTube contain dialogue scenes (such as TV programs,
movies, etc), including one or more faces. Thus, this paper
mainly concentrates on multiple-face videos, in which faces
and their high-level dynamic features are indeed useful in
determining saliency as illustrated in Figure 1. It is worth
pointing out that the demand on video conferencing, like Face-
Time and Skype, is undergoing the growth explosion, posing
the bandwidth-hungry issue. To relieve this issue, this paper
discusses a potential implementation of our method in high
efficiency video coding (HEVC) [40] of video conferencing,
which can improve subjective quality at limited bit-rates via
locating a salient face as the region-of-interest (ROI).

Specifically, we established an eye-tracking database, which
is comprised by fixations of 39 subjects viewing 65 multiple-
face videos. We mine our database to investigate how im-
portant the high-level static/dynamic features are in drawing
visual attention. Our investigation revealed that most of human
attention is attracted by one among multiple faces in a video,
which is correlated with the size, center-bias and pose of the
face (seen as high-level static features). These features are
thus leveraged in our method as the high-level static features
for predicting the visual attention of each video frame. This is
similar to the work of [23], which refers to saliency prediction
among multiple faces in images. Beyond [23], we find that
the high-level dynamic features of speaking and head turning
attract even more visual attention, and hence, they are utilized
as high-level dynamic features for videos. Then, we propose
a multiple hidden Markov model (M-HMM) to predict the
dynamic transitions of saliency between faces across video
frames, according to the above high-level features (either static
or dynamic). The difference between [23] and our method is
that [23] is proposed for predicting the saliency of multiple-
face images with only high-level static features, whereas our
method aims at applying M-HMM to predict the saliency
transition of multiple-face videos upon both static and dynamic
features.

In summary, we make four contributions in this paper. (1)
We argue that high-level static and dynamic features can draw
extensive attention in multiple-face videos, based on a thor-
ough analysis using our eye-tracking database. (2) We develop
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TABLE I

V IDEO CATEGORIES IN OUR DATABASE.
Category TV play/movie group interview individual interview video conference variety show music/talk show group discussion overall

Number of videos 12 12 8 6 7 10 10 65

Fig. 2. One example for each category of videos. From left to right, the videos belong to TV play/movie, group interview, individual interview, video
conference, variety show, music/talk show, and group discussion.

techniques to extract the actions of speaking and head turning,
as the high-level dynamic features for saliency prediction.
(3) We propose an M-HMM method to take advantage of
observed high-level features, achieving the temporal transition
of saliency across multiple faces in videos. (4) We provide a
promising implementation of our saliency prediction method,
locating a salient face as the ROI for video conferencing
coding.

II. DATABASE ESTABLISHMENT

This section describes how we conducted the eye-tracking
experiment to establish our database, which is comprised by
fixations of 39 subjects viewing 65 multiple-face videos. Our
eye-tracking database is specialized for multiple-face videos.
First, we asked 3 volunteers to randomly find videos from
YouTube and Youku, with the criterion that the videos should
contain obvious faces. Then, a set of 65 videos at 720p were
collected, which contain various numbers of faces varying
from 1 to 27. All of these videos were compressed using
H.264. The duration of each video was cut down to be around
20 seconds. Note that these 65 videos are with either indoor or
outdoor scenes, and they can be classified into 7 categories1

(see Table I and Figure 2 for more details). Also note that
the audio track is removed in our database and eye-tracking
experiment, to make our approach focus on visual cues of
saliency.

Next, 39 subjects (26 males and 13 females, aging from 20
to 49), with either corrected or uncorrected normal eyesight,
participated in our eye-tracking experiment to watch all 65
videos. Among these subjects, two were experts working in
the field of saliency prediction. The other subjects did not
have any experience on saliency prediction, and they were
also naive to the purpose of our eye-tracking experiment. The
eye fixations of the 39 subjects on viewing each video were
recorded by a Tobii X2-60 eye tracker at 60 Hz. For the eye
tracker, a 23-inch LCD screen was used to display the test
videos at their original resolutions.

During the eye-tracking experiment, all subjects were re-
quired to sit on a comfortable chair with the viewing distance
being∼60 cm from the LCD screen. Before viewing videos,
each subject was required to perform a 9-point calibration
for the eye tracker. Subsequently, the subjects were asked to
free-view videos displayed at random order. In order to avoid
eye fatigue, the 65 test videos were divided into 3 sessions,
and there was a 5-minute rest after viewing each session.
Moreover, a 10-second blank period with black screen was
inserted between two successive videos for a short rest. Finally,
the eye-tracking data on viewing all 65 videos were collected
for our database, containing 1,011,647 fixations in total. For

1Note that the categories of our video dataset are based on the categories
of YouTube, Youku and the standard test set of video coding.

(a) Fixation proportion (b) Pixel proportion

Fig. 3. Proportions of fixations and pixels in face and background over all
65 videos of our database.

Fig. 4. Proportions of fixations falling into one face and other faces, for all
39 subjects.

facilitating future research, our database is available online:
https://github.com/yufanLiu/find.

III. D ATA ANALYSIS

In Section I, we have shown the intuition that face, together
with its high-level features, is an evident cue to attract vi-
sual attention in a multiple-face video. In this section, we
thoroughly analyze the collected eye-tracking data of our
database, to further predict the visual attention on multiple-
face videos. According to the analysis, several observations
are investigated, to be discussed in the following. Note that
the landmarks, features and actions of faces (i.e., speaking
and head turning) for the following observations are manually
annotated.2 The annotation results of all videos in our database
are also downloadable, together with our eye-tracking results.

A. Face vs. attention

Observation 1: In multiple-face videos, faces draw a signif-
icant amount of attention. At each video frame, the attention
of different subjects consistently focuses on one face among
all faces.

Figure 3 shows the proportions of fixations and pixels
belonging to face and background, in our database. We can
see from this figure that despite taking up only5% of the
pixels, faces receive79% of the fixations. This verifies that
faces attract almost all visual attention in multiple-face videos.
Figure 4 further plots the proportions of fixations falling into

2The landmark features of face were manually annotated with a Matlab
software, and the software was provided along with our database in http-
s://github.com/yufanLiu/find. Then, the ground truth landmarks were obtained
by averaging over the annotation results of four subjects.

https://github.com/yufanLiu/find
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(a) One frame (b) All videos
Fig. 5. Comparison of attention in front and profile faces. Note that (a) is the results of three frames of a randomly selected video. Also, note that the
statistical results in (b) are averaged over the fixation data of all 65 videos in our database. In (b), fixationsper face are shown for frontal and profile faces,
respectively.

one face and the sum of those falling into other faces. We can
conclude from this figure that human attention of different
subjects is consistent in being attracted by one face among
all faces. Besides, the subjective examples presented in Figure
1 also imply that faces, normally one face, draw most visual
attention in a video. Meanwhile, there are only 14% of the
fixations falling into torso and limbs. This implies that face
attracts considerably more attention than the regions of torso
and limbs.

Observation 2: The amount of attention on each face has a
small positive correlation with face size.

Does the largest face receive more fixations than other
faces in a video frame? To answer this question, we measure
the correlation between the ranking of face size3 in a video
and the corresponding saliency, via Spearman rank correlation
coefficients [41]. Note that the Spearman correlation coef-
ficient is a nonparametric measure of rank correlation. We
also report the Pearson correlation coefficient results in the
following analysis, to further verify our observations. The
Spearman rank correlation coefficients and Pearson correlation
coefficients are calculated according to the fixation number and
face size of each face in a video frame. Then, the Spearman
rank correlation coefficient and Pearson correlation coefficient
of all frames, averaged over the 65 videos in our database, are
0.25 (p-valuep = 0.039) and 0.32 (p = 0.016), respectively.
Therefore, the positive correlation values suggest that a larger
face may draw more attention, which is consistent with [42].

B. Static features vs. attention

Observation 3: Humans are more likely to fixate on the face
that is close to the video center, among all the faces at a video
frame.

The center-bias [2], [43] is an obvious cue to predict human
fixations on generic videos. It is also intuitive that people are
likely to pay their attention on the face that is close to the
video center. We hence investigate the correlation of attention
on a face with the Euclidean distance of this face to the video
center. To quantify such correlation, we evaluate the average
Spearman rank correlation coefficient (ρ = −0.22, p = 0.019)
and Pearson correlation coefficient (γ = −0.19, p = 0.007),
following the same way asObservation 2. The negative values
of ρ andγ indicate that humans probably fixate on the face that
is close to the video center. According to [44], human attention
on the center face is mainly due to the photographer bias,
which means that the photographer or video editor normally
places the important face near the center of the video.

Observation 4: In multiple-face videos, visual attention on
each face is correlated with its head pose.

3Here, the size of each face is calculated by the number of pixels of the
face region. In this paper, the face region is determined by contours of facial
landmarks.
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(b) Number of fixations per frame

(c) Speaking and non-speaking versus fixations
Fig. 6. Human fixations in speaking and non-speaking faces. (a) is the fixation
maps of 4 randomly selected videos at different crowd levels, containing 2, 3,
6, and 10+ persons. (b) shows the numbers of fixations per frame in speaking
and non-speaking faces, for each individual video of (a). In (b), the bar of
“average by all” shows the numbers of fixations per face, averaged over all
speaking and non-speaking faces of all 65 videos in our database. (c) shows
the actions of speaking and non-speaking versus normalized fixations of one
face of a selected video. In (c), fixations are normalized, by dividing the
fixation number of each face with the maximal fixations among all faces.

One observation to explore is the relationship between
visual attention and head pose for each face in multiple-face
videos. In this paper, we definehead poseby two categories:
front and profile. Front is one case of pose that the angle
between face-viewing and image plane is less than25◦. Profile
is the other case of pose that the angle is in the range of
[25◦, 90◦]. There are in total 110,544 frontal faces and 30,007
profile faces in our database. Figure 5 shows that the frontal
face is more attention-capturing than the profile face in a
video frame. We further find that when speaking, frontal faces
receive 12.6 fixations per face, while profile faces only draw
7.8 fixations per face.

Observation 5: Visual attention is almost irrelevant to face
attractiveness.

One hypothesis is that the attention on different faces in
a multiple-face video may be relevant to face aesthetic. We
therefore analyze this relevance. We follow the way of [45]
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(a) (b)

Fig. 7. Correlation between fixations and head turning. Fixation change per video averaged over all 65 videos in our database, when head turns from front
to profile (F→ P) and from profile to front (P→ F). (b) Fixation maps for the frames of head turning.

to measure the attractiveness of faces. Twenty-eight subjects
participated in rating the attractiveness of each face, over all
65 videos in our database. The rating score ranges from 1 to
10, and a larger score means a more beautiful face. Then, the
scores of all 28 subjects are averaged to obtain the attractive-
ness value of each face. We find that the average Spearman
rank correlation coefficient isρ = 0.05 with p = 0.266, as
the correlation between attention and face attractiveness. The
corresponding Pearson correlation coefficient isγ = −0.03
with p = 0.268. Surprisingly, visual attention is almost
irrelevant to face attractiveness. This is probably due to the
fact that visual attention is normally drawn by face actions, as
revealed in the following observations.

C. Dynamic actions vs. attention

Observation 6: A speaking face attracts a large amount of
visual attention.

Figure 6 shows the relationship between the action of
speaking and the fixations in multiple-face videos. We can see
from the subjective results in Figure 6-(a) that human tends to
look at the speaking face. Note that the interview-like videos
(with microphones) are chosen as examples, because the
microphones in these videos help readers locate the speaking
face. Figure 6-(b) quantifies the numbers of average fixation on
speaking and non-speaking faces, for the examples of Figure 6-
(a). More importantly, the statistical results of “average by all”
in Figure 6-(b) are averaged over all 65 videos in our database,
which verifies that speaking action attracts approximately 20
fixations per frame, whereas non-speaking action attracts less
than 9 fixations per frame. Figure 6-(c) also plots the actions of
speaking and non-speaking versus visual attention for a video.
In summary, we can observe from Figure 6 that the speaking
action (i.e., mouth motion) may draw extensive visual attention
to the corresponding face in multiple-face videos.

Observation 7: In multiple-face videos, visual attention on
each face is highly correlated with head turning.

It is also interesting to find out the correlation between
visual attention and head turning, in multiple-face videos.
Figure 7-(a) illustrates that fixations drop when head turns
from front to profile, and that attention increases when head
turns from profile to front. Note that the statistical results
of Figure 7-(a) are obtained by averaging over all videos in
our database. Figure 7-(b) provides some examples to show
how visual attention is attracted by head turning. We can
observe from Figure 7 that the front-to-profile head turning
significantly reduces visual attention, while the profile-to-front
head turning receives increasing visual attention.

IV. FEATURE DETECTION

Since Section III has found that visual attention is highly
correlated with some high-level features of face, this section
mainly discusses the techniques for detecting these features.
Specifically, Section IV-A describes the preliminary for face-
related feature detection, including tracking faces and their
landmarks in videos. After tracking facial landmarks, the
size and center-bias of face can be easily obtained. Section
IV-B proposes a technique to monitor the action of speaking.
Section IV-C presents a way to detect features of head pose
and head turning.

A. Preliminary

Observation 1verified that a face is an obvious cue to draw
visual attention in a video. Accordingly, we need to detect
faces in multiple-face videos. Additionally, the landmarks of
faces are necessary to detect high-level features, such as speak-
ing. Thus, this section concentrates on the detection of face and
facial landmarks for multiple-face videos, as the preliminary
of our saliency prediction method. The recent work of [46]
constructed a unified model for face detection, pose estimation
and landmark estimation, in multiple-face images. Here, we
first utilize [46] to detect faces and their landmarks at each
frame of a video, in which both frontal and profile faces can
be located. To improve face detection performance, we follow
our recent work [47] to manage some harsh situations, such
as partial occlusion and poor light conditions, by exploring
temporal information of videos. To be more specific, we match
the faces across frames, by searching for the face with nearest
Euclidean distance. We then identify the nearest faces of two
consecutive frames as the matched face of the same person,
provided that their distance is less than a threshold:

thE = γ ×
√

w2 + h2, (1)

where w and h are the width and height of the detected
face, respectively. Otherwise, we regard them as non-matching
faces, belonging to different persons. In (1),γ is a parameter
to control the sensitivity of face matching, and it is simply set
to 0.5 in this paper. When matching faces across frames, some
faces may be missed due to occlusion or light conditions. For
detecting these missed faces, the linear interpolation of faces is
applied to neighboring frames within a sliding window. In this
paper, the length of the sliding window is empirically chosen
to be 17, to make the face detection results appropriate. The
experimental results have verified that the above technique is
simple yet effective in matching faces of our database, which
can also handle camera motion; thus, it is not necessary to
utilize another advanced tracking algorithm.
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Fig. 8. Framework of the speaking detection algorithm. In this framework, [46] is applied for face detection and alignment, such that both frontal and profile
faces can be processed. Likewise, there are 68 and 39 landmarks for frontal and profile faces, respectively. For profile faces, the calculation of elongation is
different, which uses different landmarks to compute the corresponding variables.

Next, we also use [46] to locate facial landmarks in
multiple-face videos. In our method, [46] is directly used
to locate 39 landmarks for profile faces. Then, we improve
the performance of [46] in landmark localization for frontal
faces, via applying the latest work of [48] to track landmarks
for each detected frontal face. After faces are interpolated in
some video frames, we implement our previous work of [47]
to predict the facial landmarks upon the matched faces of
neighboring frames. As a result, multiple faces, either frontal
or profile, can be detected and matched in a video with well-
located landmarks.

Finally, the size and center-bias of each face should be esti-
mated using facial landmarks in a video, sinceObservations 2
and 3have shown that attention is correlated with the size and
center-bias of face. Specifically, the contour and region of each
face are extracted by connecting the related landmarks. Then,
the number of pixels belonging to the face region is considered
to be the face size. Based on the contour of the extracted
face, the face center can also be estimated, and its Euclidean
distance to the video center is calculated as the center-bias
of each face. Note that both the size and center-bias of each
detected face should be normalized by video resolution. In
addition, the performance of our saliency prediction method
relies on the results of the above face detection and tracking
algorithm, which is the basis of our method.

B. Detection on speaking and non-speaking

Observation 6has shown that speaking may attract a large
amount of visual attention. Thus, we now present an algorithm
to detect the actions of speaking. The procedure of our
algorithm is summarized in Figure 8, and it learns to detect
the speaking action using the motion, geometry and texture of
mouth regions. In general, we first incorporate a classic motion
detection approach, optical flow [49], to measure the intensity
and orientation of mouth motion. Second, we leverage the
detected mouth landmarks to measure the elongation of the
mouth for quantifying the geometry variation of speaking.
Third, the gray scale value of the mouth region pixels is
utilized to find the texture variation of speaking, similar to
[50] and [51]. Finally, our algorithm applies SVM as the binary
classifier of speaking, with respect to the features of optical
flow, mouth elongation and gray values.

Specifically, the geometry of the mouth variation is used
as a feature to make a judgement on speaking. Toward such
a geometry, the height and width of outer and inner lips are
measured on the basis of mouth landmarks. We define the
height and width of the outer lip bya andb, respectively, and
the height and width of the inner lip are denoted asc and

b

d

ac

Fig. 9. Illumination for the height and width of outer and inner lips by facial
landmarks. Left is the facial landmark graph, and right is the landmarks of
the mouth.

d, respectively. Refer to Figure 9 for more details. Then, the
elongation of the mouth can be calculated by

V =
a+ c

b+ d
. (2)

Also, the texture change of the mouth region is incorporated
in speaking detection. The previous work of [51] has found
that speaking may change the distribution of gray values in the
mouth region. Specifically, if most pixels of mouth region are
at very low gray scale, the person is more likely to speak. It
is because when speaking, mouth cavity decreases the average
intensity of mouth region due to black region. Here, we follow
[51] to use the gray values of the mouth region as one feature
for speaking detection. The binary process is conducted on the
gray image of the mouth region, with regard to a predefined
thresholdthG. Then, the average binary value of the mouth
region is computed by

B =

∑

(x,y)∈R
b(x, y)

#(R)
, (3)

where#(R) is the total number of pixels in the mouth region
R, and b(·) is the binary value of each pixel in the mouth
region.

Next, we estimate the intensity of mouth motion based on
optical flow. Here, the mouth region in a video frame, defined
by R, is extracted by connecting landmarks of the outer lips.
In the mouth region, we apply the Lucas-Kanade algorithm
[49] to detect pixel-wise optical flow. Then, the intensity of
mouth motion can be estimated by averaging the optical flow
of all pixels in the mouth region:

O =

∑

(x,y)∈R
||o(x, y)||2

#(R)
, (4)

whereo(·) is the optical flow vector of each pixel.
We further compute the orientations of mouth motion, also

based on optical flow. Given the vectors of optical flow at
mouth regionR, the orientations of mouth motion can be
represented by the following histogram:

histl =

∑

(x,y)∈R
||ol(x, y)||2

#(R)
, l = 1, 2, ..., L. (5)



1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2837106, IEEE
Transactions on Image Processing

7

Fig. 10. Pipeline of our proposed method.

Fig. 11. Overview structure for HMM.

In (5), ol(·) is the orientations of optical flow belonging to
the l-th orientation. There areL equal bins for the orientation
histogram of (5), i.e., the bin width is360◦/L. In this paper,
we setL to be 8, corresponding to 8 directions of mouth
movement.

Finally, SVM with the radial bias function (RBF) kernel is
used in our algorithm to train the binary classifier for speaking
and non-speaking. The input feature vector of SVM consists
of mouth motion intensityO, mouth motion orientation his-
togram [hist1, . . . , histK ], mouth elongationV and average
binary valueB at three neighboring frames. As a result, the
action of speaking can be detected, as one of the high-level
features for our saliency prediction method.

C. Detection on head pose and head turning

It has been demonstrated inObservation 4 that visual
attention on face is relevant to its pose. We thus need to detect
the head pose as a feature for predicting video saliency. In
[46], 68 landmarks are detected for frontal face, whereas 39
landmarks are found for profile face. In this paper, we estimate
the head pose on the basis of the number of landmarks of the
tracked face (by Section IV-A). That is, the face is viewed
as a frontal face when it has 68 landmarks; otherwise, it is
considered to be a profile face given 39 landmarks. Note that
a detected face can only have 68 landmarks (frontal) or 39
landmarks (profile).

Observation 7has pointed out that visual attention is also
correlated with head turning. Due to this, we further detect
the action of head turning, which has two categories: front-to-
profile or profile-to-front. In fact, head turning can be tracked
in a straightforward manner according to the change of head
pose (defined above). We empirically find that the duration of
head turning is normally 1 second. Thus, once a head pose
change is detected, the corresponding face of adjacent frames
within 1 second is annotated as head turning.

V. SALIENCY PREDICTION

After extracting the above features, our method introduces
the M-HMM model and postprocessing step to generate salien-
cy maps of multiple-face videos. The overall pipeline of our
method is summarized in Figure 10. As can be seen in this
figure, the input is frames of multiple-face videos, and the
output is the corresponding saliency map. After face detection
and feature extraction, M-HMM is used to predict the attention
weight of each face by exploring the temporal transition of
salient faces across video frames. In our saliency prediction

����

 

Fig. 12. Structure of M-HMM. Note that the fully-connected layer is different
from that in deep learning, because no weight needs to be learnt in this layer.

method, we extend HMM to be M-HMM, by allowing more
than one interactive state at one time period. Besides, each
state in M-HMM depends on the observed features and the
previous states. More details about HMM and M-HMM are to
be discussed in Sections V-A and V-B, respectively. Finally, a
post-processing step is adopted to generate saliency maps of
multiple-face videos, as discussed in Section V-C.

A. HMM for single-face saliency
First, we concentrate on the application of HMM in our

saliency prediction method. Figure 11 shows the structure of
HMM. In HMM, we treat high-level static/dynamic featureft
(discussed in Section IV) as the observed feature at thet-th
frame. StateSt, the sequential unit in HMM, stands for the
variation of saliency attended to one face. In our application,
we haveSt ∈ {+δ1, 0,−δ2}, whereδ1 (> 0) and δ2 (> 0)
define the amounts that saliency increase and decrease for a
face. Moreover,St = 0 indicates that the saliency of the face
remains unchanged across frames. In HMM, the value of the
currently processed stateSt relies on its previous stateSt−1

and observed featureft. As such, the saliency map of a video
frame is determined by its observed high-level features and
the saliency of the face at the previous frame. However, HMM
can only deal with one face, since there is one state in each
time period for HMM. In the next subsection, we present our
M-HMM algorithm to predict the saliency of more than one
face.

B. M-HMM for multiple-face saliency

For M-HMM, multiple HMMs are adopted and combined,
each of which is in accordance with the saliency of one face.
Figure 12 shows the structure of our M-HMM, in which
there areN states in total for a time period. In our saliency
prediction method, each state (amongN states) means saliency
variation of one face at thet-th frame, and they are denoted
as{S(n)

t }Nn=1. Consequently, M-HMM can be applied to the
multiple-face scenarios. As withSt, the possible values of
S
(n)
t are ∈ {+δ1, 0,−δ2}. Then, all N states in M-HMM

are simultaneously transited along with the processed video
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frames. Similar to HMM, the states of{S(n)
t }Nn=1 depend on

their corresponding observations of high-level featuresf
(n)
t ,

as well as their previous states{S(n)
t−1}

N
n=1.

In the following, we introduce a fully-connected network
in M-HMM, via adopting the basic idea of RNN [52].
Observation 1has pointed out that most visual attention is
attracted by one face among all faces. In other words, if one
face receives a large amount of attention in a video frame,
then the other faces normally draw few fixations. That is,
saliency maps of different faces are highly correlated with
each other in a video frame. Thus,{S(n)

t }Nn=1 at one time
period need to be interactive with each other. Accordingly,
our M-HMM algorithm takes into account the interaction of
state set{S(n)

t }Nn=1 by adding a fully-connected network.
Specifically, we denote{z(n)t }Nn=1 (∈ [0, 1]) as the set of
weights, reflecting the proportions of attention belonging to
different faces in a video frame. Additionally,{x(n)

t }Nn=1 is
the intermediate units for computing{z(n)t }Nn=1. A higherx(n)

t

corresponds to a largerz(n)t . Assuming that
∑N

n=1 z
(n)
t = 1,

the followingsoftmaxactivation function is used to formulate
weights{z(n)t }Nn=1 in M-HMM:

z
(n)
t =

exp(x
(n)
t )

∑N

n′=1 exp(x
(n′)
t )

, (6)

wherex(n)
t is defined as

x
(n)
t = z

(n)
t−1 + S

(n)
t . (7)

In (7), x(n)
t of one face is determined by saliency variation

S
(n)
t (i.e., states of M-HMM) and the weight of face attention

z
(n)
t−1 at the previous frame. They are modeled as hidden units

of the fully-connected network in our M-HMM structure (as
shown in Figure 12).

Finally, M-HMM is able to output weights{z(n)t }Nn=1.
Given {z

(n)
t }Nn=1, we can make use of the dynamic feature

f
(n)
t to predict the visual attention on each face at thet-th

frame. In this paper, the predicted visual attention of the face
channel is modeled using the conspicuity map4, denoted as
M

F
t . It can be computed by

M
F
t =

N
∑

n=1

z
(n)
t c

(n)
t M

Fn

t , (8)

whereM
Fn

t denotes the conspicuity of then-th face upon
featuref (n)

t , andc(n)t is the center-bias weight of each face.
In our method,MFn

t is calculated by the latest work [22],
which models the conspicuity map of a face with the Gaussian
mixture model (GMM). It is worth pointing out that in [22] the
conspicuity map of each face is proportional to its size, with
the relationship learnt from training data. As such, face size
is already considered in our method, satisfyingObservation
2 of this paper. In addition,Observation 3has revealed that
visual attention is also correlated with the center-bias feature
of faces in multiple-face videos. Therefore, we follow the way
of [53] to take into account the face center-bias feature by

4Note that saliency produced by the channel of a single feature is defined as
the conspicuity map, to differentiate from the saliency map that is generated
by all features.

weighting the Gaussian modelc(n)t in (8). Assuming thatd(n)t

is the Euclidean distance of then-th face to the video center
at thet-th video frame,c(n)t of (8) can be calculated using the
following Gaussian model:

c
(n)
t = exp

(

−
(d

(n)
t −minn d

(n)
t )2

σ2

)

. (9)

In (9), σ is the standard deviation of the Gaussian model,
which reflects the degree of center-bias. Note that Gaussian
center-bias weights of (9) are only imposed on conspicuity of
each face in our method, rather than all pixels as in [53].

Now, the remaining task is to learn the parameters of our
M-HMM for estimatingz(n)t , such that the conspicuity of each
face can be yielded by (8). At the beginning, all initial states
S
(n)
1 are simply set to0 for M-HMM. Next, the matrices

of transition probabilities and emission probabilities are two
important parameters of M-HMM to be learnt. In our M-
HMM, the matrices of these two parameters are identical
across different HMMs. It is because transition probabilities
and emission probabilities of each HMM are independent of
other HMMs, as can be seen in Figure 12. In our method, we
apply the maximum likelihood estimation [54] to learn these
two matrices from training data. Given the learnt matrices,
the Viterbi algorithm [55] is adopted to perform the transition
between the previous state and the current state, based on the
observed dynamic featuref (n)

t of each face.

C. Feature integration

According toObservations 6 and 7, the high-level features
f
(n)
t can be the actions of speaking and head turning, for

predicting video saliency. Accordingly, we define the set of
the high-level dynamic features as{f (n)

t,k }Kk=1. Specifically,

f
(n)
t,1 ∈ {1, 0} means whether the face speaks (=1) or does

not (=0).f (n)
t,2 ∈ {1, 0} indicates whether the head turns from

front to profile, andf (n)
t,3 ∈ {1, 0} indicates whether the face

has the profile-to-front turning. Besides, sinceObservation 4
has shown that the frontal face receives more attention than
the profile face, we further include the static feature of head
pose f

(n)
t,4 , which stands for frontal face (= 1) or profile

face (= 0). At the k-th frame, we can generate the set of
face conspicuity maps{MF

t,k}
4
k=1, corresponding to different

features{f (n)
t,k }4k=1.

Then, we need to combine all conspicuity maps of
{MF

t,k}
4
k=1 for predicting the face saliency of multiple-face

videos. LetSF
t be the face saliency of thet-th video frame.

It can be computed by the linear combination:

S
F
t =

4
∑

k=1

wkM
F
t,k, (10)

wherewk is the weight of thek-th conspicuity map.
Finally, we can compute (10) to predict saliency maps of

multiple faces in a video, once the values of{wk}
4
k=1 are
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Fig. 13. Saliency maps for different frames of a video selected from our
database. These maps are generated by ground truth human fixations, our
method, Xuet al. [22], SALICON [19], Jianget al. [23], OBDL [12], Rudoy
et al. [29], PQFT [16], Surprise [9] and GBVS [13].

known. In fact, the weights ofwk can be learnt from training
data via solving the following optimization formulation:

argmin
{wk}4

k=1

L
∑

l=1

||

4
∑

k=1

wkM
F∗
l,k−S

F∗
l ||2, s.t.

4
∑

k=1

wk = 1, wk = 1 > 0,

(11)
where{MF∗

l,k}
L
l=1 are the conspicuity maps and{SF∗

l }Ll=1 are
human fixation maps, for allL training video frames. In this
paper, we apply the disciplined convex programming (CVX)
to solve the above optimization formulation.

In order to consider both low-level and high-level features
in saliency prediction, our method combines face saliencyS

F
t

with saliency maps of three low-level features of GBVS [13]
(i.e.,SI

t for intensity,SC
t for color andSO

t for orientation). In
addition, the weights for the linear combination are determined
through the least square fitting on training data. Afterwards,
the final saliency mapSt of each video frame can be yielded
for multiple-face videos.

VI. M ODEL EVALUATION

A. Setting

In our experiments, we tested all 65 videos in our eye-
tracking database (mentioned in Section II). Here, 5-fold cross
validation was applied, in which 65 videos were equally
divided into 5 non-overlapping sets. One set was used for the
test with the others being training sets. Following this way,
all 5 sets can be tested. In this paper, the saliency prediction
results are reported by averaging over all 65 videos in 5-
fold cross validation. Note that both speaking detection and
saliency prediction were trained and tested with the same 5-
fold cross validation. Besides, we simply utilized the face
detector and head pose detector provided by [46], which had
been already trained over the external data of [46].

TABLE II
EVALUATION ON SPEAKING DETECTION BY OUR AND OTHER TWO

COMPARATIVE ALGORITHMS.
F-measure Accuracy PFN PFP

Our 0.63 0.80 0.38 0.13
[51] 0.35 0.35 0.36 0.76
[50] 0.45 0.37 0.06 0.84

For speaking detection, the threshold of binary process on
gray scale mouth was empirically to bethG = 28, in our
experiments. Furthermore, the SVM (with the RBF kernel) of
the LIBSVM toolbox [56] was applied, which detects speaking
actions of all test videos in 5-fold cross validation. In the LIB-
SVM toolbox, the penalty parameterC and kernel parameter
γ were tuned by grid search on training data. Specifically,
the grid search was divided into two steps: one for loose grid
search onC = 2−5, 2−4, ..., 29 and γ = 2−15, 2−14, ..., 29

(the optimal results areC = 23 and g = 25), and then
the other for a fine grid search onC = 22, 22.2, ..., 24 and
γ = 24, 24.2, ..., 26. The final optimized parameters were
C = 6.96 (i.e., 22.8) and γ = 18.38 (i.e., 24.2) for our
experiments.

For saliency prediction, the values of latent stateSn
t,k in

M-HMM were tuned to beδ1 = δ2 = 0.38. When training
the matrices of the transition and emission probabilities for
M-HMM, the values ofz(n)t were obtained by computing the
proportion of human fixations on then-th face to fixations on
all faces. When training the weight of each high-level feature
channel in (11), the fixations on face regions in the training
frames were smoothed with a two-dimensional Gaussian filter
(with the cut-off frequency being6 dB) to obtain{SF∗

l }Ll=1.
In addition, all fixations of each training frame were smoothed
with the same Gaussian filter, to train the weights of channels
on face and low-level features.

B. Evaluation on feature detection

In this section, the extraction of high-level features is eval-
uated, as it is the foundation of saliency prediction. First, we
evaluate the performance of our speaking detection algorithm
proposed in Section IV-B. Recall that the manually annotated
speaking results are available in our eye-tracking database
(https://github.com/yufanLiu/find), and they are considered to
be the ground truth for speaking detection. The state-of-the-art
of speaking detection algorithms [51] and [50] were compared
with our algorithm. The metrics of F-measure, accuracy, false
positive rate (PFP ) and false negative rate (PFN ) are measured
for evaluation. Here, F-measure is calculated as follows,

F1 =
2PTP

2PTP + PFP + PFN

, (12)

wherePTP represents the true positive rate. Note that accuracy
is the ratio of correctly detected speaking and non-speaking
faces to the total number of faces, at all frames of test
videos. Table II reports the results of the three algorithms
for all test videos in 5-fold validation. It can be seen that
our speaking detection algorithm is significantly superior to
[51] and [50], in terms of overall performance measured by
F-measure and accuracy. Although [50] has the smallest false
negative rate (PFN = 0.06), its false positive rate is extremely
high (PFP = 0.84). By contrast, our algorithm achieves the
best false positive rate (PFP = 0.13) and its false negative rate
(PFN = 0.38) is comparable to that of other algorithms. In
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10TABLE III
ACCURACY OF SALIENCY PREDICTION BY OUR METHOD AND8 OTHER METHODS, AVERAGED OVER ALL TEST VIDEOS IN THE5-FOLD CROSS

VALIDATION .

Our Our+manual Xuet al. [22] SALICON [19] Jianget al. [23] GBVS [13] Rudoyet al. [29] PQFT [16] Surprise [9] OBDL [12]

NSS 3.61 3.88 3.14 2.96 0.97 1.23 1.42 0.88 0.88 1.62
CC 0.66 0.72 0.61 0.52 0.29 0.33 0.36 0.22 0.21 0.30

other words, our algorithm performs the best among all three
algorithms on speaking detection. Note that our database is
tough for speaking detection because there are multiple faces
in the videos and some of them are small, blurry and partially
occluded. Meanwhile, our speaking detection algorithm relies
on the face alignment algorithm [46] to handle occlusion, pose
changes and illumination.

Moreover, we show the effectiveness of our detection
method on head pose and head turning. For head pose de-
tection, we found from our experiments that its accuracy is
approximately 99.1%, averaged over all test videos, which is
close to the 99.9% accuracy reported in [46]. For head turning
detection, the average accuracy is 90.1%, which is similar to
the accuracy of head pose detection as head turning is based
on the results of detected head pose. In a word, head pose and
head turning can be effectively detected in our method.

C. Evaluation on saliency prediction

In this section, we compare our method with 8 conventional
saliency prediction methods, including Xu et al. [22], Jianget
al. [23], SALICON [19], GBVS [13], Rudoyet al. [29], PQFT
[16], Surprise [9] and OBDL [12]. Additionaly, [22], [23],
[19] and [13] are image saliency prediction methods. To be
more specific, [22] and [23] work on face saliency prediction
of images, which incorporate the high-level static features of
face. We compare our method to these two high-level based
methods, as there is no face saliency prediction method for
videos. On the contrary, [19] is a state-of-the-art deep neural
network (DNN) method that automatically learns hierarchical
static features for saliency prediction. Besides, [13] is a low-
level based method, which provides the saliency of low-level
features for our method. Therefore, [19] and [13] are also
included in our comparison.

Note that we use our multiple-face tracking technique to
detect faces for [22], since it only handles the single-face
scenario.

The most recent work of [57], [58] reported that normal-
ized scanpath saliency (NSS) and correlation coefficient (CC)
perform the best among all metrics in evaluating saliency
prediction accuracy5. Thus, we compare our method with 8
other methods in terms of NSS and CC. Table III reports the
comparison results of saliency prediction, averaged over all
test videos in the 5-fold cross validation. As shown in this
table that our method is much better than all other methods
in predicting the saliency of multiple-face videos. Specifically,
our method significantly outperforms all video saliency pre-
diction methods in both NSS and CC. Moreover, our method
performs much better than the latest DNN method SALICON,
with 0.65 and 0.14 increases in NSS and CC, respectively.
Furthermore, our method has 0.47 and 0.05 improvements in

5 [57] also showed that area under ROC (AUC) is the worst metric in
measuring the accuracy of saliency prediction.

Fig. 14. Saliency maps for several frames selected from different videos in
our database. These maps are generated by ground truth human fixations, our
method, Xuet al. [22], SALICON [19], Jianget al. [23], OBDL [12], Rudoy
et al. [29], PQFT [16], Surprise [9] and GBVS [13].

NSS and CC compared with [22]. These improvements are due
to the following reason: The saliencies of all faces have equal
importance in [22], whereas the use of high-level dynamic
features enables our method to precisely predict salient faces
across frames. Moreover, note that both our method and [22]
are superior to [23], which imposes unequal importance on
different faces in an image. The main reasons are as follows:
(1) The predicted saliency of [23] suffers from incorrectly
detected faces because it is based on image face alignment
[46], and (2) the utilization of high-level static features in [23]
may predict incorrect salient faces in a video. Conversely, the
high-level dynamic features of our method are highly effective
in finding the salient faces in a video.

Since the above comparison takes into account the influence
of center-bias embedded in saliency prediction methods, we
further compare the saliency prediction performance in terms
of shuffled AUC, which removes the influence of center-bias.
Table IV reports the shuffled AUC results of our method and
Xu et al. [22], Jianget al. [23] and GBVS [13] methods, which
bias the saliency prediction toward the center. It can be seen
that our method still performs better than the other methods,
when removing the influence of center-bias in saliency pre-
diction. In Section VI-D, we further analyze the influence of
center-bias in our saliency prediction method in more detail.

Next, we move to the comparison of subjective results. We
show in Figure 13 the saliency maps of several frames in
a video, generated by our method and 8 other methods. As
shown in this figure, our method is capable of finding the
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TABLE IV
SHUFFLED AUC OF SALIENCY PREDICTION BY OUR METHOD AND3

OTHER STATE-OF-THE-ART METHODS.

Our Xu et al. [22] Jianget al. [23] GBVS [13]

Shuffled AUC 0.61 0.58 0.44 0.53
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Fig. 15. Performance comparison of our method with different features and
the method of [22].
salient face according to high-level dynamic features. Conse-
quently, the saliency maps of our method are more accurate
than those of other methods. For example, we can see from
Figure 13 that the face of the girl is much more salient than
the other, when she is speaking (the first column) or turning
her head (the last column). Moreover, the man’s face is more
salient, when he is speaking (the second and third columns) or
the girl’s face is profile. In contrast, [22] finds all three faces
as salient ones, and [23] misses the salient face of the speaking
man because he is far from the video center. In addition,
although the predicted saliency of [19] involves some detected
faces benefiting from the learned features of DNN, it fails to
predict the transition of the salient face. It is mainly because
[19] focuses on image saliency prediction, without considering
temporal information or high-level dynamic features. Figure
14 provides the saliency maps of the frames selected from 5
videos. It is worth pointing out that in the fourth video of
Figure 14, all 9 faces are singing simultaneously. In this case,
people usually look at each singer, and then concentrate on the
singer located in the center. Fortunately, Figure 14 shows that
our method can successfully detect the salient face, benefiting
from the incorporated center-bias feature. Similarly, the last
column of Figure 14 further shows that our method is able
to locate the salient face by taking advantage of the center-
bias feature, when one face is speaking and some of the other
faces are acting. We can further see from the fourth column
of Figure 14, our method can still find the salient face when
more than one face speaking, benefitting from other features
(e.g., the center-bias feature). Again, this figure verifies that
our method is able to precisely locate salient faces by turning
from actions to saliency.

D. Performance analysis of saliency prediction

Section VI-C has validated that the high-level dynamic
features are rather effective in improving the performance of
saliency prediction for multiple-face videos. However, these
features are automatically detected by the technique of Section
IV, which may incur some detection errors as verified in
Section VI-B. Thus, it is interesting to see the influence of
the feature detection errors on saliency prediction. In Table
III, we present the NSS and CC of our method with manually
annotated dynamic features. We find that there is a 0.27

(a) NSS (b) CC

Fig. 16. Saliency prediction performance versus different center-bias param-
eterσ of (9).

NSS improvement or a 0.06 CC improvement, when using
manual annotation instead of automatic annotation on high-
level features. Thus, the performance of our method can
be further improved, via advancing the technique of feature
extraction.

Next, we analyze the performance of each individual feature
and the feature integration in our method. Figure 15 plots
the NSS and CC of our method with each single feature
and with all features integrated together. Additionally, the
results of [22] are also provided, since our method weights
the detected salient faces of [22] with respect to several
proposed features. Obviously, we can see from Figure 15 that
all single features perform better than [22], validating the
effectiveness of each single feature in our method. Besides,
one may observe that the feature of speaking is more effective
than the features of head turning and head pose in predicting
video saliency. More importantly, Figure 15 shows that the
integration of all high-level features is superior to each single
feature in saliency prediction. This verifies the effectiveness
of the feature integration in our method.

Finally, it is necessary to investigate the effectiveness of the
feature of face center-bias in our method. To this end, standard
deviationσ in (9) is traversed, imposing different impact of
face center-bias on saliency prediction. Figure 16 plots the
NSS and CC results at differentσ, averaged over all training
videos of the 5-fold cross validation. It is clear that the best
performance is achieved onceσ = 10−0.2, and thus,σ was set
to 10−0.2 in our above experiments. This figure also shows that
whenσ increases from10−0.2 to 103, the accuracy of saliency
prediction slightly decreases. This implies that the feature of
face center-bias is effective in our method, since its impact
dramatically decreases in (9) forσ = 10−0.2 → 103. On the
other hand, a small value ofσ causes our method to only
predict the face closest to the video center as the most salient
one, according to (8) and (9). Whenσ is as small as10−1,
the NSS of our method is∼ 3.16, reflecting the performance
of the single feature of face center-bias.

For time complexity, our method consumes roughly 2.37
seconds per frame. Our method was implemented in Matlab
R2016b and run on a computer with a Intel Core i7-6700K
CPU@4.00 GHz and RAM 32.0GB. Specifically, the time con-
sumption of our method includes face detection and landmark
localization (2 s per frame), face tracking (287 ms per frame),
feature extraction (52 ms per frame), M-HMM (0.6 ms per
frame) and feature integration (40 ms per frame). To improve
the speed of our method, some fast algorithms of face detection
and landmark localization may be applied, e.g., [48].
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Fig. 17. The framework of our perceptual RC on the basis of our saliency
prediction method.

VII. I MPLEMENTATION IN VIDEO COMPRESSION

The proposed saliency prediction method has potential to be
implemented in some tasks of video processing. For instance,
in human-centered multimedia, our method may be utilized to
locate salient faces in a video, seen as ROI. Then, the quality
of experience (QoE) of video conferencing can be improved
by assigning more coding bits to salient faces, during video
compression. In this section, we present a simple implementa-
tion of our saliency prediction method in the compression of
video conferencing, which is embedded into the latest HEVC
standard.

A. Method for video compression
When encoding a multiple-face video frame by HEVC,

our implementation allocates target bits to each coding tree
unit (CTU) according to the video saliency predicted by our
method. Specifically, our implementation is embedded into
the r-λ rate control (RC) scheme [59] of HEVC. In the
conventional HEVC, the RC scheme [59] estimates the bit
per pixel (bpp) at each CTU given a target bit-rate, for rate-
distortion optimization. Instead, we follow our previous work
[60] to define bit per saliency weight (bpw), for perceptual
rate-distortion optimization (also called the perceptual RC
scheme) in HEVC. For thet-th frame, assuming thatbpwt,i is
the bpw of thei-th pixel, the target bitrt,j for the j-th CTU
can be determined by

rt,j =
∑

i∈It,j

bpwt,i, (13)

whereIt,j is the set of pixels in thej-th CTU. Before encoding
a frame of a multiple-face video,bpwt,i in (13) can be
obtained from the saliency mapSt generated by our saliency
prediction method. LetSt(i) be the predicted saliency value
of the i-th pixel at thet-th frame. Then, we have

bpwt,i =
St(i) · rt
∑

i∈It
St(i)

, (14)

wherert andIt are the target bit-rate and pixel number of the
t-th frame, respectively.

Next, the average bpw in each CTU can be estimated by

bpwt,j =
rt,j

#(It,j)
. (15)

where#(It,j) indicates the overall number of pixels in thej-
th CTU. Then, we makebpwt,j instead of average bpp in the
conventional RC scheme [59], such that the following exists
for perceptual RC in HEVC:

λt,j = αt,j · (bpwt,j)
βt,j ,

QPt,j = c1 · ln(λt,j) + c2, (16)
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Fig. 18. Rate-distortion curves of our and conventional schemes.

TABLE V
DMOS COMPARISON OFHEVC AND OUR APPROACH AT300 KBPS BIT

RATE.
Test Sequence DMOS (conventional) DMOS (our) DMOS difference

Johnny 32.08 28.99 -3.09
KritenAndSara 45.23 36.14 -9.09

FourPeople 45.72 38.05 -7.67

In (16), for each LCU,λt,j is the Lagrange multiplier of
optimization, andQPt,j is the quantization parameter (QP) as
the output of RC. In addition,αt,j andβt,j are the parameters
to estimate the r-λ relationship; c1 and c2 are the fitting
parameters for QP estimation. Refer to [59] for more details on
how to update these parameters alongside compressed frames.
Finally, each frame of video conferencing can be encoded by
HEVC, on the premise of the CTU-wise QPs estimated by our
perceptual RC. Figure 17 summarizes the overall procedure of
our implementation in perceptual RC for HEVC-based video
compression.

B. Results of video compression

In this section, we report the compression results to validate
the performance of the above implementation. Since our
saliency prediction method is capable of locating salient faces
in a multiple-face video, our experiments test on the sequences
of Class E (the class of video conferencing) from the JCT-
VC database [61]. In the JCT-VC database, Class E consists
of three 720p raw sequences:Johnny, KristenAndSaraand
FourPeople. The HEVC reference software HM 16.0 (in the
LowDelay configuration) was used to compress all those three
sequences at different bit-rates, with its conventional r-λ [59]
and our perceptual RC schemes.

Here, the eye-tracking weight PSNR (EWPSNR) [62] is
used to evaluate the distortion of compressed sequences at
various bit-rates. Note that EWPSNR weights PSNR with
human fixation maps, thereby well reflecting the subjective
quality of compressed sequences. Figure 18 plots the rate-
distortion curves of compressing all three test sequences, in
terms of EWPSNR. We can see from this figure that EWPSNR
of our perceptual RC implementation is much better than the
conventional HEVC compression, with approximately 1-2 dB
improvement. Thus, we can conclude that the implementation
of our saliency prediction method is able to improve the per-
ceptual quality of HEVC compression on video conferencing.
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(a) Conventional HEVC (b) Our approach
Fig. 19. Subjective quality comparison ofKristenAndSara. (a) and (b) are the 320thframe compressed at 100 Kbps by the conventional and our scheme,
respectively.

We further compare the subjective quality of our imple-
mentation and conventional compression in Figure 19. One
may observe from this figure that our implementation yields
more satisfactory quality in ROI (the salient face) with some
quality loss in non-ROI, compared to the conventional HEVC
compression. To quantify the subjective quality, we conducted
the difference mean opinion score (DMOS) experiment using
the single stimulus continuous quality scale (SSCQS) proce-
dure of Rec. ITU-R BT.500 [63]. In the DMOS experiment,
12 subjects were asked to rate the quality of sequences
compressed at 300 Kbps. The quality rate scales are divided
as: excellent (100-81), good (80-61), fair (60-41), poor (40-
21) and bad (20-1). Since DMOS measures the difference
of the rated scores between uncompressed and compressed
sequences, smaller DMOS indicates better subjective quality.
Table V tabulates the DMOS results of our and conventional
HEVC compression. As shown, the subjective quality of our
perceptual RC is superior to the conventional one. This again
verifies the potential implementation of our saliency prediction
method in video compression.

VIII. C ONCLUSION
In this paper, we have proposed a novel saliency prediction

method for multiple-face videos, which learns to predict the
salient face with regard to some static and dynamic high-level
features of faces. First, we established an eye-tracking database
consisting of 65 multiple-face videos. Then, we found out
from our database that visual attention in multiple-face videos
is highly correlated with both static and dynamic features of
face at high-level. These features include face size, center-
bias, speaking, head turning and head pose. Accordingly, we
developed the techniques to extract these features. Next, a new
M-HMM algorithm was proposed to integrate the observed
features and saliency transition from previous frames into a
uniform framework. This way, the high-level features, such as
actions of speaking and head turning, can be turned to video
saliency, for predicting who to look at. The experimental re-
sults demonstrated that our method is able to advance state-of-
the-art saliency prediction on multiple-face videos. Finally, we
provided a potential implementation of our saliency prediction
method in video compression.

There exist three directions for the future work. (1) Our
database and analysis at the current stage may be lacking
generalization, as it mainly handles limited high-level features,
e.g., speaking, head turning, and so forth. In the future, the
database can be extended to include more general scenarios,
and some other high-level features, such as gesture and
expression, may be incorporated into the saliency prediction
framework. (2) There is still room to improve saliency predic-
tion accuracy by refining the speech detection algorithm. For
instance, the audio component of videos may be taken into
account in the speaking detector for saliency prediction. (3)

RNN is an efficient deep learning approach, which shares a
similar sequential structure with the proposed M-HMM. Thus,
applying RNN to saliency prediction is another promising
future work. (4) Our method only focuses on the visual cues to
predict saliency of video. Actually, audio may also have impact
on visual attention. Therefore, it is an interesting future work
to consider the audio cues in saliency prediction of multiple-
face videos.
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