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Abstract—Level set methods are widely used for image seg-
mentation because of their convenient shape representation for
numerical computations, and capability to handle topological
changes. However, in spite of the numerous works in the
literature, the use of level set methods in image segmentation still
has several drawbacks. These shortcomings include formation
of irregularities of the signed distance function, sensitivity to
initialization, lack of locality, and expensive computational cost
which increases dramatically as the number of objects to be
simultaneously segmented grows. In this paper, we propose a
novel parametric level set method called Disjunctive Normal
Level Set (DNLS), and apply it to both two-phase (single object)
and multiphase (multiobject) image segmentations. DNLS is a
differentiable model formed by the union of polytopes, which
themselves are created by intersections of half-spaces. We formu-
late the segmentation algorithm in a Bayesian framework and use
a variational approach to minimize the energy with respect to the
parameters of the model. The proposed DNLS can be considered
as an open framework that allows the use of different appearance
models and shape priors. Compared to the conventional level sets
available in the literature, the proposed DNLS has the following
major advantages: it requires significantly less computational
time and memory, it naturally keeps the level set function regular
during the evolution, it is more suitable for multiphase and local
region-based image segmentations, and it is less sensitive to noise
and initialization. The experimental results show the potential of
the proposed method.

Index Terms—Level set, disjunctive normal forms, segmen-
tation, parametric level set, multiphase level set, variational,
Bayesian methods.

I. INTRODUCTION

The level set method, first introduced by Osher and Sethian
[1], is a popular technique for the evolution of interfaces. The
technique has a wide range of applications in image process-
ing, computer graphics, computational geometry, optimization,
and computational fluid dynamics. The basic idea behind the
level set method is to represent contours as the zero level set
of an implicit function defined in a higher dimension, usually
referred to as the level set function, and formulate the evolution
of the contour through the evolution of the level set function
[2].

A. Related Work

The ability of the level set method to handle topological
changes automatically, and its convenient representation of
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regions and their boundaries on the pixel grid without the need
of complex data structures, has made the level set suitable for
image segmentation applications [3], [4].

The Bayesian formulation of Geman and Geman [5] and
the energy functional of Mumford and Shah (MS) [6] had a
significant impact on the understanding of image segmentation
by transforming the handling of the problem from a heuristic
approach to algorithms with sound mathematical concepts [7].
In [7], Brox and Cremers have shown the equivalence of
the MS energy functional and the Bayesian model. Given an
image I : Ω → R with Ω1,...,R regions, the general energy
functional that unifies the MS and the Bayesian method for
image segmentation [4], [8] is given as

E(Ωr, Pr) =

R∑
r=1

∫
Ωr

− logPrdx+ v|S| (1)

where Pr models the probability density functions (pdf) of
region Ωr, |S| represents the total length of the boundary of
the disjoint regions, and v is a constant weighting parameter.
The first term in (1) maximizes the a posterior probability of
pixels being assigned to the correct region, and the second
term minimizes the boundary length. Minimizing equation
(1) is difficult since the first term is acting on the two-
dimensional (2D) image domain while the second term is a
one-dimensional (1D) curve. The use of a level set framework
helps to elegantly handle this problem, since the contour S is
embedded into the image domain and represented by the zero
level set of the level set function Φ. For instance, the level set
formulation of (1) for a two-phase (two regions) segmentation
can be written as

E = −
∫
Ω

H(Φ) logP1 + (1−H(Φ)) logP2 + v|∇H(Φ)|dx
(2)

where the level set function Φ > 0 for region Ω1 and Φ < 0
for region Ω2. The Heaviside function H(Φ) = 0 for Φ < 0
and H(Φ) = 1 for Φ > 0.

Although the use of a level set framework in image seg-
mentation has significant advantages, the conventional level set
formulation has several major drawbacks: expensive compu-
tational cost, formation of irregularities of the signed distance
function, sensitivity to noise and initialization, and lack of
locality. Next, we elaborate these shortcomings, give the
prominent works in the literature that address them, and then
discuss the remaining challenges that we attempt to solve in
this paper.

1) Computational cost: Level set implementation is com-
putationally expensive, since it increases the dimension of
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the problem by one. Modifications such as fast marching [9]
and sparse methods [10] have been proposed to improve the
computational time of level set evolution. However, level set
evolution is still relatively slow [11]. This is mainly because
the gradient descent methods used in level set evolution need a
large number of iterations, since their time step is limited by
the standard Courant-Friedrichs-Lewy (CFL) condition [12],
[13] (CFL is also essential for the numerical stability of the
iterative scheme [12], [13]).

Fig. 1. SDF, Φ.

2) Level set function irregularity:
The level set function, Φ, develops ir-
regularities, such as a very sharp or flat
shape, during evolution [2]. Figure 1
shows an example of a regular signed
distance function (SDF), Φ, which is
usually used as a level set function.
Irregularities in the function cause numerical errors and even-
tually destroy the stability of the level set evolution. In order
to overcome these irregularities, some of the techniques em-
ployed are periodically re-initializing of the level set function,
and adding a regularizing term that forces the level set function
to be close to a signed distance function [14], [15]. However,
the re-initialization method has the undesirable effects of
moving the level set from its original location, expensive
computational cost, and blocking the emerging of new con-
tours; whereas, the regularizing terms also add computational
cost and still cannot guarantee the smoothness of the signed
distance functions [14], [15].

3) Sensitivity to Noise: Segmentation of noise corrupted
images using conventional level set methods is challenging.
The recently proposed level set segmentation methods in
[14], [15] have more capability to handle significant noise
level corruption. However, these latest techniques still require
tuning of parameters. For instance, by using larger weight
for the boundary length term (see equation 1) which forces
the boundary to be shorter, these methods can make the
segmentation less sensitive to noise. However, forcing the
boundary to be shorter has the unintended consequence of
making the contour stiff resulting in reduced flexibility to
handle complex shapes.

4) Multiphase Segmentation Challenges: For segmentation
of an image into more than two regions, several algorithms
have been proposed in the literature using the level set method
[4], [16]–[19]. To segment multiphase images, one level set
function Φr can be used for each region Ωr in equation (1).
However, this simple method can result in overlap of the
different regions and creation of gaps. To overcome these
challenges, extra coupling forces are introduced in [16] and
[18]. Although modeling each object independently with its
own level set function has some advantages, the computational
cost and memory requirements become daunting as the number
of objects to be segmented grows [19]. In [20], Vese and
Chan proposed a multiphase level set framework that requires
log2 R level set functions to segment R regions. Although the
method in [20] is relatively computationally attractive, it is
more convenient to have a unique level set for each object
in applications such as tracking of the individual objects and
use of their shape priors. The computational cost of all the

above multiphase level set methods increases significantly as
the number of objects to be simultaneously segmented grows.
In general, in addition to their expensive computational cost
and memory requirements, most multiphase level set methods
in the literature are also very sensitive to initialization [4],
[20].

5) Lack of locality: The current level set methods available
in the literature lack a locality property. That is, signed
distance functions do not give unique local information. For
instance, from the signed distance function shown in Fig. 1,
we can see that all the points that are at the same distance
from the zero level set are given the same value, even though
the points are far from each other; hence, there is no way
to uniquely identity a given local region. This prohibits the
use of powerful local appearance models in level set methods
[21]. For instance, a pedestrian wearing multicolored clothes
requires modeling of her appearance at a small local scale,
instead of a single global appearance model normally obtained
by using a conventional level set to represent the person.

Lankton and Tannenbaum [22] proposed a mathematical
framework for localizing region-based energies in the level
set segmentation method. Localizing of the region-based en-
ergy is necessary when the image features are not spatially
invariant, for instance due to the bias field in MR images.
Recently, several local region-based segmentation methods
have appeared in the literature for inhomogeneous image
segmentation [7], [23]–[25]. What all the inhomogeneous
image segmentation methods in the literature have in common
is that they compute local region statistics by convolution of
the image with a truncated Gaussian kernel or a box of fixed
size around each pixel. This convolution significantly increases
the computational time.

In order to limit the computational cost and also mini-
mize irregularities of the level set function, parametric level
set methods have been proposed in the literature [3], [12],
[26]–[31]. The minimization of the functional is directly
obtained in terms of the radial basis function or B-spline
coefficients. These parametric level set formulations require
less computational cost due to the low-order representation
and the possibility of using larger step sizes. Although these
parametric level set methods simplify the challenges involved
in keeping the regularities of the level set function, they still
require re-normalization of the level set function during the
evolution process [3]. In addition, when applied to multiphase
and local region-based image segmentations, the parametric
level set currently available in the literature has the same
drawbacks as the conventional nonparametric level set method.

B. Contributions

In this paper, we propose a novel parametric level set
method called Disjunctive Normal Level Set (DNLS), and
apply it to both two-phase and multiphase image segmen-
tations. The DNLS is based on an implicit and paramet-
ric shape model called Disjunctive Normal Shape Models
(DNSM). The DNSM has recently been used for a single
object segmentation: to model the shape and appearance priors
of objects in [32]–[34], and as an interactive segmentation
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framework in [35]. The DNLS approximates the characteristic
function of a shape as a union of convex polytopes which
themselves are represented as intersections of half-spaces.
Figure 2(a) shows how the conjunctions of eight half-spaces
form a convex polytope. If we use more half-spaces, we can
represent smoother convex polytopes as shown in Fig. 2(b).
Our DNLS uses the disjunction of many convex polytopes to
represent complex shapes, as shown in Fig. 2(c).

a b c

Fig. 2. Illustration of the DNLS shape representation. In (a), the intersection
of 8 discriminant half-spaces is used to create a polytope. In (b), a larger
number of half-spaces is used to create a smoother polytope. In (c), the union
of many polytopes are used to represent a horse shape (each polytope is shown
with a different intensity/color level).

DNLS is a differentiable level set shape representation
that allows the use of variational approaches. The major
contributions of this paper include a novel parametric level
set representation and Bayesian framework for two-phase
and multiphase image segmentations using the proposed level
set. Compared to the conventional level set formulations, the
proposed DNLS has the following major advantages:
• Lower computational cost: Two major factors contribute to

the reduction in computational time for the proposed DNLS
method. First, parametric representation of the DNLS level
set results in a lower-dimensional problem. Second, the
time step of our DNLS is not limited by the standard CFL
condition; hence, we can use a larger step size during the
initial stages of the evolution, resulting in fewer number of
iterations.

• Regular level set function: The DNLS is not based on
a signed distance function, and the level set function re-
mains naturally regular during the evolution. Hence, re-
initialization (and all the drawbacks that comes with it) is
completely avoided.

• Insensitivity to Noise: The proposed DNLS is less sensitive
to noise, and does not need tuning of any length term.

• Efficient and robust multiphase level set framework: The
DNLS we propose in this paper has the highly desirable
properties that it is less sensitive to initialization, and its
computational cost and memory requirement remains almost
constant as the number of objects to be segmented grows,
while also having the capability to represent each object
with a unique level set. These properties are mainly because
the DNLS is formed by union of many polytopes, each of
which can be treated as a level set function and assigned to
different objects (or phases).

• Locality information: The DNLS we propose has strong
locality due to its discriminants and polytopes that form
the model, which can be seen from the differently colored
local regions in Fig. 2(c). The locality property of the DNLS
allows the use of powerful local appearance models, and

can also reduce the computational cost of local region-based
multiphase segmentations.

The rest of the paper is organized as follows. In section
II, we present the DNLS shape representation. Section III
introduces how the DNLS can be used in image segmentation.
In section IV, we present an application of the proposed
level set for two-phase image segmentation. In section V,
we describe our multiphase level set framework and show
how it is used for simultaneous segmentation of multiple
regions. In section VI, we provide qualitative and quantitative
analysis of the proposed DNLS segmentation framework and
compare it with the latest level set image segmentation meth-
ods in the literature by using different phantom, natural, and
medical images. Finally, section VII provides the conclusion.
Preliminary results of this work have been presented at the
ICIP 2016 conference [36]. Compared to [36] this journal
version: provides detailed explanations and derivations of the
algorithms, formulates the proposed algorithm in a Bayesian
framework, gives a generic approach that can be used with
any appearance feature, shows the capability of the proposed
DNLS method for both homogenous and inhomogeneous
image segmentations, and provides a significantly expanded
experimental section.

II. DISJUCTIVE NORMAL LEVEL SET

Consider the characteristic function f : RD → B where
B = {0, 1}. Let Ω+ = {x ∈ RD : f(x) = 1}. Let us
approximate Ω+ as the union of N convex polytopes Ω̃+ =
∪Ni=1Pi, where the i’th polytope is defined as the intersection
of Pi = ∩Mj=1Hij of M half-spaces. Hij is defined in terms
of its indicator function

hij(x) =

{
1,

∑D
k=0 wijkxk + bij ≥ 0

0, otherwise
, (3)

where wijk and bij are the weights and the bias term, and D
is the dimension. Since any Boolean function can be written
in disjunctive normal form [37], we can construct

f̃(x) =
N∨
i=1

 M∧
j=1

hij(x)


︸ ︷︷ ︸

Bi(x)

, (4)

such that Ω̃+ = {x ∈ Rn : f̃(x) = 1}. Since Ω̃+ is an
approximation to Ω+, it follows that f̃ is an approximation
to f . Our next step is to provide a differentiable approx-
imation to f̃ , which is important because it allows us to
use variational approaches; in other words, it allows us to
formulate various energy functions and to minimize them with
respect to the parameters of the model. First, the conjunc-
tion of binary variables

∧M
j=1 hij(x) can be replaced by the

product
∏M

j=1 hij(x). Then, using De Morgan’s laws [37] we
replace the disjunction of the binary variables

∨N
i=1 Bi(x) with

¬
∧N

i=1 ¬Bi(x), which in turn can be replaced by the expres-
sion 1−

∏N
i=1(1−Bi(x)). Finally, we approximate hij(x) with

logistic sigmoid functions σij(x) =
1

1+e
∑D

k=0
wijkxk+bij

to get
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the differentiable approximation of the characteristic function
f̂(x)

f̂(x;W) = 1−
N∏
i=1

i∈ℵ(x)

1−
M∏
j=1

1

1 + e
∑D

k=0 wijkxk+bij︸ ︷︷ ︸
gi(x)

 ,

(5)
where x = {x, y, 1} for two-dimensional (2D) shapes and x =
{x, y, z, 1} for three-dimensional (3D) shapes. By appending
1 to the pixel coordinates x, we use wijk to represent both
the weights and the biases in the rest of the paper. W =
{wijk} are the discriminant parameters, and ℵ(x) is the list
of polytopes that are in the neighborhood of the location x.
gi(x) represents the ith polytope.

The only adaptive parameters in equation (5) are the weights
(wijk) and biases (bij) of the first layer of logistic sigmoid
functions σij(x) that define the orientations and positions
of the linear discriminants that form the shape boundary. In
equation (5), f(x) : RD → [0, 1], and the level set f(x) = 0.5
represents the interface between the foreground f(x) > 0.5
(inside the shape) and background f(x) < 0.5 (outside the
shape) regions. Therefore, the DNLS f(x) is a continuous
value between 0 and 1; hence, it is not a signed distance
function and does not suffer from irregularities.

Fig. 3

The DNLS formulation of equation (5) is
similar to the DNSM shape model presented
in [32], [35], except for two modifications.

First, instead of using the application
domain knowledge to decide on the small
number of polytopes needed [32], [35], we
use a large number of polytopes, N , in the
DNLS formulation, and initialize the level set with regularly
distributed polytopes (in the region of interest), as can be seen
in Fig. 3. The use of dense initialization helps the DNLS to
automatically capture complex shapes, detect small parts and
holes, and provides a fast convergence speed. The initialization
polytopes are approximated as discs (and spheres for 3D) of a
fixed radius, using seed points that are regularly distributed
in the region of interest. The initial disc approximation is
obtained by choosing the parameters, wijk, as

wijk =



cos

(
2πj

M

)
, k = 0

sin

(
2πj

M

)
, k = 1

−

(
r +

(
Cx(i)× cos

(
2π(j − 1)

M

))

+

(
Cy(i)× sin

(
2π(j − 1)

M

)))
, k = 2

(6)
where r is the radius of the initial disc. Cx(i) and Cy(i) are the
center point coordinates for polytope i. In conventional level
set methods, the initialization is carried out by generating a
signed distance function using, for instance, a fast marching
method. On the other hand, the initialization of our DNLS is

generated efficiently using the closed-form equation given in
(6).

Second, for computational efficiency, we use only the neigh-
boring polytopes, ℵ(x), for each location, x, in the image. For
instance, in Fig. 3 only the polytopes in the red box are used
when evaluating the characteristic function, f , at location x.
Since the polytopes are regularly distributed in the image, each
pixel has its own fixed set of polytopes, ℵ(x), which can be
precomputed. During the level set evaluation, the individual
polytopes can grow, shrink, deform, disappear, and reappear.

III. IMAGE SEGMENTATION USING DNLS
The goal of DNLS-based image segmentation can be for-

mulated as the estimation of the optimal DNLS parameters,
W = {wijk}, given an image I : Ω → R. In the Bayesian
framework, this can be computed by maximizing the posterior
distribution

P(W/I) ∝ P(I/W)P(W) (7)

The P(W) factor is the a prior probability of a certain
partitioning W. P(W) is a geometry-based factor for which a
simple approach that minimizes the total boundary length (sur-
face in 3D) or a sophisticated shape priors can be used [32].

The P(I/W) factor, in general, is approximated by an
intensity distributions in the regions r ∈ {1, ..., R}, where the
regions are formed by W. Following a similar approach given
in [7], and assuming independence of intensities at different lo-
cations x, we can write P(I/W) =

∏
x∈Ω P(I(x)/W,x)dx,

where dx is an infinitesimal bin size. With the partitioning
of Ω by the DNLS parameters W into disjoint regions
(Ω = ∪rΩr, Ωr ∩ Ωj = ∅, ∀r ̸= j), P(I/W) over the whole
image domain can be separated into products over the regions

P(I/W) =
∏
r

∏
x∈Ωr

P (I(x)/x ∈ Ωr)
dx (8)

The most probable segmentation of a given image is then
obtained by maximizing the posterior probability in equation
(7), which is equivalent to minimizing its negative logarithm.
Therefore, the energy to be minimized is given as

E(W) = −
R∑

r=1

∫
Ωr

logPr(I(x),x)dx− logP(W) (9)

where Pr is the probability density of region r. Equation (9)
is the DNLS-based equivalent of the general segmentation
equation given in (1). Looking at equation (9), we can observe
different image segmentation cases. When R = 2, we have a
standard two-phase segmentation of an image into foreground
and background regions. When R > 2, we have a multiphase
segmentation case. We present these two cases in detail in
sections IV and V, respectively. In addition, based on how
Pr is modeled, we can have homogenous and inhomogeneous
image segmentation cases. If the intensities in each region are
assumed to be homogenous, Pr can be modeled as a Gaussian
distribution with a constant mean, resulting in the popular
piecewise constant case.

Other than intensity, the Pr probability densities can also
model color, texture, or any other appearance features. In this
paper, we focus on intensity-based Pr; however, the algorithms
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we present can equally be used for all other appearance
features. In the rest of the paper, we omit the geometry prior
term in (9) by assuming uniform shape priors. A term that
minimizes the boundary length (surface in 3D) frequently used
in conventional level set based methods [38] or advanced shape
priors [32] can easily be incorporated into the algorithms we
present.

Note that the above DNLS-based energy formulation is for
region-based image segmentation. Additionally, edge-based
image segmentation methods that utilize image gradients in
order to specify object boundaries are available in the liter-
ature. In this paper, we focus on region-based segmentation
and show the two-phase and multiphase applications. However,
the proposed DNLS can easily be formulated for (and applied
to) edge-based segmentation. For instance, in an edge-based
image segmentation using the proposed DNLS, the data term
P(I/W) in equation (7) becomes the likelihood that the
contour is on the image edge by first computing the image
gradient.

IV. TWO-PHASE SEGMENTATION

Segmentation of an image into two regions (foreground and
background) with equation (9) can be accomplished by using a
single level set function f . That is, f > 0.5 in the foreground
and f < 0.5 in the background regions. In this two-phase case
(R = 2), equation (9) can now be rewritten as

E(W) = −
∫
Ω

(f(x) logPf + (1− f(x)) logPb)dx (10)

where Pf and Pb are the pdfs in the foreground and back-
ground regions, respectively. To simplify the notation, we use
Pf instead of Pf (I(x),x). We also use f or f(x) instead
of f(x;W) for a similar reason. Since f(x) is close to 1
inside the object and close to 0 outside, it acts as a Heaviside
function. Hence, equation (10) gives the DNLS version of the
general two-phase equation in (2).

Rearranging (10) (and ignoring the term that is not a
function of the discriminant W), we get

E(W) = −
∫
Ω

(f(x)(logPf − logPb))dx (11)

The energy minimization implies computing the derivatives
of equation (11) with respect to each discriminant parameter,
wijk. During segmentation, the update to the discriminant
weights, wijk, is obtained by minimizing the energy using
gradient descent as

∂E(W)

∂wijk
= − (logPf − logPb)

∂f(W)

∂wijk
(12)

where

∂f(W)

∂wijk
=

∂

∂wijk

(
1−

∏
r∈ℵ

(1− gr(x))

)

=

∏
r∈ℵ
r ̸=i

(1− gr(x))

 ∂gi
∂wijk

=

∏
r∈ℵ
r ̸=i

(1− gr(x))


1−

M∏
l ̸=j

σil

 ∂σij

∂wijk

= −

∏
r∈ℵ
r ̸=i

(1− gr(x))

 gi(x)(1− σij(x))xk

(13)

Therefore, during the level set evolution, the discriminant
parameters are updated on each iteration as wijk ← wijk −
γ ∂E
∂wijk

, where γ is the step-size. Since the evolution of the
proposed parametric level set is not constrained by the standard
CFL condition, we can easily choose large γ at the beginning
of the evolution and gradually decrease it as the segmentation
progresses, for fast convergence. Notice that the level set
function, f , remains regular throughout the evolution; hence,
no re-initialization or additional regularizing term is needed.

1) Homogenous (piecewise constant) case: In [38], Chan
and Vese (CV) proposed one of the most popular two-phase
level set based segmentations by approximating the image
into piecewise constant regions and evolving the level set in
order to minimize the variance of each partition. In this case,
since the image is assumed to be made up of two piecewise
constant regions, a Gaussian probability density with fixed
standard deviation and constant mean can be used for the Pf

and Pb in equation (10). Hence, Pf ∝ exp−η(I(x)−c1)
2

, and
logPf (I(x),x) ∝ −(I(x) − c1)

2. Therefore, the CV equiv-
alent of the proposed DNLS two-phase piecewise constant
region-based variational energy to be minimized is given as

E(W) =

∫
Ω

(I(x)− c1)
2f(x) + (I(x)− c2)

2(1− f(x))dx

(14)
where c1 and c2 are the mean intensities in the foreground and
background regions, respectively. The average intensity in the
foreground, c1, can be obtained by

c1(f) =

∫
Ω
I(x)H(f(x)− 0.5)dx∫
Ω
H(f(x)− 0.5)dx

(15)

That is, the mean intensity in the foreground, c1, is simply the
average of the intensities of all the pixels where f(x) > 0.5.
Similarly, c2 is given as

c2(f) =

∫
Ω
I(x)(1−H(f(x)− 0.5))dx∫
Ω
(1−H(f(x)− 0.5))dx

(16)

2) Inhomogeneous (piecewise smooth) case: During inho-
mogeneous image segmentation, the pdf at the foreground (and
at the background) cannot be approximated by a constant mean
Gaussian. Since the intensity inhomogeneity is usually due to
a slowly varying field, in a small local region the intensity
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distributions can still be approximated by a constant mean
Gaussian [22]–[24]. Therefore, the mean intensities c1 and c2
in equation (14) are now replaced by their localized versions
c1(x) and c2(x). Following a similar approach proposed in
[22] for localizing region-based energies in level set segmen-
tation methods, we can write c1(x) and c2(x) as

c1(f) =

∫
Ω
B(x, r)I(x)H(f(x)− 0.5)dx∫
Ω
B(x, r)H(f(x)− 0.5)dx

(17)

c2(f) =

∫
Ω
B(x, r)I(x)(1−H(f(x)− 0.5))dx∫
Ω
B(x, r)(1−H(f(x)− 0.5))dx

(18)

where B(x, r) is a local region mask of radius r. That is,
B(x, r) = 1 for all pixels that are at a radius of less than or
equal to r from pixel x, and B(x, r) = 0 otherwise.

V. MULTIPHASE SEGMENTATION

In this section, we extend the DNLS framework to si-
multaneous segmentation of multiple regions, R > 2. The
general segmentation equation in (9) can be directly used for
multiphase image segmentation by employing R different level
set functions, each representing one region. However, as noted
in [4], [18], [20] the level set functions need coupling in order
to avoid creation of overlaps (constraint of disjoint regions)
and gaps (there must not be pixels that are not assigned to any
region). To overcome this limitation, three major approaches
are available in the literature.

The first approach is based on using one level set function
for each region, together with a Lagrangian multiplier for a
coupling force term that enforces the constraint of disjoint re-
gions [16], [18]. However, this additional coupling term results
in significant computational cost [4]. The second approach,
proposed by Vese and Chan [20], uses log2 R level sets to
represent R regions. This approach naturally handles the con-
straint of disjoint regions without the need for any additional
coupling term if the number of regions is a power of 2. The
fact that the [20] method does not represent each object with its
unique level set limits the suitability of the approach for certain
applications (e.g., in applications that require tracking of the
individual objects and (or) use of their shape priors). The third
approach, proposed by Brox and Cremers [4], uses the concept
of competing regions. By enforcing a competition between
the level sets assigned to the different objects, the method
avoids the creation of overlaps and gaps, without requiring the
additional coupling force term. We use a method similar to the
Brox-Cremers approach of competing regions, and propose an
efficient DNLS-based multiphase segmentation framework, by
starting from the energy maximization of equation (9).

Since the DNLS level set presented in section II is made up
of the union of many polytopes, the single level set function
given in equation (5) can be used to segment R regions.
Each of the polytopes can individually be regarded as a level
set function, and hence, each can be assigned to a different
region (object). We represent each region, r, by a unique
level set fr, that is formed by the union of some of the
polytopes of the function f . See Fig. 4(b) for an example
of polytopes assigned to three different regions using random

label assignment initialization, to create a unique level set fr
for each region.

We can use the energy given in equation (9), by omitting the
geometry prior term using uniform shape priors assumption,
for the multiphase segmentation

E(W) = −
∫
Ω

R∑
r=1

fr log(Pr)dx (19)

However, since log(Pr) is always negative, during minimiza-
tion of the energy in equation (19) all the fr level sets quickly
become zero, resulting in the disappearance of all the regions,
Ωr. By comparison, the energy for the two-phase case in
equation (11) has two competing regions all the time. That
is, the logPf at the foreground is balanced by the − logPb at
the background. There is no such balancing term in equation
(19) for the multiphase case. Therefore, we can introduce
a similar concept of competing regions in the multiphase
equation. Hence, the energy to be minimized can be given
as

E(W) = −
∫
x∈Ω

R∑
r=1

fr

logPr −maxt̸=r logPt︸ ︷︷ ︸
S(x,r)

dx

(20)
Let us look at the sign of S(x, r). S(x, r) is positive for

the level set with the best pdf Prb, and negative for all the
other level level sets, Pr. Prb is the best pdf at pixel location
x with intensity I(x), if

Prb(I(x),x) > Pr(I(x),x), ∀r ∈ {1, ..., R}, and rb ̸= r.
(21)

Therefore, based on the sign of S(x, r), the level set with the
best pdf, frb, at a given pixel location x advances to include
the pixel; whereas, all the other level sets fr retreat to exclude
the pixel. For example, from Fig. 4(d) the green and yellow
level sets retreat to exclude the pixel x, and the red level set
advances to include the pixel. That is, in (20) at each pixel
location we maximize the most likely pdf (the object label
that can best explain the intensity at that location), while at
the same time we minimize all the other pdfs. Maximizing the
pdf of only one level set at each location ensures that every
pixel has exactly one level set (label) assigned to it. Therefore,
no gaps or overlaps are created when (20) is minimized for the
multiphase segmentation. During segmentation, the energy is
minimized using gradient descent by computing the derivatives
of equations (20) with respect to each discriminant parameter,
wijk.
The sign of S(x, r) in equation (20) determines the direction
of movement of the level set; that is, whether a given level
set, fr advances to include a given pixel or retreats to exclude
the pixel. The magnitude of S(x, r) gives how fast the level
sets move. If we simply use the sign of S(x, r) (hence, force
all the level sets to move at the same rate), then (20) can be
simplified to give

E(W) =

∫
x∈Ω

−frb + R∑
r=1
r ̸=rb

fr

dx (22)
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a b c d e

Fig. 4. a) Multiphase image. b) and c) show the effect of applying the
labeling energy term, EL (polytopes assigned to the same region label are
shown with the same color). d) shows the effect of the deformation term,
using enlarged polytopes for clarity, and the arrows show the direction of
their deformation. e) Final segmentation result.

1) Homogenous (piecewise constant) case: Next, we dis-
cuss the case of piecewise constant (homogenous) image
segmentation. Since the image is assumed to be made up of
R piecewise constant regions, a Gaussian probability density
with fixed standard deviation and constant mean can be used
for Pr. Hence, Pr ∝ exp−η(I(x)−cr)

2

, and logPr(I(x),x) ∝
−(I(x) − cr)

2. Therefore, following equation (21) the best
pdf, Prb, at location x is now the r label that results in the
smallest (I(x)− cr)

2.
In a piecewise constant case (homogenous image), the

DNLS provides an additional benefit, which we discuss next.
Using DNLS, where a given unique level set is created
by assigning different labels to the different polytopes, the
movement of the surfaces between the different objects can
take place in two ways: by the deformations of the polytopes,
and by a change in the labels of the polytopes. The DNLS
multiphase total energy can then be given as ET = EL+ED;
where EL is the energy for changing the labels of the
polytopes, and ED is the energy for deforming the polytopes.
This makes the proposed DNLS-based multiphase algorithm
computationally even more efficient, and also makes it less
sensitive to initialization.

The deformation term ED is the same as the energy given
in (22), except that we can now consider only the polytopes
that are in the immediate neighborhood of the pixel, i ∈ ℵ(x).
That is, large surface movement and initialization are handled
by the EL term, and local deformation is handled by the ED

term. Hence, equation (22) becomes

ED(W) =

∫
x∈Ω

−frb +
N∑
i=1
i/∈rb

i∈ℵ(x)

fi

dx (23)

That it, only the polytopes in the immediate neighborhood of
the pixel will advance or retreat to include or exclude the pixel.
Therefore, the energy in equation (23) becomes minimum
when the polytopes that are part of the best pdf level set label,
rb, include the pixel at x, and all the remaining polytopes in
the neighborhood with other labels exclude that pixel. Since
we look at only a fixed number of neighboring polytopes
at each pixel, the computational time of the ED term is
independent of the number of regions R to be simultaneously
segmented.

For the label assignment energy term EL, we use a simple
K-means clustering; however, any advanced clustering method

can be employed. By first computing the mean intensities
for each polytope pi, we can cluster them into R region
labels. That is, given a set of N polytopes with their average
intensities (p1, p2, ..., pN ), k-means clustering aims to partition
the N polytopes into R region label sets L = {L1, L2, ..., LR}
to minimize the within-cluster sum of squares as

EL = argmin
L

R∑
r=1

∑
p∈Lr

(p− cr)
2 (24)

where cr is the mean intensity of all the polytopes assigned
to region r (the mean intensity of region r). The EL energy
becomes minimum when the polytopes with closer mean
intensity values are labeled similarly. For instance, Fig. 4 (c)
shows the effect of applying EL to (b), which changes the
label assignments of the polytopes. Fig. 4(e) shows the final
result using both the EL and ED terms. The summary of the
proposed multiphase segmentation of homogenous image is
given in Algorithm 1.

Algorithm 1 Algorithm for multiphase image segmentation

Input: The image to be segmented, parameters N , M , gradi-
ent step size γ, and total number of iteration T

Output: The final segmented image and its discriminants Wf

Initialization :
1: Get the initial discriminant parameters W using (6)
2: Assign region label for every polytope. This label initial-

ization, L, can be assigned randomly.
LOOP Process

3: for iteration t = 0 to t = T do
4: Step 1: minimize EL given in (24) to change the labels

of the polytopes (new L)
5: Step 2: minimize ED given in (23) using gradient de-

scent to segment the images by deforming the polytopes
wijk ← wijk − γ ∂ED

∂wijk

6: end for
7: return Final weights Wf and polytopes label set L
8: Get the final multiphase segmented image: from the Wf

using (5), and from the final labels of the polytopes L.

Computational cost: The computational cost of K-means
clustering is proportional to both the number of data points
N (polytopes) and the number of clusters R (regions). The
number of polytopes we use, N , is fixed and is independent
of the number of regions R to be simultaneously segmented.
As shown in the experiment section VI-A, N = 100 polytopes
are usually enough for a smooth representation of shapes.
Therefore, the EL term due to clustering of 100 polytopes
(data points) is computationally insignificant compared to the
gradient decent based ED term. Since the computational time
of the ED term is independent of the number of regions R
to be simultaneously segmented, the increase in the compu-
tational cost due to the increase in the number of regions R
comes only from the clustering part. Since the clustering of
around N = 100 polytopes takes insignificant time (compared
to the ED gradient descent term), the overall computational
time of our multiphase algorithm remains almost constant as
the number of regions R to be segmented grows.
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2) Inhomogeneous (piecewise smooth) case: For multi-
phase segmentation of inhomogeneous images, a similar local
region-based segmentation approach discussed in section IV-2
can be used together with equation (20). That is, the mean
intensity cr for each region, r, is now replaced by its localized
versions cr(x). However, computation of cr(x) for each local
region using convolution is computationally expensive [22].
Luckily, our DNLS formulation allows an efficient way of
computing local mean statistics because of its use of polytopes.
The mean intensity for each polytope pi is obtained auto-
matically during the f function evaluation, with no additional
computational expense. Therefore, the mean local intensity for
region r, cr(x), can now be obtained by simply averaging the
mean intensities of the polytopes in the neighborhood. It is
important to notice that the quality of any local region-based
image segmentation depends heavily on the size of the local
region chosen [22], that is, on the radius, rad, of the local ball
size, B(x, rad). Therefore, the ability to efficiently compute
local region statistics at multiple local region sizes is crucial.
Since the proposed DNLS framework allows obtaining these
local region statistics using the polytopes with little additional
computational expense, we can easily obtain and use these
statistics at multiple local region sizes.

VI. EXPERIMENTS

In this section, we present the results of seven experiments.
In section VI-A, we present the effect of the DNLS shape
representation parameters (N and M ) on the segmentation
quality and computational time. In Section VI-B, we show
the segmentation results of our DNLS on two-phase im-
ages. In this section, we also compare our method with
the conventional region-based level set method of Chan and
Vese (CV) [38]. In Section VI-C, we evaluate the effect of
noise (at different levels) on the segmentation performance
by comparing our DNLS method with the CV method. In
Section VI-D, we compare our DNLS with three different
state-of-the-art level set methods on large data set corrupted
with Gaussian, Poisson, Speckle, and Salt & pepper noise
types. We give a brief comparison of our DNLS with the
Bernard et al. [3] parametric level set in section VI-E. In
Section VI-F, we compare the proposed DNLS multiphase
version with the CV multiphase [20] for a piecewise constant
image segmentation. In this section, we focus on the effect
of initialization, and the growth in computational time as the
number of objects to be simultaneously segmented increases.
Finally, in section VI-G, we provide some segmentation results
for inhomogeneous images. Our algorithm is implemented in
C++ using the Insight Segmentation and Registration Toolkit
(ITK) [39] on 2.5-GHz Intel Core i7, 8 GB RAM machine.
For comparisons of the homogenous image segmentation,
we use the optimized implementations of the two-phase and
multiphase CV level sets available in the latest ITK. We
use a Matlab implementation for comparison with the other
level set methods [3], [14], [15] in Sections VI-D and VI-E,
since these level set methods have publicly available Matlab
implementations (mostly by the corresponding authors).

A. The Effect of the DNLS Shape Representation Parameters

The DNLS shape representation equation (5) has two pa-
rameters that control the smoothness of the shape model: the
number of polytopes, N , and the number of discriminants per
polytopes, M . Here we investigative the effects of N and
M on the segmentation accuracy and the computational time.
Figure 5 shows the segmentation of an artificial image with
varying numbers of polytopes (N ) and discriminants (M ). As
can be seen from the figure, a smooth and accurate DNLS
shape representation can be achieved by increasing the number
of polytopes (N ) and (or) by increasing the discriminants
per polytope (M ). Increasing these parameters results in an
increase in computational cost. However, there is an upper
limit on the M and N parameters after which any further
increase in their values does not result in any meaningful gain
in accuracy, as can also be seen from Table I. For instance,
in Fig. 5 there is no noticeable accuracy difference by using
N = 64 with M = 8, or by using N = 100 with M = 16.

Initial M = 4 M = 8 M = 16

Fig. 5. Demonstration of the effect of the number of polytopes and the
number of discriminants of the DNLS on the segmentation accuracy. Top to
bottom rows correspond to N = 25, 64, and 100, respectively. The left column
shows the initialization. Columns 2 to 4 (left to right) correspond to M = 4,
8, and 16, respectively.

Table I shows both the CPU time (T in seconds) required
and the DICE coefficient (DC in %) [40] of the segmentation
results for images shown in Fig. 5. We can see from the table
that the rate at which the CPU time increases as the N and M
parameter values increase is relatively small. This is mainly
because although a single iteration now takes longer time,
the segmentation converges faster and hence fewer iterations
are required as the N and M parameter values increase. In
addition, since we use only a fixed number of neighboring
polytopes at each pixel point (as discussed in section II), the
increase in N has less effect on the CPU time. In the rest of
the experiments, we use N = 100 and M = 16 values, unless
explicitly specified.

B. Two-Phase Segmentation Results

Figure 6 shows segmentation results of four two-phase im-
ages using DNLS (second column) and CV (third column)
[38] methods. For both DNLS and CV, we used a regularly



1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2017.2682980, IEEE
Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

TABLE I. Quantitative evaluation of the effect of N and M parameters
(Par.) for images in Fig. 5. DICE (DC) in % and Time (T) in seconds.

Par. M=4 M=8 M=16
DC T DC T DC T

N=25 89.68 0.073 95.31 0.097 96.00 0.113
N=64 95.57 0.093 98.02 0.110 98.59 0.130
N=100 97.23 0.107 98.57 0.127 98.91 0.150

distributed initialization similar to the one shown in Fig. 5,
with N = 100 and M = 16. For the CV method, the use
of regularly distributed level sets is suggested in [20], [41]
as a better initialization for good segmentation quality and
reduced computational time. As can be seen from Fig. 6,
the proposed DNLS results in better (clean) segmentation
compared to the CV method. We tune the smoothness term
(length constraint) of the CV method to obtain the highest
possible DICE score for the results in Fig. 6. By using a larger
smoothness coefficient (larger penalty for the length of the
contour), some of the tiny noisy fragments can be removed;
however, a large increase in the smoothness coefficient makes
the contour stiff and decreases the overall DICE score. On
the other hand, the proposed DNLS results are free from
any tuning of the smoothness term or parameter (since large
enough N and M values can be chosen and fixed for all the
images, as discussed in Section VI-A).

DNLS CV Ground Truth

Fig. 6. On the first column (left) are the images to be segmented. The second
column gives the segmentation results using the proposed DNLS. The third
column gives the results obtained using the CV method, and the last column
is the ground truth segmentation result.

In addition, DNLS achieves these results at a much smaller
computational time. Table II shows both the CPU time re-
quired and the DICE score of the segmentation results for
images shown in Fig. 6. The computational time for the
CV level set is shown for both the dense and the sparse
implementations available in ITK [39]. It can be seen from
the table that DNLS achieves equivalent or better DICE scores
with a computational speed of around 10 times compared to
even the fastest sparse implementation of the CV method.

Notice that two-phase images can have multiple objects as
long as all the objects have the same phase (intensity level),
as can be seen in columns (a) and (b) of Fig. 6.

TABLE II. Quantitative comparison of DNLS and CV methods for images
in Fig. 6. IM1 to IM4 denote images on first to last row, respectively. DICE
(DC) in % and Time (T) in seconds.

CV Dense CV Sparse DNLS
DC T DC T DC T

IM1 98.2 10.2 98.1 1.91 98.4 0.19
IM2 93.3 2.82 93.2 0.53 95.1 0.05
IM3 87.4 15.3 87.2 2.90 90.2 0.31
IM4 87.1 29.9 87.0 5.63 96.4 0.40

C. The Effect of Noise Level on the Segmentation

In Fig. 7, we compare the segmentation performance of the
proposed DNLS with CV method in the presence of various
amounts of additive Gaussian noise. The first row in Fig. 7
shows the synthetic image with noise levels of 80, 100 , 120
, 140, and 160 standard deviations (SD) from left to right
(columns). The original image has an intensity range between
0 and 250. For the CV level set, we choose the smoothness
coefficient that gives the best DICE score. A larger smoothness
coefficient can be used to get results with less noisy fragments;
however, as the smoothness coefficient increases, the contours
become too stiff and reduce the DICE score. It is clear from
the figure that the proposed DNLS method is less sensitive to
noise and it has a smoothing property. This is mainly because
the polytopes in the DNLS cannot capture extremely tiny
fragments such as noise blobs of a radius less than 2 pixels.
Note that no internal energy term (that controls the length of
the contour) is used in our DNLS to generate the results, as
mentioned in section III.

Initial SD = 80 SD = 100 SD = 120 SD = 140 SD = 160

Fig. 7. On the first row are images with varying noise levels. The second
row shows the segmentation results using the proposed DNLS method. The
third and fourth rows give the results using the conventional CV method, with
the different initializations shown on the first columns of both rows.

In Fig. 8, we give a quantitative comparison of the DNLS
(solid line) and the CV method (dashed line) at varying noise
levels for the image shown in Fig. 7. The figure shows the
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robustness of the proposed DNLS method when segmenting
noisy images.

Fig. 8. Demonstration of the effect of noise level on the segmentation quality.
Comparison of the DNLS with the conventional level set method. Regularly
distributed initialization is used for both methods.

D. Comparison of Different State-of-the-art Level Set Methods
on Large Dataset with Four Noise Types

In this section, we compare the performance of the DNLS
with three other popular level set based segmentation tech-
niques using walking person data set (obtained from [41].
The three level sets methods we use for comparison are CV
by Chen and Vese [38], DRLSE by Li et al. [14], and RD
method by Zhang et al. [15]. We add four different noise
types: Gaussian, Poisson, Speckle, and Salt & pepper to the
images in order to compare the performance of the different
level sets. Figure 9 shows an example of the four noise types
and their corresponding segmentation using the different level
set methods. From the figure it is clear that the RD method
[15] and our DNLS have less sensitivity to noise.

Table III shows the average CPU time per image and the
average DICE score of the segmentation results of the four
different level set methods using fifty walking person images
[41] corrupted with four different noise types. The table shows
the proposed DNLS has the least sensitivity to noise while
also having the smallest computational time compared to all
the other three level set methods. We used publicly available
Matlab implementations of CREASEG [42] for the Chen and
Vese [38] and DRLSE [14] methods, and code shared online
by the authors of RD method [15].

Note that, the DRLSE [14] and RD [15] methods have
relatively fast evolution and are robust to noise compared to
the original (direct application) of level set method. However,
DRLSE and RD methods, like all the other non-parametric
level set methods, represent contours by embedding them in
a higher dimensional space (for instance a signed distance
function) which results in higher computation time. On the
other hand, our DNLS uses a parametric shape representation
which only needs a limited number of parameters to repre-
sent any shape (and hence decreases the dimension of the
problem) resulting in significantly reduced computation time.
In addition, in order to handle noise corruption, DRLSE and
RD methods still require tuning of parameters. For instance,
choosing larger weight for the boundary length term can make
the contours stiff resulting in lack of flexibility to handle
complex shapes, while choosing smaller weight results in
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Fig. 9. Comparison of segmentation results using four different level set
methods on image corrupted by four noise types.

fitting of the contours to noise fragments. In comparison, our
DNLS handles significant noise corruption without the need
for using the length term or any parameter tuning.

TABLE III. Quantitative comparison of four level set methods with different
noise types. Average DICE (DC) in % and Average Time (T) in seconds.

Poisson Gaussian Speckle Salt&Pepper
DC T DC T DC T DC T

CV 98.3 6.43 88.3 6.27 87.6 6.51 89.4 6.07
DRLSE 98.4 4.21 90.1 4.53 88.2 4.60 90.6 4.37
RD 98.7 3.03 92.2 3.34 91.4 3.42 92.8 3.14
DNLS 98.5 0.92 94.6 0.95 93.8 0.97 94.7 0.94

E. Comparison With Other Parametric Level Set Method

In Fig. 10, we show some segmentation comparisons of
the proposed DNLS with B-spline based parametric level set
method of Bernard et al. [3]. We use CREASEG [42], which
is a publicly available Matlab implementation of [3]. The B-
spline coefficient parameter h determines the smoothness of
the Bernard et al. [3] segmentation. We can see from the
figure that h = 1 results in noisy segmentation. On the other
hand, h = 2 can be too strong and limits the smoothness of
the segmentation, which can be seen from Fig. 10 horse and
walking person segmentations. For instance, with h = 2 we
can see the inability of the contour to get between the two
back legs of the horse and back hand of the person. Note that
h can only be an integer in [3], hence we cannot choose an
intermediate value to get better results. On the other hand,
the proposed DNLS parametric level set method has a good
balance of smoothness and gives better segmentation, as can
be seen from Fig. 10 and Table IV. From Table IV, we can
also see that DNLS achieves better segmentation results in
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Bernard h = 1 Bernard h = 2 DNLS Ground Truth

Fig. 10. Segmentation using the Bernard et. al. [3] parametric level set with
h = 1 on the first column (left) and with h = 2 on the second column. Third
column gives segmentation using DNLS, and ground truth segmentation on
the last column (right) .

less computational time compared to the Bernard et al. [3].
In addition, DNLS does not require tuning of the smoothness
parameters for every image (since a large enough number of
polytopes N and discriminants M can be chosen and fixed,
as discussed in Section VI-A). It should be noted that both
the Bernard et al. [3] method (with the proper choice of the
smoothness parameter) and our DNLS are less sensitive to
noise compared to the conventional non-parametric level set
methods. This can be seen by comparing the segmentation
results of the noisy image in Fig. 10 third and fourth rows with
that of Fig. 7 and Fig. 9. However, unlike the proposed DNLS
method, the parametric level set of Bernard et al. [3] requires
re-normalization of the level set function during the evolution
process. In addition, [3] has the same drawbacks as the
conventional (nonparametric) level set methods when applied
to multiphase and local region-based image segmentations.

TABLE IV. Quantitative comparison of DNLS and Bernard et al. [3]
methods for images in Fig. 10. IM1 to IM4 denote images from top to bottom
rows in the figure, respectively. DICE (DC) in % and Time (T) in seconds.

Bernard h = 1 Bernard h = 2 DNLS
DC T DC T DC T

IM1 96.2 3.21 96.5 3.15 98.4 0.76
IM2 90.3 6.82 92.2 6.55 96.3 1.40
IM3 83.4 4.31 94.8 3.89 95.7 0.78
IM4 87.1 3.94 90.3 3.64 94.4 0.95

F. Multiphase Segmentation Results
In this section, we present the results of two experiments.

In the first experiment, we present the effect of initialization
using three images shown in Fig. 11 column (a), and compare
the performances of the proposed DNLS-multiphase with the
standard CV-multiphase level set [20]. Figure 11 shows the
segmentation results using a multi-Otsu threshold method [43]
to first obtain good initialization. As can be seen from the
figure, both the proposed DNLS and CV-multiphase methods
give good comparable segmentations (except for the horse im-
age where the CV-multiphase resulted in noisy segmentation).
However, good initialization using methods such as multi-Otsu
is computationally expensive and less robust as the number of
phase increases. Therefore, it is crucial to have a multiphase
segmentation method that is less sensitive to initialization.

a) Image b) Initial c) DNLS d) CV

Fig. 11. Column (a) shows the images to be segmented, column (b) gives
the multi-Otsu initialization used, column (c) shows the segmentation using
DNLS-multiphase, and column (d) gives the result using the CV-multiphase
method.

TABLE V. Quantitative comparison of DNLS and CV methods for images in
Fig. 11 and Fig. 12. IM1 to IM3 denote images on the first to third row in the
figures, respectively. We consider both the Random and Otsu initializations.
DICE (DC) in % and Time (T) in seconds.

DNLS-Otsu CV-Otsu DNLS-Random CV-Random
DC T DC T DC T DC T

IM1 96.3 1.8 94.2 21.9 96.1 2.3 83.1 25.3
IM2 94.5 2.5 89.2 26.7 94.3 2.9 88.7 28.2
IM3 90.7 2.6 91.5 31.5 86.3 2.7 78.4 35.7

Figure 12 gives the segmentation comparison of DNLS-
multiphase and the CV-multiphase when random internaliza-
tion is used. It can be seen from Fig. 12 that when the
level sets are randomly initialized, the CV-multiphase level
set frequently converges to bad segmentation; whereas, our
DNLS-multiphase still converges to a good segmentation.
Because of the label assignment energy term discussed in
section V-1, the proposed DNLS-multiphase is less sensitive
to initialization, when compared to the CV-multiphase level
set.

Note that for the brain MRI image segmentation, the non-
brain structures (the outer circular ring) surrounding the brain
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a) Image b) DNLS c) CV d) GT

Fig. 12. Comparison of the DNLS-multiphase segmentation results on
column (b), with the CV-multiphase result on column (c), using a random
initialization. Column (d) shows the ground truth segmentation.

tissues are classified wrongly by both the CV-multiphase and
our DNLS-multiphase methods in both Fig. 11 and Fig. 12.
However, these nonbrain structures are usually removed by
using simple techniques such as [44] before starting segmen-
tation of brain tissues. Therefore, by using a preprocessing step
to first remove the nonbrain structures, the proposed DNLS-
multiphase can easily give a good segmentation of the brain
tissues, even if random initialization is used.

Table V shows both the CPU time required and the DICE
score of the segmentation results for images shown in Fig. 11
and Fig. 12. It can be seen from the table that DNLS-
Multiphase achieves better DICE scores (except for the brain
image with multi-Otsu initialization) with a much lower com-
putational time compared to CV-multiphase [20]. For all the
multiphase experiments we used N = 225 polytopes. Note
that using even larger number of polytopes can help improve
the quality of the brain image (which has very fine details)
segmentation, at the expense a slight increase in computational
cost.

Fig. 13. Multiphase exam-
ple (left) and segmented re-
sult (right)

In the second experiment, we
show the effect of the number of
objects (phases) to be segmented
on the computation time. For this
purpose, we generate phantom im-
ages with various numbers of object
phases; one example with 12 objects
is shown in Fig. 13. Figure 14 shows
the computation time as a function of the number of ob-
jects (with different phases) in the images: using the CV-
Multiphase with sparse implementation (dashed line), and us-
ing the DNLS-multiphase (solid line). The time in the graph is
obtained with similar segmentation quality of around 98.5% in
DICE. The graph shows that the proposed DNLS-Multiphase
requires an almost constant computation time independent of
the number of objects to be segmented. The memory required

also remains constant (not shown in the graph) in the proposed
DNLS-multiphase, because the number of polytopes is fixed,
and only their labeling changes as the number of objects in
the image increases.

Fig. 14. Computation time as a function of the number of objects to be
segmented.

G. Inhomogeneous Image Segmentation Results

Finally, we show results of local region-based segmentation
for inhomogeneous images. Figure 15 gives the segmentation
of inhomogeneous images using the proposed DNLS local
region-based method. Figure 15 column (a) shows the original
homogenous images; column (b) shows the bias field added to
the images on column (a) to obtain the inhomogeneous images
shown on column (c). Column (d) shows the final segmented
images using the proposed DNLS local region-based method
for the inhomogeneous images of column (c). The figure
gives the segmentation results for both two-phase (on the first
two rows) and multiphase (the bottom row) piecewise smooth
images.

It should be noted that, in local-region based segmentation,
the size of the local region considered and the initialization
have significant impact on the quality of the segmentation.
The radius of the local region chosen determines how local the
resulting segmentation will be, and hence it should be chosen
based on the scale of the object of interest and properties of
the surrounding area [22]. In Figure 15, we tune the radius
parameter to get good results (radius ranging from 5 to 15
pixels are tested,and the results in the figure are generated
with pixel radius of 10). In addition, the inhomogeneous
image segmentation using the proposed method is sensitive
to initialization (similar to the other level set based methods
in the literature). On the other hand, the homogenous version
of our DNLS is less sensitive to initialization due to the
fact that we use clustering of the polytopes as part of the
energy. But for inhomogeneous images, we can not cluster
the polytopes by using a simple K-means, hence our level
set acts similarly to the conventional level set method in
terms of sensitivity to initialization. We refer the reader to
Lankton and Tannenbaum [22] for an extensive discussion
of the challenges of local-region size and initialization for
inhomogeneous image segmentations.
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a b c d

Fig. 15. Inhomogeneous image segmentation using DNLS.

VII. CONCLUSION

In this paper, we presented a novel parametric level set
method that naturally keeps the level set function regular all
the time, and that does not need any form of re-initialization
or the use of any regularizing term. Due to its parametric
nature, the DNLS method also reduces the dimensionality of
the problem, and its time step is not limited by the stan-
dard CFL condition, resulting in much faster computational
speed. The proposed DNLS is also less sensitive to noise. In
addition, we presented the DNLS-multiphase framework for
simultaneous segmentation of multiple objects. The proposed
DNLS-multiphase approach has the highly desired properties
that it is less sensitive to initialization, and its computational
cost and memory requirement remain almost constant as
the number of objects to be segmented grows, while also
representing each object with a unique level set. We formulated
the segmentation algorithm in a Bayesian framework and used
a variational approach to minimize the energy with respect to
the discriminant parameters of the model. The proposed DNLS
can be considered as an open framework that can be used with
different active contour methods, and it also allows the use
of different appearance models and shape priors. Although
we have shown the application of our algorithm using only
intensity, other descriptors such as texture, color, and motion
vectors also can be used with the proposed segmentation
method. The DNLS also has unique location information (due
to its use of polytopes and discriminants) that can be used for
powerful local appearance modeling and for local region-based
segmentation of inhomogeneous images.
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