
information.

1

ZapDroid: Managing Infrequently Used
Applications on Smartphones

Indrajeet Singh∗, Srikanth V. Krishnamurthy∗, Harsha V. Madhyastha†, Iulian Neamtiu‡
∗ UC Riverside {singhi, krish}@cs.ucr.edu

† University of Michigan {harshavm}@umich.edu
‡ New Jersey Institute of Technology {ineamtiu}@njit.edu

Abstract—User surveys have shown that a typical user has over
a hundred apps on her smartphone [1], but stops using many
of them. We conduct a user study to identify such unused apps,
which we call zombies, and show via experiments that zombie
apps consume significant resources on a user’s smartphone
and access her private information. We then design and build
ZapDroid, which enables users to detect and silo zombie apps
in an effective way to prevent their undesired activities. If and
when the user wishes to resume using such an app, ZapDroid
restores the app quickly and effectively. Our evaluations show
that: (i) ZapDroid saves twice the energy from unwanted zombie
app behaviors as compared to apps from the Play Store that kill
background unwanted processes, and (ii) it effectively prevents
zombie apps from using undesired permissions. In addition,
ZapDroid is energy-efficient, consuming < 4% of the battery per
day.

I. INTRODUCTION

There has been an explosion in the number of third-party
smartphone apps that are available and are being downloaded.
The Google Play Store has more than 1.3 million apps [2]
and a report in [3] states that the number of downloads
of apps from the Play Store between May’13 and July’13
alone was about 2 billion. However, after users interact with
many such apps for an initial period following the download,
they almost never do so again. Statistics indicate that for a
typical app, less than half of the people who downloaded
it use it more than once [4]; further, 15% of the users
never delete a single app that they download [5]. In more
general cases, users may only interact with some downloaded
apps infrequently (i.e., not use them for prolonged periods).
These apps, which are seemingly considered dead by the user,
continue to operate in the background long after the user
has stopped interacting with them. Such background activities
have significant negative impacts on the user, e.g., leaking
private information or significantly taxing resources such as
the battery or network. Unfortunately, the user is completely
unaware of these activities. We call such apps, which are dead
from the perspective of the user, but indulge in undesired
activities, as “zombie apps”.

Our goal: In this paper, we seek to facilitate effective
identification and subsequent quarantine of such zombie apps
towards stopping their undesired activities. Since a user can
change her mind about whether or not she wants to use an
app, a zombie app must be restorable as quickly as possible
if the user so chooses.

The classification of an app as a zombie app is inherently
subjective. After an app goes unused by a user for a prolonged
period, the determination of whether the app should be con-
strained depends on whether the app’s resource usage during
the period of unused is considered significant or whether the

app’s access of private data is deemed serious. Therefore,
instead of automatically categorizing apps as zombie apps, we
seek to empower the user by exporting the information that she
would need to make this decision. Moreover, the manner in
which a zombie app should be quarantined depends on whether
the user is likely to want to use the app again in the future
(e.g., a gaming app that the user tried once and decided is not
interesting vs. a VoIP app that the user uses infrequently). The
apps that a user is likely to use again fairly soon should not be
fully uninstalled; real time restoration (when needed) may be
difficult if the user does not have good network connectivity.
We seek to enable users to deal with these different scenarios
appropriately.

Challenges: Achieving our goal has a number of associated
challenges. First, zombie apps are active (execute) in the back-
ground and hence, we need an efficient mechanism to track
the foreground and background states of apps; continuous
monitoring of apps, as proposed in prior approaches (e.g.,
[6]), can be too resource-intensive to be practical. Second, we
need to monitor how apps use sensitive resources protected
by permissions in a lightweight manner. Application-level
implementations are infeasible since Android does not allow
one application to track the permission access patterns of other
apps. Third, once a zombie app is quarantined, we must ensure
that it is not re-activated unless the user chooses to do so.
With current approaches, the background activity of apps are
constrained only temporarily [7], until they are woken up due
to time-outs or external stimuli [8], [9]. Fourth, ZapDroid
should ensure that a previously-quarantined zombie app is
restored quickly if the user seeks to access it; the restored
app must be in the same state that it was in, prior to the
quarantine. Reinstalls from the Google Play Store can be hard
if the network connectivity is poor and hence, should be not
be invoked in cases wherein the user may restore the app with
high likelihood; further, clean uninstalls can result in loss of
application state.

Contributions: Towards achieving our goal and addressing
the above challenges, we design and implement ZapDroid. Za-
pDroid identifies candidate zombie apps, exports appropriate
information to the user to allow her to choose if she wants
to quarantine any of them, and based on the input provided,
silos a zombie app appropriately. In addition, ZapDroid also
seeks to ensure that an app will execute again (in the state
prior to quarantine) if the user chooses to invoke it, that the
app does not crash, or that unwanted error messages do not
pop up when an app is quarantined. Specifically, we make the
following contributions:

IEEE Transaction on Android Vol.15 2017


