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Abstract— Inverse problem of electrical impedance 

tomography is highly ill-posed therefore often prior information is 

used to have a satisfactory and stable solution. Recently, 

introduced non-linear differential imaging method estimates the 

initial and difference in conductivities simultaneously and is 

efficient in handling modeling errors. The non-linear 

parameterization of conductivity enables to use different 

regularization schemes for background and region of interest 

(ROI). Identifying the ROI without any prior information can be 

beneficial in improving the reconstruction performance. 

Therefore, in this paper, automatic detection of ROI is introduced 

using Otsu thresholding method and is then used with non-linear 

differential imaging. The proposed non-linear differential 

imaging with Otsu method (NDIWO) considers different 

regularization methods, i.e. total variational approach with ROI 

and smoothness prior with background regions during 

reconstruction. Numerical and experimental studies are 

performed to test NDIWO method for two- phase flow and thorax 

imaging and the performance is compared with absolute and 

linear difference imaging. The results indicate that the proposed 

NDIWO method has improved reconstruction performance 

compared to conventional absolute and linear difference imaging. 

 
Index Terms— Difference imaging, electrical impedance 

tomography, inverse problem, region of interest, Otsu method  

 

I. INTRODUCTION 

stimation or identifying region boundaries is often done 

in many medical and process tomography applications 

for monitoring the process. Electrical impedance tomography 

(EIT) is a non invasive imaging technique that can provide 

cross sectional image about the internal distribution of an 

object. Moreover, EIT has high temporal resolution 

characteristics therefore it is suitable to monitor rapid changes 

in multiphase flow and thorax imaging. In EIT, electrical 

currents are applied through the electrodes attached on the 

circumference of the process pipe and the resulting voltages 
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due to the presence of the medium inside are measured. And 

using a proper reconstruction algorithm, the internal 

distribution is reconstructed. EIT has been applied to several 

fields such as geophysics, medical, industrial process 

monitoring, non destructive testing etc [1].  

Process tomography applications involving multiphase flow 

are one of the major studies that are studied currently. For 

example, in nuclear industry, we often come across 

steam-water two-phase in water reactors, in crude oil extracting 

and transportation, air-water-oil three phase flow is observed in 

wells, in chemical engineering process plants with reactors and 

bubble columns etc [2]. In the all these applications, monitoring 

of flow process is essential for efficacy and safety of process 

plant. Multiphase on the other hand has complex behavior and 

poses great challenge in designing measurement techniques [3]. 

There have been few measurement methods developed to 

investigate multiphase flows but none of them are practically 

applicable or acceptable universally. Flow patterns are 

generally obtained by visual observations through high-speed 

camera for transparent vessels. For situations where the vessel 

or pipe is not transparent void fraction sensors using electrical 

impedance or radiation based techniques are used [4]. Several 

imaging methods are employed to process tomography that 

include X-ray, gamma densitometry, ultrasound tomography, 

positron emission tomography, magnetic induction tomography 

and electrical tomography. A general methodology of all the 

above methods is to measure the signal from the sensors that are 

placed over the surface of the vessel or pipe and then compute 

the internal distribution or velocity profile with the use of a 

suitable reconstruction algorithm [5]. The applicability of 

process tomography imaging for the investigation of 

multiphase flow has been reported in papers [6-12]. 

In medical imaging, it is necessary to obtain internal 

distribution of the body that has different resistivity value of 

each tissue for diagnosis. EIT can be applied to locate malicious 

anomalies such as breast cancer cells [13] and also various 

physiological phenomenon can be studied, for example, cardiac, 

pulmonary and respiratory functions[14-16]. EIT for human 

thorax monitoring is an important clinical application and it is 

mainly used to continuously monitor acute respiratory distress 

syndrome (ARDS), lung perfusion, lung ventilation, lung fluid 

content, cardiac output right at the bedside.  

 The EIT inverse problem of reconstructing internal 

distribution is highly ill-posed due to the nonlinear relation 

between computed voltages and resistivity distribution [17-19]. 

Therefore, even a small change in voltages can result in 
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relatively large variation in estimated resistivities. To 

circumvent the ill-posedness often regularization methods are 

used to stabilize the solution. Moreover, prior information is 

used to improve the spatial resolution further [1]. The problem 

of reconstructing the resistivity distribution is done by 

minimizing the regularized cost function. The EIT imaging is 

accomplished by applying two approaches namely absolute and 

difference imaging. Absolute imaging is a conventional method 

that involves solving the nonlinear inverse problem for 

conductivity distribution. But, in many applications, the change 

in internal distribution between two measurements is of main 

interest which is termed as difference imaging. That is, the 

conductivity change is estimated based on the difference in 

voltage data of before and after the change. While the absolute 

imaging gives us the quantitative information the difference 

imaging gives qualitative information.  

 In difference imaging, the relationship between internal 

resistivity distribution and measured voltage is considered to be 

linear. The linearization is done with respect to prior defined 

conductivity and the inverse solution is obtained by solving the 

regularized linear least squares problem. Difference imaging 

methods often considers linearizing the model except in few 

cases such as D-bar method. Linearized difference imaging 

(LDI) is widely used as it is non iterative and the computational 

time for image reconstruction is fast therefore it can be 

applicable for real-time monitoring. Moreover, modeling errors 

are compensated to some extent due to subtraction of voltage 

measurements collected before and after the change from the 

same domain. However, the linearization of forward model is 

only valid for small changes from initial conductivity 

distribution. Thus, LDI method may be inadequate in situations 

containing high contrast and inhomogeneous conditions such as 

multiphase flow. Moreover, the performance of the LDI 

method depends on the linearization point which is often 

considered as initial distribution. In many situations, the initial 

state is approximated by a constant value using least squares fit 

to voltage data corresponding to initial distribution. If the initial 

distribution is not known or if the initial or final distribution is 

very inhomogeneous as in case of multiphase flow then LDI 

reconstructions may have low spatial resolution with artifacts.  

 Modeling errors in EIT are due to unknown shape of outer 

boundary, imprecise location of electrodes, unknown contact 

impedances of electrodes [20-21]. If the modeling errors are not 

taken care off, then the conventional nonlinear absolute 

imaging can have erroneous solution. One way to circumvent 

the modeling errors is by treating them as an additional state 

parameter and estimate them simultaneously with conductivity 

distribution. However, the above approach can handle only 

small changes in conductivity and electrode movement. 

Another approach is to compute the absolute reconstructions of 

measurements from data sets corresponding to before and after 

change and then subtracting the reconstructions. In this way to 

some extent the artifacts present in conventional absolute 

imaging are removed. For multiphase flow applications where 

quantitative information is desired, it is preferred to model the 

nonlinear absolute imaging for handing the uncertainties and 

improve the spatial resolution. Recently introduced nonlinear 

difference imaging estimates simultaneously both the initial 

distribution and change in distribution from the measurements 

collected before and after the change [22]. The 

conductivity/resistivity after the change is parameterized as a 

linear combination of initial distribution and change in the 

distribution. This parameterization restricts the change in 

distribution to a sub-domain or region of interest (ROI) inside 

the object. The parameterization is helpful in restricting the 

conductivity change to ROI if the changes that occur in the 

computational domain take place in known region. And another 

major advantage is that different type of regularization can be 

employed to initial and change in resistivity regions which can 

further improve the reconstruction performance. Moreover, 

nonlinear difference imaging does not linearize the 

measurement model therefore it can handle multiphase 

conditions with high contrast and inhomogeneous background. 

In [23], robustness of nonlinear difference imaging is studied 

for modeling errors. The results in [23] show that the nonlinear 

imaging has better reconstruction performance as compared to 

linear difference imaging and conventional absolute imaging in 

the presence of modeling errors that include unknown electrode 

contact impedance, inaccurate knowledge of electrode position, 

unknown outer domain boundary and domain truncation. In the 

above studies it is assumed that ROI is known a priori and the 

known ROI is used for parameterization of conductivity. In real 

situations, ROI is not known a priori and in multiphase flow the 

flow distribution is very transient therefore it is difficult to 

select the ROI region. It is very useful if there is a way to 

determine the ROI automatically and then use with nonlinear 

difference imaging. 

In this paper, an automatic detection of ROI is presented for 

multiphase flow imaging. The ROI is determined using Otsu 

thresholding method [24]. Using Otsu method it is possible to 

classify the regions as target and background based on the first 

iteration estimate of Gauss Newton method [25-26]. The target 

region is considered as ROI and is used in nonlinear difference 

imaging. The nonlinear reconstruction problem of determining 

the time varying distribution is done by appending the 

measurements collected for distributions corresponding to 

before and after the change. The ROI is selected based on Otsu 

method and separate regularization functional is used for 

background and target containing in ROI. Numerical 

simulations and phantom experiments pertaining to multiphase 

flow are performed with high contrast conditions. The 

reconstructions using proposed nonlinear difference imaging 

with Otsu method is compared against conventional absolute 

imaging and traditional linear difference method. 

II. EIT IMAGE RECONSTRUCTION  

2.1. Forward problem 

In EIT, surface electrodes le ( 1,2, , ,l L= ⋯ ) are placed on the 

circumference ∂Ω  of the process pipe. Time varying electrical 

currents lI ( 1,2, ,l L= ⋯ ) are injected into the domain through 

the boundary electrodes that has electrical resistivity 

distribution ( )xρ  within the domain boundary, then the 

resulting electrical potential ( )u x  on the Ω  is calculated by 
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using the governing equation, which can be derived through the 

Maxwell equations [1] 

1
( ) 0,

( )
u x

xρ

 
∇ ⋅ ∇ = 

 
 x∈Ω                         (1)                       

The above Laplace equation can be solved for potential 

distribution by applying suitable boundary conditions. The 

electrode model that is used to model the EIT measurements is 

based on complete electrode model (CEM). CEM is more 

accurate and realistic model that is used to model the EIT 

measurements. The boundary conditions based on CEM are 

given by [27] 

1 ( )
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u x z V
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∂
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1

\

L

l

l

x e

=

∈ ∂Ω ∪                              (4)                        

where L  is the number of electrodes on boundary, lz  is the 

effective contact impedance between l th electrode and surface 

of the pipe, lV  is the measured electrical potentials on the l th 

surface electrode, and lI  is the applied alternating current 

applied through the l th electrode. In addition to the electrode 

model, the following Kirchhoff’s rules on the measured 

potentials and the injected currents should guarantee the 

existence and uniqueness of the solution [27] 

     
1

0l

L

l

I
=

= ,     
1

0
L

l
l

V
=

=                                    (5)                   

The solution using the governing equation (1) and the boundary 

conditions (2-5) is obtained numerically and the solution is 

based on finite element (FE) approximation. The domain is 

discretized into small triangular elements each having a 

constant resistivity distribution. In FE formulation, the 

potential distribution and resistivity inside the domain are 

approximated as  

( ) ( )
1

EN

h

i i

i

x xρ ρ ρ φ
=

≈ =                                             (6) 

( ) ( )
1

N
h

i i

i

u u x xα ϕ
=

≈ =                                            (7) 

where 
E

N  and N are the number of elements and nodes in finite 

element mesh, φ , 
i

ϕ  are the first-order nodal basis functions 

for resistivity and potential, respectively. 
i

α  are the nodal 

voltages that are to be determined . The voltages on the 

electrodes is approximated as  
1

1

L
h

j j

j

U β
−

=

= n                                                    (8) 

where the bases for the measurement are n1=(1,-1,0,……0)
T
, 

n2=(1,0,-1,0,……0)
T
 ∈  Lℜ , etc. Here, 

j
β are the boundary 

voltages which are the unknowns to be determined. From (5-8), 

the FEM solution to the CEM model (2-5) can be represented as 

a set of linear equations   

                                 =Ab Iɶ                                            (9) 

where A is the stiffness matrix and the solution vector b  and 

data vector Iɶ  are of the form                                            

 
=  
 

α
b

β
                                        (10)                                           

 
=  
 

0
I

ζ
ɶ                                          (11) 

where N∈ℜα , ( 1)L−∈ℜβ  are the nodal and boundary voltages 

and N∈ ℜ0 , ( ) ( 1)

1 2 1 3 1
, ,.., I

T T L

L
I I I I I I N −= − − − = ∈ℜζ ɵ  is the reduced 

current vector. The discretized forward mapping with FEM is 

represented as ( )U ρ . For more details of FEM approximation 

using CEM see [28]. Assuming the measurements are 

associated with additive Gaussian noise and with FEM 

approximation, the observation model has the form 

 ( )V U eρ= +                                   (12) 

where MV ∈ℜ  is the vector that includes all the measured 

voltage potentials. The number of measurements CPM mN= , 

where NCP is the number of current injections used and m are 

number of measured potentials recorded with each current 

pattern. The Gaussian noise  
*
, )( ee e ΓΝ∼  has mean *e  and 

covariance eΓ that are determined experimentally. Based on 

the above measurement model, various inverse methods can be 

obtained that are discussed in the next section. 

2.2.  Inverse problem 

In EIT, the inverse problem is to estimate the resistivity 

distribution from the measured voltages and known applied 

injected currents. The resistivity is determined by minimizing 

the cost function such that the difference between the measured 

and computed voltages is minimized. EIT image reconstruction 

types can be categorized mainly as absolute and difference 

imaging techniques [17,22].  

2.2.1 Absolute imaging  

In absolute imaging, from the measured set of voltage 

measurements V within which the target is assumed to be 

stationary, the resistivity is reconstructed. Most of the inverse 

approaches of EIT are formulated using nonlinear least squares 

approach employing regularization. The resistivity is achieved 

by minimizing the cost function which is of the form 

{ }2ˆ argmin ( ) ( )eL V U Rρ ρ ρ= − +              (13)                                                                   

where eL is the weighting matrix, ( ) 0R ρ ≥  is a regularizing 

penalty functional. The above cost functional is solved for 

resistivity distribution iteratively using Gauss Newton method. 

Due to the ill-posedness of the EIT inverse problem, the 

reconstruction problem is very sensitive to measurement noise 

and modeling errors. The modeling errors are caused due to 

inaccurate knowledge of electrode locations, contact 

impedance of electrodes, outer boundary of the object, 

truncation of computation domain etc. The modeling errors if 

not compensated, the reconstruction with absolute imaging will 

have erroneous image.  

2.2.2 Linear difference imaging (LDI) 

In many applications, for example, lung ventilation, it is 

often needed to monitor the change in resistivity with respect to 

time rather than the absolute value. This is termed as difference 

imaging. Difference imaging is done using two measurements 
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V1 and V2 recorded at different time instants t1 and t2 which 

correspond to the resistivity distribution 1ρ  and 2ρ . The 

resistivity change is estimated from previous or reference 

distribution. The observation model corresponding to the two 

measurements can be written as 

1 1 1( )V U eρ= +                                         (14) 

2 2 2( )V U eρ= +                                        (15) 

where 1e , 2e  are measurement noise associated with 

measurements. In LDI the observation model are linearized 

with respect to nominal distribution as follows 

) , 1, 2( ) J(i o i o i iV U eρ ρ ρ− + == +                  (16) 

where J  is the Jacobian matrix evaluated at oρ . The linearized 

models upon subtracting results in a new observation model 

based on difference data as 

JV eδ δρ δ= +                                             (17) 

The goal is to estimate the resistivity change based on the 

difference voltage data which can be represented as a 

minimization problem   

� 2
argmin J ( )eL V Rδδρ δ δρ δρ 

 
 

= − +            (18) 

when using difference data since both measurements are from 

same system therefore part of the modeling errors can be 

compensated. As, we are linearizing the observation model the 

linearity can only exists for a small change in resistivity. If the 

resistivity contrast is high then the linear difference imaging 

will produce unsatisfactory performance.  

III. NONLINEAR DIFFERENCE IMAGING 

Using absolute imaging, the distributions 1ρ  and 2ρ are 

reconstructed from measurements V1 and V2 by solving 

separately and the change in resistivity δρ  is then obtained 

upon subtracting the estimated distributions �1ρ and �2ρ . In the 

nonlinear difference imaging, the initial �1ρ and the change in 

resistivity δρ are reconstructed simultaneously using the 

measurements V1 and V2. Moreover, the resistivity after the 

change is modeled as a linear combination of the initial 

resistivity and the change in resistivity as  

2 1 κδρρ ρ= +                                       (19) 

where κ is the mapping operator. Using the above 

parameterization in measurement V2, it can be written as  

2 1 2( )V U eκδρρ += +                              (20) 

Now augmenting the measurements V1 and V2 into single vector 

we have the new observation model for nonlinear difference 

imaging as follows [18-19] 

 )(V U eρ= +                                        (21) 

where 
1ρ

δρ
ρ

 
=  
 

is the initial and change in resistivity to be 

estimated and it is obtained by minimizing the cost functional  

� 2

argmin ( ) ( )
e

L V U Rρ ρ ρ
 
 
 

= − +                 (22) 

 The change resistivity is restricted to a region of interest ROI 

then the compound regularization functional ( )R ρ  is 

represented as  

( ) ( )1( ) ROIR R Rρ δρρ +=                          (23) 

where ROIδρ is resistivity change within the region of interest. 

ROI is difficult to determine for two-phase flow conditions as 

the flow is very transient. If ROI can be determined 

automatically then it can be used in the above parameterization 

and different type of regularized methods can be used with 

initial and resistivity change thus it can improve the 

reconstruction performance.  

IV. DETERMINING ROI USING OTSU METHOD: 

To determine the ROI automatically we employ Otsu 

thresholding method. An adaptive threshold is determined by 

Otsu method by minimizing the between class variance with a 

comprehensive search from a resistivity histogram which can 

be used to separate the background area from the resistivity 

distribution with anomalies [24-26]. Let the image to be 

reconstructed is represented as L  gray levels {1,2, , , , }t L⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , 

and is separated into two different classes A  and B  by a 

threshold at level t . Here, A  denotes the elements having 

index from 1  to t , and B  denotes the elements with index 

1t +  to L . If suppose the number of elements at a given index 

level j  is represented by jο  then the total number of elements 

N will be 1 2 ... LN o o o= + + + . Otsu thresholding method 

determines the optimal threshold that minimizes the 

within-class variance, or equivalently maximizes the 

between-class variance. The with-in class and between class 

variance are described as [24] 
2 2 2

( ) ,within A A B Btρ ω ρ ω ρ= +                                                    (24)                                             

2 2 2

2
2 2 [ ( ) ( )]

           ( ) ( )  = ,
( )[1 ( )]

between T within

T
A A T B B T

t t

t t

ρ ρ ρ

µ ω µ
ω µ µ ω µ µ

ω ω

= −

−
= − + −

−

   (25)                                                                                            

where Aω , Bω the probabilities of class occurrence, Aµ , Bµ

the class mean levels that are defined as 

 

1 1

( ),  1 1 ( ),

t L

A j B j A

j j t

p t p tω ω ω ω ω

= = +

= = = = − = −            (26) 

1 1

1 ( ) 1 ( )
,  ,

( ) 1 ( )

t L

T
A j B j

A Bj j t

t t
jp jp

t t

µ µ µ
µ µ

ω ω ω ω
= = +

−
= = = =

−     (27) 

1

( )

L

T j

j

L jpµ µ

=

≡ =                                       (28) 

From the above computations, the optimal threshold 
*

t  can be 

computed using  
* 2

1

argmax ( ).B
t L

t tρ
≤ <

=                                              (29)                                                                                                 

Find index vectors db and da for the background and anomaly 

regions, respectively using threshold as  
*

( , ) find_index( )b ad d tρ= ≤ɶ   if bac tarρ ρ<           (30) 

*
( , ) find_index( )b ad d tρ= ≥ɶ   if bac tarρ ρ>            (31) 

where ρbac and ρtar denote the background and the target 

resistivity values, respectively, which could be approximately 

known in two-phase flows. The index vectors da is used as ROI 
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in nonlinear difference method in resistivity parameterization.  

V. RESULTS 

In this section, the viability of the proposed NDIWO method 

is tested with numerical and experimental studies. The 

proposed method is applied to two-phase flow and thorax 

imaging. The computational domain consists of regions having 

resistive targets visualized to be voids or organs enclosed in a 

homogeneous background.  The proposed NDIWO method is 

compared against conventional absolute imaging (ABI) and 

linear difference imaging (LDI). The estimates for NDIWO, 

ABI and LDI are computed as follows 

 

Absolute imaging (ABI): The ABI estimates are obtained by 

solving  
22

*( ( , 1,2ˆ argmin ( )) )e iL L ii i sV U ρ ρ ρρ ρ α
  

− = 
  

= − +
 

 (32)             

where �1ρ , � 2ρ  are the estimates of initial and final distribution, 

*ρ  is the prior information of resistivity distribution, sα is the 

regularization parameter and 1T
L Lρ ρ ρ

−= Γ , ρΓ  is covariance 

matrix considering smoothness prior. The estimated change in 

resistivity is obtained as � � �
2 1δρ ρ ρ= − . A general choice for 

regularization matrix ρΓ  that is used with smoothness prior is 

the difference-type matrix [29-30]. The whole object domain is 

discretized with triangular elements and the resistivity 

distribution is estimated in element basis. In this case, the 

gradient of resistivity of the i th element can be approximated 

as the difference in the resistivity of i th element and the 

neighboring elements that share a common edge. The i th row 

of difference regularization matrix ρΓ  can be expressed as 

follows [30]  

[0, ,0, 1,0, ,0, 1,0, ,0,3,0, ,0, 1,0, ,0],
iρΓ = − − −⋯ ⋯ ⋯ ⋯ ⋯

   
(33) 

here, weight of 3 is assigned to the i th column and -1s are 

assigned to the columns corresponding to the neighboring 

elements that share with i th element. 

  

Nonlinear differential imaging with Otsu method (NDIWO): 

The estimates of NDIWO are determined by solving the below 

minimization equation 

�

1

2 2
*

( 1 TV( )ROIargmin ( ) )LL TVe s
V U ρ ρρ α δραρρ −

  
+ 

  

− +=   (34) 

where the estimate 
�ρ  is 

�
1 ROI[ , ]T T Tρ δρρ = , TVα is the 

weighting parameter and TV is total variational functional 

which is defined as 

2

1

TV( ) ( )

E

k

N

k e

k

eρ ρ β

=

= ∇ +                            (35)            

here NE  is number of finite element meshes, ( )
keρ∇ is the 

gradient of ρ  at element ke  and β  is a parameter which 

ensures the function is differentiable. 
1 1 1

1TL Lρ ρ ρ
−= Γ ,

1ρΓ  is 

covariance matrix considering smoothness prior which is 

defined in (33). Selecting prior parameters especially TVα  is 

important in order to have good reconstruction performance. 

For situations when there is no prior information available 

about range of conductivity values inside the object domain, the 

prior parameter alpha is normally selected based on quality of 

reconstructed images using trial and error approach or by 

considering alpha as state variable and then estimate it along 

with conductivity values. Determining optimal prior 

parameters automatically is beneficial and is possible in cases 

where the prior information is available on the range of 

conductivities within the object to be imaged [31]. In situations 

when the maximum or minimum conductivity within in the 

object domain is known then alpha can be determined as 

follows [31] 

 

max min
maxg

d

σ σ−
=                                            (36)  

 

max

ln 1
100

TV

p

g
α

 
− 

 = −                                           (37) 

where d is the mean edge of mesh element, p is the probability 

for which the gradient norm values within the domain are 

below or equal to maxg . After the 1
st
 iteration of GN, Otsu 

method is used to classify the regions and the target regions are 

considered as region of interest (ROI). Different regularization 

methods are used for background and target regions i.e. 

smoothness prior is used with background region and the ROI 

is penalized with TV regularization and is termed as 

NDIWO-TV method. If smoothness prior is used for both 

background and ROI regions in nonlinear approach we term the 

method as NDIWO-SP.   

 

Linear difference imaging (LDI): The estimate �δρ  is computed 

by solving 

  � { }22
argmin Je sL LVδ δρδρ δ δρ α δρ= − +          (38) 

here 1TL Lδρ δρ δρ
−= Γ  is covariance matrix which is constructed 

based on smoothness prior using (33).  

The above estimates for ABI, NDIWO, and LDI are 

computed using optimization algorithm based on Gauss 

Newton method. As a performance metric, root mean square 

error (RMSE) of estimated resistivity, correlation coefficient 

(CC), ratio of coverage area (RCR) and relative contrast (RCo) 

are computed for the estimated change in resistivity and are 

defined as 

�

RMSE

δρ

δρ

δρ−
=  ,                          (39)

� �

� �

1

2 2

1 1

[( )( )]

CC ,

( ) ( )

N

ii
i

N N

ii
i i

δρ δρ δρ δρ

δρ δρ δρ δρ

=

= =



 

− −
=

− −

                    (40) 

where δρ , �δρ  are true and estimated change in resistivity, 

respectively. Also, δρ , �δρ  are the mean values of δρ  and 
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�δρ , respectively. It should be noted that the smaller RMSE 

and bigger CC values correspond to better reconstruction 

performance. ABI and NDIWO methods are iterative whereas 

LDI is non-iterative. Therefore for comparison of RMSE and 

CC we have used mean RMSE and CC values. RCR denotes 

how good the inclusions are reconstructed and is defined as 

[23] 

 
True

CR

CR
RCR =                               (41) 

where CR is ratio of inclusion area to total area of domain, i.e.  

Inclusion area

Domainarea
CR =                               (42) 

To estimate the area of estimated inclusion, we have used half 

the maximum value of the estimates �δρ  as the threshold to 

determine the inclusion area. Further, the contrast of the 

resistivity is measured by computing the maximum/minimum 

of reconstructed change, i.e.  

�

True

max

max
RCo

δ ρ

δρ
=                                (43) 

The values of RCR and RCo equal to 1 would indicate the exact 

match of change in resistivity of reconstructed and true 

distribution. At the same time, a value greater or less than 1 

would indicate over estimation and under estimation, 

respectively.  

5.1. Simulation studies for two phase flow monitoring 

Numerical experiments are conducted for two-phase flow 

using a circular industrial process pipe of radius 4 cm with 32 

electrodes of width 0.6 cm are attached across the outer 

periphery of pipe. Finite element mesh for the above geometry 

and electrode configuration is used for numerical simulation. 

Fine mesh containing 3984 triangular elements is used for 

generating the true data and coarse mesh with 996 elements is 

used for inverse computation of resistivity. Adjacent current 

method with magnitude of 1 mA is used as a current injection. 

Two test cases are considered where in case 1 is with two 

relatively small circular targets visualized as bubbles. Initial 

distribution 1ρ of Case 1 has a small circular inclusion with 

resistivity 5000 Ω-cm appearing at the south west side of flow 

domain containing background liquid that has resistivity 300 

Ω-cm. Final distribution 2ρ after the change in distribution has 

another circular inclusion of resistivity 10000  Ω-cm appearing 

at north east corner. The true data distribution for case 1 with 

small target is given in Figure 1(top row). The true voltages are 

generated for initial, final distributions and 1 percent random 

Gaussian noise is added to the generated voltages to take into 

account the measurement noise and numerical errors. In case 2, 

we study the effect of smoothly varying objects in flow field. 

The initial distribution 1ρ  for case 2 has a circular inclusion 

with smoothed resistivity profile enclosed within homogeneous 

background liquid that has resistivity 150 Ω-cm. The final 

resistivity distribution 2ρ has an elliptic inclusion with 

smoothed resistivity profile that additionally appears in north 

side of flow domain.  

5.2. Simulation studies for thorax imaging 

Numerical simulations for thorax imaging are performed 

using chest shaped finite element mesh. The FEM mesh for 

thorax imaging is modeled based on the available CT image of 

chest. The FEM mesh has sixteen electrodes placed on the 

circumference of chest for current injection and voltage 

measurement. Two different meshes are used in forward and 

inverse computation in order to avoid inverse crime. Fine mesh 

(Mesh 2) with 3028 elements is used to generate true voltages 

and coarse mesh (Mesh 1) with 2216 elements is used for 

estimating internal resistivity distribution. True voltages are 

generated with clinical resistivity values of thorax for 

background, heart and lungs, respectively. Moreover, as a 

current injection method, adjacent type is considered where 

neighboring electrodes are used for current injection. 

Thorax imaging is studied as Case 3 in numerical 

simulations. Lung ventilation is considered as an application 

where the during the respiration process the resistivity of lungs 

changes due to the intake of air. Initial distribution 1ρ is 

simulated with thorax resistivity of background, heart and lungs 

assumed to be 495 Ωcm, 207 Ωcm and 645 Ωcm, respectively. 

After time t, due to respiration, the lung resistivity is changed to      

1400 Ωcm and the final distribution is obtained by considering 

thorax resistivity of background, heart and lungs assumed to be 

495 Ωcm, 207 Ωcm and 1400 Ωcm, respectively. 

5.3 Simulation results 

The true distributions along with estimated resistivity 

distribution for test cases 1-3 are given in Figures 1-3. In  

figures 1-3, top row has the true distribution for initial 

distribution (
1

ρ ), distribution after change (
2

ρ ) and the change 

in the distribution ( δρ ). While the second, third, fourth and 

fifth rows are the estimated results using ABI, NDIWO-SP, 

NDIWO-TV and LDI methods. The estimates of nonlinear 

approach employing smoothness prior in both background and 

ROI region (NDIWO-SP) and nonlinear approach employing 

smoothness prior for background and TV regularization for 

ROI region (NDIWO-TV) are compared for all cases. This 

comparison can give us an idea about the characteristics of 

nonlinear approach. The estimates of initial, final distribution 

and change in distribution are shown in columns 1-3. To 

evaluate the reconstruction performance RMSE and CC are 

computed and shown in Table 1.  To quantify the results further, 

the target size and relative resistivity contrast is computed for 

estimates of change in resistivity as RCR and RCo. The RCR 

and RCo value for the test cases 1-3 are shown in Table 2. 

Simulation parameters that are used for reconstruction are 

given in Table 3. The average mesh size d for case 1-2 is 0.05 

and case 3 is 0.31. When we compute the gmax for case1-2 using 

eq. (36) the value is 0.0655 and for case 3 is 0.0133. Hence 

alpha TVα  for case 3 is considered 5 times less than case 1-2. 

The prior values that are used in numerical and experiment 

cases is given below in table 3 and the reconstruction results 

using those prior parameters are shown in Figs 1-4. 

Figure 1 has the reconstruction results for case 1 with sharply 

varying small targets. The results with the absolute estimates 

using ABI, NDIWO approach and the difference estimate of 
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LDI are shown in Figure 1. As can be noticed from figure1, all 

the estimates were able to locate inclusions in initial, final and 

change in resistivity distributions. However, the estimate with 

proposed NDIWO has better resolution as compared to other 

estimates with uniform background. It is found that size of 

inclusion is over estimated with all methods but the size of 

inclusion with NDIWO methods has better estimation as 

noticed from the computed RCR values in Table 2. The 

estimated resistivity contrast is also less with all approaches.  

The root mean square of estimated change in resistivity and 

correlation coefficient for case 1 are shown in Table 1. In case 1 

of Table 1, it is seen that RMSE of estimated change in 

conductivity of all the estimates is similar while the CC value of 

proposed NDIWO methods has higher value compared to ABI 

and LDI methods. The performance of NDIWO-SP is found to 

be visually similar with NDIWO-TV. However, when we 

compare the values of RMSE, CC, RCR and RCo it can be said 

that NDIWO-TV has slightly better performance than 

NDIWO-SP. 

 

 
Figure 1. Numerical results for case 1 to estimate region 

boundaries in two-phase flow. Top row contains true resistivity 

data and second, third and fourth row are the estimated 

resistivity using absolute (ABI), nonlinear difference imaging 

with Otsu method employing smoothness prior (NDIWO-SP) 

and TV regularization (NDIWO-TV) and linear difference 

imaging (LDI). 

 

Figure 2 has the result for test case 2 with smoothly varying 

inclusions located in flow domain. The initial distribution of 

inhomogeneous background comprising of inclusion located at 

south west side and then the final distribution has another 

inclusion that appears in north east side. Based on the estimates 

for case 2, it can be noticed that the inclusions for the change in 

the distribution are detected by NDIWO-SP, NDIWO-TV, ABI 

and LDI methods. Although, inclusion is detected using ABI, 

there can be seen many artifacts in estimated background 

region of change in resistivity distribution. But the estimates of 

NDIWO have estimated the shape and size of inclusion with a 

better accuracy. From Table1-2, from the computed RMSE, CC, 

RCo values and the size estimate (RCR), it can be found that 

NDIWO-SP method has better reconstruction performance. 

With LDI, the background region is uniform due to 

compensation of numerical errors with difference imaging but 

the estimates of target size is bigger and the estimated contrast 

is low compared to the true value (Table 2). 

 

 
Figure 2. Numerical results for case 2 with smoothly varying 

targets to estimate region boundaries in two-phase flow. Top 

row contains true resistivity data and second, third and fourth 

row are the estimated resistivity using absolute (ABI), 

nonlinear difference imaging with Otsu method employing 

smoothness prior (NDIWO-SP) and TV regularization 

(NDIWO-TV) and linear difference imaging (LDI). 

 

The reconstruction results for thorax imaging (case 3) are 

shown in Figure 3. The estimates of nonlinear approach 

NDIWO are found to have better resolution and have recovered 
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the shape and size of lungs with better accuracy as compared to 

ABI and LDI. Among the nonlinear estimates, NDIWO-TV has 

best reconstruction performance as can be seen clearly by 

visualization and from the computed RMSE and correlation 

values (Table 1). Also, the size estimation and the estimated 

resistivity contrast are better with NDIWO-TV method (Table 

2). The estimates of NDIWO-SP have uniform background and 

lungs estimated with good accuracy. However, it has 

overestimated the lungs resistivity thereby having lower 

computed RCR value. The reconstructions of ABI have non 

uniform background and have overestimated the lung 

resistivity while the size of lungs is underestimated as 

compared to true size. The LDI estimate is found to have 

uniform background but as with ABI the size of inclusion is 

less than the true value (Table 2). 

 

 
Figure 3. Numerical results for case 3 with thorax imaging.  

Top row contains true resistivity and second, third and fourth 

row are the estimated resistivity using absolute (ABI), 

nonlinear difference imaging with Otsu method employing 

smoothness prior (NDIWO-SP) and TV regularization 

(NDIWO-TV) and linear difference imaging (LDI). 

 
Table 1. RMSE conductivity and correlation coefficient of 
estimated resistivity change for numerical simulations 

Performance 
metric 

Case 1 Case 2 Case 3 
RMSE CC RMSE CC RMSE CC 

NDIWO-TV 0.9916 0.4312 0.5977 0.8251 0.5818 0.8318 

NDIWO-SP 0.9886 0.4260 0.5635 0.8238 0.6273 0.8001 

ABI 0.9898 0.4211 0.6083 0.8044 0.6722 0.5505 

LDI 0.9902 0.4299 0.6103 0.8158 0.7041 0.6716 

 
Table 2. Relative size coverage ratio and relative contrast of 
estimated resistivity change for numerical simulations 

Performance 
metric 

Case 1 Case 2 Case 3 

RCR RCo RCR RCo RCR RCo 

NDIWO-TV 2.6186 0.0112 3.6293 0.3535 1.0362 0.8944 

NDIWO-SP 4.7792 0.0131 3.3477 0.4180 0.5838 1.3997 

ABI 6.1619 0.0116 5.2760 0.3139 0.8442 0.8086 

LDI 5.6744 0.0111 5.0422 0.2993 0.6419 0.8769 

 
 
Table 3. Parameters used in reconstruction for numerical and 
experimental studies 

 
Simulated data 

Experiment 
data 

Case 1 Case 2 Case 3 Case 1 

 
0.00005 0.00005 0.001 0.0005 

 
0.05 0.05 0.05 0.05 

 
0.0001 0.0001 0.0001 0.0001 

 

5.3 Experimental studies 

The applicability of proposed method is further evaluated with 

experiment studies. The experiment is carried out using a 

cylindrical tank of diameter 28cm with sixteen electrodes 

(width 2.5cm, height 7cm) placed equally in inner side of the 

tank (Figure 4, top row). The experimental tank is filled with 

saline solution and plastic objects with circular and triangular 

shape are visualized as inclusions that form the 

in-homogeneities. A plastic rod placed in the tank containing 

saline solution is considered as the initial state to form the 

inhomogeneous distribution. A plastic triangular prism was 

later placed in tank to consider the final state with resistivity 

change. The targets considered are vertically symmetric and the 

saline solution is filled until the height of electrode hence 2D 

model is sufficient in modelling measurements. 

The measurements obtained for this study are from the KIT4 

measurement system developed in Department of Applied 

physics, University of eastern Finland [32]. For more 

information about the experiment setup see [32]. Current with 

low frequency of 1 kHz and magnitude 1 mA is applied across 

the pair electrodes. That is, one electrode is fixed as sink 

electrode and as a pair, one of remaining 15 electrodes are 

considered and the corresponding excited potential on 15 

electrodes is measured against sink or reference electrode. Four 

sink electrodes are considered {1,5,9,13} and the process is 

repeated to have a total of 54 current injections avoiding the 

repetition of same current patterns.  Based on this measurement 

strategy we have 810 voltage readings. Two different 

experiment data are measured corresponding to initial 

distribution 
1

ρ  with circular plastic cylindrical rod of diameter 

6.2 cm enclosed in saline solution and final distribution 
2

ρ  

with plastic cylindrical rod and triangular prism in saline 

solution. The triangular prism used in the experiment is 

equilateral and has each edge that is 8.5 cm long. 

 To compute the contact impedances of electrode, 

measurements obtained from homogeneous data with saline 

solution is used. From the measurement data, unknown contact 

impedances and constant value of resistivity is computed by 

solving least squares problem [33]. Based on above method the 

estimated contact impedance is 0.025 ohm-cm. The resistivity 

is reconstructed using a finite element mesh of same geometry 

as experimental tank with 2232 nodes and 4496 elements.  The 

results for the experiment case are shown in Figure 4. In figure 

4, the top row shows the image of experiment condition for 

initial state 
1

ρ  and final state 
2

ρ . The reconstructed estimates 

1̂ρ , 2ρ̂  computed from the estimates � �
1 ROI( , )ρ δρ  and the 

sα

TVα

β
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change in resistivity �ROIδρ  are shown. Second row shows the 

absolute reconstructions of  1̂ρ  and 2ρ̂  and the change in 

resistivity �δρ  with ABI. Third, fourth and fifth row contains 

the reconstructions using NDIWO-SP, NDIWO-TV and LDI 

approach, respectively. The results show that NDIWO-TV has 

better estimation of initial, final and change in resistivity 

distribution. The resolution is better and the triangular prism 

size is recovered while shape is also close to the true shape. The 

estimate of NDIWO-SP has similar reconstruction performance 

as NDIWO-TV. With ABI, the size is over estimated as also 

found from the computed RCR and also the background in not 

uniform and has artifacts. The estimate with LDI also has over 

estimated the size as seen from RCR value and the background 

is found to have artifacts as in the case of ABI. 

 

 
Figure 4. Experimental results for estimating two targets 

located in domain. Top row contains images of experiment tank 

with targets inside, second, third, fourth and fifth row are the 

estimated resistivity using ABI, NDIWO-SP, NDIWO-TV and 

LDI, respectively. 

 
Table 4. Relative size coverage ratio and relative contrast of 
estimated resistivity change for experimental studies 

Performance metric 
Experiment Case 1 

RCR 

NDIWO-TV 0.9894 

NDIWO-SP 0.9191 

ABI 1.3237 

LDI 1.0998 

 

VI. CONCLUSIONS 
A nonlinear differential imaging based method is proposed to 

reconstruct the internal resistivity distribution using electrical 

impedance tomography. The resistivity is parameterized as 

initial and change in resistivity. The parameterization can be 

used to set different regularization schemes for background and 

target. The proposed method uses Otsu thresholding method to 

classify the regions as target and background after 1
st
 iteration 

of Gauss Newton method and the background, ROI regions are 

then applied with Laplacian and TV-type regularization. 

Numerical and experimental studies simulating two-phase 

conditions are performed to evaluate the reconstruction 

performance. It is noticed that the proposed NDIWO method 

has improved spatial resolution with uniform background and 

has less image error and higher correlation coefficient as 

compared to conventional ABI and LDI. The RCR and RCo of 

reconstruct image of proposed method are close to the true 

value as compared to conventional methods. Especially, in 

situations involving high contrast between background and 

target, the proposed method has better reconstruction 

performance. 
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