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ABSTRACT Most of the existing panorama generation tools require the input images to be captured along
one direction, and yield a narrow strip panorama. To generate a large viewing field panorama, this paper
proposes a multi-row panorama generation (MRPG) method. For a pan/tilt camera whose scanning path
covers a wide range of horizontal and vertical views, the image frames in different views correspond to
different coordinate benchmarks and different projections. And the image frame should not only be aligned
with the continuous frames in timeline but also be aligned with other frames in spatial neighborhood even
with long time intervals. For these problems, MRPG first designs an optimal scanning path to cover the large
viewing field, and chooses the center frame as the reference frame to start to stitch. The stitching order of
multi-frame is arranged in first-column and second-row to ensure a small alignment error. Moreover, MRPG
proposes a multi-point joint stitching method to eliminate the seams and correct the distortions, which makes
the current frame accurately integrated into the panoramic canvas from all directions. Experimental results
show thatMRPG can generate a more accurate panorama than other state-of-the-art image stitchingmethods,
and give a better visual effect for a large viewing field panorama.

INDEX TERMS Multi-point joint stitching, panorama, reference frame, scanning path, SIFT registration.

I. INTRODUCTION
There are many panoramic image stitching technologies in
use nowadays [1]–[7]. For example, we can easily use our
mobile phones or digital cameras to generate a panoramic
photo, or we can use some commercial applications, such
as Autostitch [8], [9], Kolor Autopano,1 Microsoft ICE,2

Realviz3 and Microsoft Photosynth,4 to synthesize several
images and generate a panorama. These experiences give us
an illusion that image stitching is a mature technology.

Although panoramic image stitching technologies have
been widely used, the existing image stitching algorithms still
have a lot of deficiencies. The most obvious problem is the
limited coverage of the viewing field. As far as we know,
most mobile phones including iPhone can only generate one-

1http://www.kolor.com/
2https://www.microsoft.com/en-us/research/project/image-composite-

editor/
3https://luminous-landscape.com/realviz-stitcher-4-0-review/
4https://photosynth.en.softonic.com/#app-softonic-review

dimensional single-row panoramas, which means that the
scanning path of camera only covers a straight line between
the start point and the terminal point (shown in Fig.1) rather
than a wide viewing field, and only a narrow strip panorama
(shown in Fig.2(a)) is generated. There are some other mobile
phones supporting image stitching in horizontal and vertical
direction simultaneously, such as Moto X, which takes five
photos located at the left, right, top, bottom and the cen-
ter positions, to generate a panorama. Although the process
extends the viewing field, the misalignment phenomenon
generally exists (shown in the red rectangle in Fig.2(b)).
In addition, it is true that we can generate a panorama based
on multiple images using some image stitching tools, such as
Autostitch [8] (the generated panorama is shown in Fig.2(c)).
These tools usually use bundle adjustment to refine the 3D
coordinates which describe the scene geometry, and then
generate panoramas. However, bundle adjustment requires
the support of camera pose parameters, and the computational
cost is high. Meanwhile, it still introduces unconvincing
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FIGURE 1. The limited coverage illustration in 1D scanning. (a) horizontal
scanning. (b) oblique scanning. (c) vertical scanning.

FIGURE 2. The generated panoramas using the existing image stitching
tools or applications. (a) 1D scanning based panorama using iPhone.
(b) 5 images based panorama using Moto X. (c) multi-image based
panorama using Autostitch [8].

results, such as the misalignment shown in the red rectangle
in Fig.2(c). Here, the misalignment results in the image blur
and dislocation.

Hence, in this paper, the work focuses on an accurate
multi-row panorama generation method, which uses multiple
images to generate a wide viewing field panorama. For the
given start point and terminal point, this paper firstly proposes
an optimal scanning path to cover the whole viewing field
between the two points. According to the path, the center
frame is selected as the reference frame, and the coordinate
of the reference frame is used as the benchmark to produce
the coordinate of the panorama. It helps to avoid strabismus

and reduce cumulative errors. And then, the stitching order is
arranged in first-column and second-row to ensure a small
alignment error. Moreover, a multi-block and multi-point
joint stitching method is proposed. Multi-block refers to cal-
culate the projective transformation model for each image
block to solve the problem that the different blocks in a large
size panorama have the different projections. Multi-point
refers to neighbor constrained points and relative constrained
points, and these points help to align multi-frame from all
directions. Neighbor constrained points are use to eliminate
the cutting seams existing in neighboring blocks, and relative
constrained points are used to maintain the correct relative
positions between the blocks, which make the wide viewing
panorama look coincident and accurate.

The rest of paper is organized as follow: Section II sur-
veys related works. Section III introduces the proposed opti-
mal scanning path, the reference frame and the stitching
order. Section IV introducesmulti-block andmulti-point joint
stitching. Section V evaluates the proposed method compar-
ing with the state-of-the-art stitching methods. Finally, the
paper is concluded in Section VI.

II. RELATED WORK
Producing a large viewing field panorama involves two ques-
tions: Which frame is regarded as the coordinate benchmark
of the panorama?How does the current frame align with other
frames which have overlapping region? The former refers to
the reference frame selection, and the latter refers to themulti-
frame stitching method.

A. REFERENCE FRAME SELECTION
Generally, for multi-image stitching, the coordinate of the
reference frame is taken as the coordinate benchmark of the
panorama. It means the selected reference frame is directly
stuck onto a panorama canvas. Then, taking this reference
frame as a benchmark, the remaining frames are corrected by
image alignment and warped onto the panorama canvas in a
certain order. The key is to choose one frame as the reference
frame, and design an optimal stitching order to prevent the
accumulated and amplified errors.

There are two categories of methods for the reference
frame selection. One category is to choose a frame directly
from a video sequence without considering the accumula-
tive errors of the warping too much [10], [11]. Commonly,
the first frame of a video sequence is selected as the reference
frame [10]. Obviously, it is easy to cause strabismus and intro-
duce the accumulative errors. Additionally, Kang et al. [11]
selects a common frame as the reference frame. The common
frame refers to the frame which has more overlapping region
with other frames. The existence of a common frame means
that the viewing field is limited. For the accumulative errors
are not considered adequately, these methods do not behave
very well.

The second category of method is to select the reference
frame based on the evaluation of the accumulative errors
using bundle adjustment [12]. The bundle adjustment method
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uses the least square to optimize the re-projection errors
between the video frames to be stitched and the reference
frame. It can be defined as follows.

To estimate the required homography models {H k
}
K
k=1,

bundle adjustment minimizes the sum of the re-projection
errors of all correspondences by minimizing the cost in an
iteration manner

E(2) ==
N∑
i=1

K∑
k=1

∥∥∥xi − f (pi,H k )
∥∥∥2 (1)

Where 2 = [H1, . . . ,HK , p1, . . . , pN ]. {H k
}
K
k=1 is a set

of dependent homography models. K is the number of the
homography models, and N is the number of the correspon-
dences. xi is the ith arbitrary location in image I , pi is the
matched location of xi in image I ′. f (pi,H k ) is the projective
warp (in homogeneous coordinates) defined as

f (pi,H k ) =

[
r1[pTi 1]

T

r3[pTi 1]
T

r2[pTi 1]
T

r3[pTi 1]
T

]T
(2)

where r1, r2, r3 are the three row vectors of homography
model H k .
Thus, a 3D coordinate system is established using for-

mula (1), and the coordinate system of the panorama is
also established. However, for a continuous scanning video,
in view of the characteristics of camera movement, the posi-
tions of the adjacent frames are very close and regular. Thus,
the process of reconstructing a 3D coordinate system and
minimizing the warping error by iteration, is a waste of com-
puting resources. In addition, the method pays more attention
to the re-projection error and the global alignment, but is less
concerned with the similar motions of the adjacent scenery.
Thus, it introduces inaccurate alignment (like Fig.2(c)).

B. MULTI-FRAME STITCHING
In many scenarios, it is supposed that the panorama is the
multi-frame stitching result for a video camera scanning
along one direction, that means only the adjacent frame
on the timeline has overlapping region with the current
frame [13]. So the matching relationship only exists between
the current frame and its adjacent frame on the timeline.
The only one frame along the scanning direction needs to be
aligned. We define the stitching result along one direction as
a single-row panorama. The two frames alignment in these
scenarios is relatively simple. The commonly used meth-
ods include pixel-based matching [3], [13] and feature-based
matching [14]–[17]. Among them, feature-based matching,
especially SIFT (Scale-Invariant Feature Transform) feature
matching [17], is very popular.

In contrast, 2D scanning refers to the movement along
horizontal and vertical directions. According to the scanning
path, 2D scanning usually has multi-row scanning frames
with the different vertical perspectives (as shown in Fig.3(a)),
especially for a pan/tilt camera in the ground surveillance.
The essential characteristic of a 2D scanning is the current
frame not only has overlapping regionwith the adjacent frame

FIGURE 3. 2D scanning path along horizontal and vertical directions.
(a) 2D scanning path. (b) multi-frame stitching.

FIGURE 4. The misaligned panorama for a wide viewing field. (a) three
single-row stitching panoramas. (b) a multi-row stitching panorama.

on the timeline, but also has overlapping region with the
previous frames evenwith long time intervals. For a 2Dmulti-
row panorama generation, multiple frames with overlapping
region in vertical and horizontal neighborhoods need to be
warped onto the current frame (as shown in Fig.3(b)). The
determination of themultiple frameswith overlapping region,
and the calculation of the projective transformation models
between them, as well as the detailed warping for each pixel,
all need to be considered.

Moreover, in a wide viewing field, the different frames,
even the different regions of an image, probably correspond
to the different projections. The direct stitching using only
one projective transformation model for a wide viewing field
image is easy to introduce errors. For example, Fig.4(b) is
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a multi-row panorama which is based on three single-row
panoramas shown in Fig.4(a). The stitching between two
single-row panoramas is modeled using only one projective
transformation model. Obviously, even the results of single-
row panoramas are good, there are misalignment for the
multi-row panorama (shown in the red circles in Fig.4(b)).
The reason of misalignment is that the projective discrim-
inations exist in different regions for a wide single-row
panorama. Moreover, the frames with overlapping region
in neighborhood are probably captured at different times,
and some frames even undergo the changes of illumination.
These further exacerbate the difficulty of accurate alignment.
Hence, the generation of an accurate multi-row panorama is
more difficult than a single-row panorama.

In summary, the main problems for a wide panorama gen-
eration are the determination of multi-framewith overlapping
region, the stitching order of multi-frame and the stitching
method. The first problem is related to the scanning path. For
a pan/tilt camera in ground surveillance, the regular scanning
paths produce overlapping frames at regular positions. In this
application, the determination of multi-framewhich has over-
lapping region with the current frame is simple. For the sec-
ond problem, Davis [18] searches a linear transformation
model from the alignment set, and then decides the stitching
order, but the calculation is complex. Kang et al. [11] uses
graph-based reconstruction to determine the stitching order,
but the method requires that the common frame is overlapped
with all other frames.

For the stitching method, it concerns: (1) the stitching
of multi-frame in neighborhood along different directions;
(2) the stitching for generating a large size panorama. For (1),
the existing methods align the current frame with multi-
frame, respectively. It is based on the rule that each frame
has its overlapping region with the current frame. Thus,
multiple local projective transformation models are obtained.
Then, for each pixel in the current frame, the final projective
transformation model is a weighted result of multiple local
projective transformation models [1], [10], [15]. The weight
of each local projective transformation model is computed
according to the distance between this pixel and the center
of the overlapping region for the corresponding frame. The
smaller the distance is, the bigger the weight is. However,
the weighting process introduces image blur.

For (2), because the different regions of a wide
panorama have different projections, many works propose
to divide all the pixels in one image into some groups
firstly [2], [10], [15], and for each group, one local projec-
tive transformation model is computed using the matches
located in this group to model the local projection. For
the pixel grouping methods, Zaragoza et al. [10] proposes
As-Projective-As-Possible stitching (APAP),Wang et al. [19]
and Chin et al. [20] propose multiple structures segmenta-
tion, and Gao et al. [14] proposes dual-homography warping
method, et.al. Most notably, APAP divides the frame into
many cells whose size is 100 × 100 pixels, and calculates
the projective transformation model for each cell using SIFT

FIGURE 5. Blur and distortion phenomena illustration for APAP [10].

FIGURE 6. Two kinds of scanning path: row priority vs. column priority.

features. Depending on these projective transformation mod-
els, each cell is aligned with the reference frame based on
a local warping process. The multi-cell alignment strategy
partially solves the problem that the different projections
exist in the different image regions. However, because each
cell is considered separately and the constraints of positional
relation among these cells are not considered, the distortions
still exist in some regions of the panorama, e.g., the edge of
the building is distorted (shown in the blue box of Fig.5). In
addition, the trivial partition makes the generated panorama
blur when multiple cells are stitched (shown in the red box
of Fig.5).

III. INPUT REGULARIZATION
The process of MRPG mainly includes two parts: input reg-
ularization and multi-point joint stitching. For a multi-row
panorama, when the input images are captured using a pan/tilt
camera around a fix point, the scanning path can help fig-
ure out the position relationship of these spatial overlapping
frames. And then, the position relationship can determine the
reference frame, the stitching order, as well as the alignment
strategy.

A. OPTIMAL SCANNING PATH
To generate a large view panorama, the camera should cover
the scene as large as possible. For the given start point and
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terminal point, the camera should scan along horizontal and
vertical directions, not from the start point to the terminal
point directly. In addition, because the horizontal scanning
range is often larger than the vertical scanning range, row
priority (Route A in Fig.6) is more appropriate than column
priority (Route B in Fig.6) for less turning points of the cam-
era. Thus, an optimal scanning path for multi-row scanning
is designed, which is row priority.

To guarantee a good stitching, the different scanning rows
should satisfy a certain overlapping rate. Meanwhile, instead
of using all the frames for stitching, the frames in the same
row should be extracted in accordance with the overlap-
ping rate requirement to ensure the computation speed. The
number of the extracted frames in the same row satisfies
formula (3).

n =
W − w

w× (1− o)
+ 1 (3)

Here, w refers to the width of one image frame,W refers to
the horizontal coverage when the camera is moving, o refers
to the overlapping ratio of two extracted adjacent frames,
and n refers to the number of extracted frames in each row.
Thus, for each scanning row, the numbers of the extracted
frames are equal. The frames located in the different scanning
rows and at the same vertical positions, can establish the
one-to-one column correspondences. For a good stitching,
the overlapping ratios of the computed frames, including
the one-to-one column correspondence frames located in the
different rows, as well as the extracted frames located in the
same row and adjacent column, are both greater than 50%
empirically.

B. CENTER REFERENCE FRAME
As the captured video is regularized, one frame is directly
chosen as the reference frame. In consideration of the accu-
mulative errors, the center frame is selected as the reference
frame instead of the first frame of video or some other frames.
Suppose there arem scanning rows, and n extracted frames in
one scanning row, that means, there are m× n image frames.
The center frame, which is located in the bm/2cth row and the
bn/2cth column, is regarded as the only reference frame.

In detail, as the camera is doing a uniform rectilinear
movement, it can be assumed that the error of calculated
projective model between two frames is d . Suppose there are
m× n frames (m and n are both odd numbers, and m ≤ n) to
be stitched, two cases, including the center frame is served
as the reference frame and the first frame is served as the
reference frame, are illustrated in Fig.7, respectively. The
accumulated errors of two cases can be calculated by the
follow formulas (4)-(5).

Ecf = d0 +
∑(m−1)/2

i=1
4id i +

∑(n−1)/2

i=(m+1)/2
2md i

+

∑(m−1)/2

i=1
4id (m+n)/2−i (4)

Eff =
∑m−1

i=1
(id i−1 + idm+n−1−i)+

∑n−1

i=m−1
md i (5)

FIGURE 7. The comparisons of accumulated errors. (a) the errors of the
proposed center frame method. (b) the errors of the existing first frame
method.

Ecf refers to the accumulated errors when the center frame
is set as the reference frame, and Eff refers to the accumulated
errors when the first frame is set as the reference frame.
It can be proved that Ecf is smaller than Eff . Also, choosing
the center frame as the reference frame can certainly avoid
strabismus, because the center frame is usually just facing the
observation point.

C. STITCHING ORDER
Generally, if the reference frame is determined, all the other
frames around the reference frame can be stitched onto the
panorama canvas. But it is difficult to consider the transfor-
mations along horizontal and vertical directions simultane-
ously, for the frames are captured at the different times and
different perspectives. Thus, this paper rearranges the stitch-
ing order. The one-to-one column correspondence frames in
the different scanning rows but in the same column are first
aligned, which is called as first-column stitching order. Then,
some column-panoramas are gotten. Based on these column-
panoramas, the stitching process from the center column
to both sides along left directions and right directions are
carried out, which is called as second-row, and finally a wide
panorama is generated.

The stitching along the same column is a 1D process, and
thus only two frames, which are the spatial adjacent frames
along the vertical direction, are stitched each time. Because
these image frames with limited size have been calibrated
in a same column, and the overlapping ratio is greater than
50%, the stitching operation based on SIFT feature matching
and single projective transformation model is used to align
them. The column-panorama is generated using SIFT fea-
ture matching [9] and RANSAC outlier remove [21], [22].
Hence, the transformation matrix between two adjacent
frames located in the same column can be calculated, which
describes the transformation along vertical direction. The
two images in Fig.8 are two column-panoramas with three
scanning rows, and each of them shows a good alignment and
visual effect.

IV. MULTI-POINT JOINT STITCHING
Because a column-panorama is stitched based on multi-
ple frames located in multiple scanning rows, the height
of the column-panorama is large. In addition, the different
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FIGURE 8. Two column-panoramas: the different regions have the
different transformation models.

perspectives and capture times result in the different regions
in a column-panorama have different projections. The direct
stitching of two large size column-panoramas is easy to intro-
duce errors. Thus, this paper proposes the multi-block and
multi-point joint stitching method.

A. MULTIPLE BLOCKS PARTITION
In Fig.8, the red lines located on the top of the column-
panoramas are parallel, whereas, the red lines below, as well
as the green lines are not parallel. The reason is that these
positions correspond to the different scanning rows and
columns, and the parallax results in the different projections
contained in the different regions. Constructing a single pro-
jective transformation model to simulate the various warps in
different regions existing in two large size column-panoramas
is inconceivable.

In the following second-row processing, considering the
different regions in a column-panorama have different projec-
tions, each column-panorama is divided into several blocks
firstly, and then a projective transformation model is com-
puted for each block. The number of blocks can be simply set
as the number of scanning rows, and these blocks are non-
overlapped.

If the projective transformation model in each block is
computed separately, and the positional constraints among
these blocks which have been computed in first-column pro-
cess are not considered, what we have done aforementioned
to stitch those one-to-one column correspondence frames is
meaningless. To maintain the consistency and accuracy of the
whole panorama, this paper proposes neighbor constrained
points and relative constrained points for the multi-block
stitching, which ensure a good alignment for multiple frames
in all directions.

B. NEIGHBOR CONSTRAINED POINTS
For the reference column-panorama and the column-
panorama to be stitched, the latter is divided into several
blocks. Each block has a common border with its adja-
cent block, which is determined by first-column process.

FIGURE 9. NCPs & RCPs illustration.

FIGURE 10. Multi-block stitching using NCPs. (a) panorama without NCPs.
(b) panorama with NCPs.

Therefore, after the first block is stitched, the position of the
common border with the second block is also determined.
Some points on the common border are chosen to record
their coordinates and called Neighbor Constrained Points
(NCPs, shown as the red points in Fig.9). When the projective
transformation model of the second block is calculated, these
recorded NCPs, together with the inliers in the overlapping
region of block 2 (shown as the green points in Fig.9) are all
used.

For a column-panorama, if each block is stitched sep-
arately via the projective transformation model calculated
just using the inliers in this block, the result is shown
in Fig.10(a). Obviously, this process just considers the over-
lapping region between the current block and the reference
column-panorama along the horizontal direction, and ignores
the positional constraints between the neighboring blocks
along the vertical direction. Thus, there is a cutting seam
between the two blocks, which means the consistency of
the column-panorama is broken. In contrast, Fig.10(b) shows
the stitching result using NCPs. In this case, not only the
inliers in the overlapping region, but also the NCPs located
on the common border, are all participated in the calculation
of the projective transformation model. Particularly, NCPs
maintain the consistency of the two neighboring blocks, and
thus, the cutting seam is removed.
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FIGURE 11. Panorama stitching using RCPs. (a) the panoramas without
RCPs. (b) the panoramas with RCPs.

C. RELATIVE CONSTRAINED POINTS
Even NCPs are considered, and the obvious cutting seam is
removed, the inaccurate phenomena still probably exists. For
example, the edge of the building is distorted in Fig 11(a), and
actually it should be a straight line (see the enlarged drawing
on the right). The aforementioned stitching strategy takes into
account the matching of the overlapping region, as well as the
matching of the common border. However, the inaccuracies
still exist in those non-overlapping region.

To solve this problem, Relative Constrained Points (RCPs)
are proposed when the projective transformation models
of the subsequent blocks are computed. RCPs refer to
those points in the non-overlapping region of the pending
block (such as the blue point in Fig.9), and their positions
are determined by the first-row process and the projective
transformation model computed by the previous aligned
block.

The computation of projective transformation models for
NCPs and RCPs are illustrated in Fig.9. A typical NCP point
O is assumed to be the origin of the coordinate system and
its coordinate is (0,0). A typical RCP point P is the right
bottom point of the pending block, which is located in non-
overlapping region. If the height of a block is h, the coordinate
of P is (0, h). The projective matrix of the previous block
(block 1) is supposed to be H1, and thus, the warping should
follow formula (6).

X ′ = H1X (6)

Here, X refers to the original coordinate, and X
′

refers to
the coordinate after warping H1. According to the positional
constraints, the coordinate of point O and point P after warp-
ing can be achieved, and supposed to be (x1, y1), (x2, y2).
In such way, (0,0)↔ (x1, y1) and (0, h) ↔ (x2, y2) are two
pairs of matched feature and can be added in calculating the
new projective matrixH2 for the current block (block 2). The
whole process is constantly done according to the successive
blocks, and H1, H2,. . . are computed for each subsequent
block.

Fig.11(b) shows the result using RCPs. For RCPs maintain
the consistency of the relative position between two blocks,
the result illustrates the correct straight line along the edge of
the building.

Algorithm 1 Multi-Row Panorama Generation
Algorithm(MRPG)
Input: A sequence of images captured by multi-row scan-
ning. The number of scanning rows is m, and the threshold
of overlapping rate is o.
Output: The generated panorama.
1: Input regularization:
1.1: Extract the frames to be stitched based on o. n is the
number of extracted frame in each row through formula (3).
The input frames are regulated as F1,1, F1,2,. . . , F1,n, F2,1,
F2,2,. . .F2,n,. . . , Fm,1, Fm,2,. . .Fm,n.
1.2: The center frame located in the bm/2cth row and the
bn/2cth column, is regarded as the reference frame.
2: Column-panorama generation:
for i =1 to n
Stitching F1,i, F2,i,. . . , Fm,i to generate CPi: starting from
Fbm/2c,i, two adjacent frames are stitched towards the
up and down directions until reaching F1,i and Fm,i.
The stitching method adopts SIFT feature matching and
RANSAC outlier remove.
end for
Output: column-panoramas CP1,CP2, . . .,CPn.
3:Two column-panoramas stitching:
3.1: Suppose the reference column-panorama is CPi, and
the adjacent column-panorama to be stitched is CPj(j = i-
1 or j = i + 1, 1≤ i, j ≤ n).CPj is divided into mblocks,
which are CP1,j, CP2,j,. . . ,CPm,j.
3.2: Starting from CPbm/2c,j, the projective transformation
model between CPbm/2c,j and CPi is computed using the
inliers in the overlapping region, which is H1.
3.3: for k = bm/2c + 1 : 1 : m
The projective transformationmodelHk is computed using
the inliers in the overlapped regions, NCPs and RCPs.
end for
3.4: for k = bm/2c − 1:−1:1
The projective transformationmodelHk is computed using
the inliers in the overlapped regions, NCPs and RCPs.
end for
3.5 for k =1:m;
CPk,j is stitched with CPiusing Hk.
end for
4: A wide panorama generation.
Starting fromCPbn/2c, two adjacent column-panoramas are
stitched towards the left and right directions until reaching
CP1 and CPn.

D. ALGORITHM SUMMARY
Based on the above principles, the proposedMRPG algorithm
can be summarized in Algorithm 1.

V. EXPERIMENTAL EVALUATION
In this section, we first introduce the collection data set for
multi-row panorama generation. Then, we present the exper-
imental settings as well as comparison methods, followed
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TABLE 1. The data set for multi-row panorama generation.

by the performance comparisons of different methods and
analyses.

A. DATASET AND EXPERIMENTAL SETTINGS
Since there are no benchmark data sets for the evaluation
of multi-row panorama generation at present, this paper first
establishes a relevant data set. The video data is collected
on Internet or captured by some surveillance cameras and
personal mobile phones. There are three kinds of image res-
olution, 1920 × 1080 pixels, 704 × 576 pixels and 640 ×
480 pixels. The established data set includes three types of
scenarios, a total of 25 video sequences, and 3377 image
frames. The maximum horizontal scanning coverage is
360 degree, and the maximum vertical scanning coverage
almost reaches 70 degree. The typical scenarios are shown
in TABLE 1.

The process of MRPG is totally implemented in C++
as the method described above. In addition, OpenCV5 is
used to read and write video frames and images, and
OpenSIFT Library6 is used to extract SIFT features in the
images. The default parameters of SIFT are adopted except
SIFT_CONTR_THR and SIFT_IMG_DBL. The former is set
to 0.04 and the later is set to 1 to extract more features for the
weak-texture images.

B. NCPs AND RCPs ANALYSIS
1) NCPs ANALYSIS
NCPs are distributed on the common border of two adjacent
blocks. For the width of frame is w, there are w candidates.
We test two sampling modes, one mode is sequential dense
sampling, and the other mode is uniformly sparse sampling
(shown in Fig.12). The former obtains NCPs point by point
along the common border from the side of the overlapping

5https://opencv.org/
6http://robwhess.github.io/opensift/

FIGURE 12. Two sampling modes. (a) sequential dense sampling.
(b) uniformly sparse sampling.

region, and the latter obtains evenly spaced NCPs on the
common border.

Suppose the projective transformation model of block 1
has gotten, which is H1. When the projective transfor-
mation model of block 2 is computed, the inliers (green
points in Fig.12) in the overlapping region (shadow area)
are extracted firstly. Assuming that there are k inliers, thus,
k points (red points) using two sampling modes are scat-
tered on the common border, respectively (see Fig.12(a) and
Fig.12(b)).

Next, we test the effect of the number of NCPs on the accu-
racy of the transformation model. Here, l NCPs are extracted
from the k candidates. There are also two modes: for mode
(a), the l points are extracted point by point from the side of
the overlapping region; for mode (b), the l points are evenly
extracted from the center of the common border to both sides.
l is from 0 to k(k ≤ w). And then, the l points are added to
the inliers set to compute the projective transformation model
χl together. For each specified l, the generated χl is deemed
as H2.

To measure the results, the re-projection error is adopted.
For the inliers, they have the warped coordinates according
to SIFT feature matching; for NCPs, H1 can determine the
warped coordinates. Thus, (x, x ′) represents one correspon-
dence, and x is the referenced feature coordinate, and x ′ is
the warped coordinate. Moreover, all the inliers and NCPs
can get the final warped coordinate based onH2. That is, x is
warped to

∧
x by H2. The re-projection error is defined as

ReErr = |x ′ −
∧
x | (7)

For N correspondences, the average re-projection error is
defined as

Ave_ReErr =

∑N
i=1 |x

′

i −
∧
x
i
|

N
(8)

For χl , which is computed based on the k inliers and the l
NCPs, the average re-projection error curve for inliers and
NCPs are drawn in Fig.13 (in this example, the processed
image is shown in Fig.10). For fairness, the number of inliers
and the number of NCPs involved in the error calculation
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FIGURE 13. The re-projection error for NCPs.

are equal. That is, the green curve denotes the average re-
projection error of the k inliers, and the red curve denotes
the average re-projection error of k candidate points on the
common border. The average re-projection error for the k
inliers and the k candidate points on the common border
is drawn in black curve. The dotted curve and solid curve
correspond to two sampling modes, respectively. The hor-
izontal coordinate axis is the number of NCPs involved
in calculating the projective transformation model, which
is l. The vertical coordinate axis is the average re-projection
error.

With the increase of the number of NCPs, the average re-
projection error of the k inliers also increases, whereas the
average re-projection error of the k points on the common
border decreases. It shows that the two types of pixels have an
obvious projective discrimination. A large number of experi-
ments show that the average re-projection error of the inliers
increases slowly, while the average re-projection error of the
points on the common border decreases sharply, even only
several NCPs are added.

Meanwhile, this result also demonstrates that the re-
projection error in uniformly sparse sampling mode con-
verges faster than that in sequential dense sampling mode.
Thus, 5 NCPs are added empirically using uniformly sparse
sampling mode in the following experiments.

2) RCPs ANALYSIS
RCPs are extracted from the non-overlapping region. Since
there are no correspondences in the non-overlapping region,
we only extract the points on the uncommon border and
the corner (such as the blue points in Fig.12(b)) as RCPs
to simplify the computation.

Similarly, the average re-projection error of the inliers
in overlapping region and RCPs are computed respectively,
and the curves are drawn in Fig.14. With the increase of
the number of RCPs, the re-projection error of the inliers
increases gradually, whereas the re-projection error of the
RCPs decreases rapidly. A large number of experiments
illustrate that only several RCPs can guarantee a small re-
projection error. Thus, 5 RCPs are used in the following
experiments empirically. One RCP is taken at the corner,
and other four RCPs are evenly located on two uncommon
borders.

FIGURE 14. The re-projection error for NCPs.

C. PANORAMAS COMPARISONS
1) SUBJECTIVE EVALUATION
APAP [10] is a representative method considering the align-
ment of parallax images. In APAP, the image has been
divided into many fixed-size cells, and a local transfor-
mation model is computed based on the inliers in each
cell. For each pixel in the image, the final transforma-
tion model is a weighted result of multiple local trans-
formation models [2]. The idea of region segmentation
and local transformation model computation in this paper
is derived from APAP. In addition, Autostitch [8], Kolor
Autopano1 and Microsoft ICE2 are popular commercial tools
for image stitching. Therefore, the proposed method is com-
pared with APAP, Autostitch, Kolor Autopano and Microsoft
ICE.

In view of the three types of scenarios in the data set,
Fig.15-17 show the experimental results for Building scenar-
ios. From Fig.15-17(a)-(e), the generated panoramas using
APAP, Autostitch, Microsoft ICE, Kolor Autopano and our
method are displayed in turn. It can be seen that there
are obvious misalignment for APAP, such as the seams in
Fig.15(a), the distortion in Fig.16(a), the tilted flagpole and
the blurry region in Fig.17(a). The results of Autostitch and
Microsoft ICE are different from the real ones, such as the dis-
tortion of the straight edge of the building in Fig.15-16(b),(c).
The result of Kolor Autopano may lose some image contents,
such as Fig.16(d). In addition, the result of Kolor Autopano
may also show misalignment, such as Fig.17(d). Compar-
atively speaking, there is no obvious seams or distortions
in our results. It is worth mentioning that there are illumi-
nation changes and obvious scene depth differences in the
case in Fig.17, our method stitches multiple images accu-
rately, and the generated panorama has no obvious seams and
distortions.

Fig.18 shows the experimental results for Scenery sce-
narios. It can be seen there are obvious seams and blurring
in Fig.18(a). There is a ghost in Fig.18(b) and distortion
in Fig.18(d). Comparatively, there is no obvious misalign-
ment in Fig.18(c) and Fig.18(e).

In view of Street View scenarios, the results are similar to
that of the Building and Scenery scenarios, but the premise is
that there are not too many moving targets.

VOLUME 6, 2018 27835



J. Zheng et al.: Accurate Multi-Row Panorama Generation Using Multi-Point Joint Stitching

FIGURE 15. The generated panoramas for Main Building sequence.
(a) APAP. (b) AutoStitch. (c) Microsoft ICE. (d) Kolor Autopano. (e) the
proposed method.

In summary, APAP chooses the first frame as the refer-
ence frame, so the strabismus phenomenon always exists.
Meanwhile, APAP divides the frame into some small cells,
and the spatial constraint is broken, thus, distortion happens.
In addition, the weighted process is easy to introduce image
blurry. For those commercial tools, it is difficult to obtain
technical data. Thus, the reason for the bad visual effect is
not very clear. Comparatively speaking, the proposed method
focuses on each step of the multi-row panorama generation,
and the generated panorama has good visual effect.

FIGURE 16. The generated panoramas for Library sequence. (a) APAP.
(b) AutoStitch. (c) Microsoft ICE. (d) Kolor Autopano. (e) the proposed
method.

2) OBJECTIVE EVALUATION
This paper also makes an objective evaluation on the data
set. Because the code of APAP can be obtained from the
authors of the papers, and the commercial tools AutoStitch,
ICE and Kolor Autopano only provide the final stitching
images, we only compare the proposed method with APAP.
The average re-projection error is adopted to evaluate the
accuracy of the alignment.

For each aligned image pairs, 20 matching points are
marked artificially, which are regarded as the reference
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FIGURE 17. The generated panoramas for Gym sequence. (a) APAP.
(b) AutoStitch. (c) Microsoft ICE. (d) Kolor Autopano. (e) the proposed
method.

positions. The reference positions are compared with
the warped positions to get the re-projection error.
TABLE 2 depicts the average re-projection error (over 20 rep-
etitions) on the sequences of Building, Scenery, Street View
scenarios for APAP and the proposed method. Obviously,
the proposed method outperforms better.

D. TIME EFFCIENCY ANALYSIS
The computational cost of the proposed MRPG mainly
focuses on image registration and image resampling.

In the process of image registration, the most time-
consuming parts are the Gaussian pyramids building,

FIGURE 18. The generated panoramas for Rhine sequence. (a) APAP.
(b) AutoStitch. (c) Microsoft ICE. (d) Kolor Autopano. (e) the proposed
method.

TABLE 2. Average re-projection error (in pixel) comparisons.

the computation of the feature description and the feature
matching. Suppose the size of one frame or one block is
h×w, and the SIFT features number is N . Suppose there are
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TABLE 3. Processing time.

M group and L level in each group. Then, for one stitching,
the cost for the image registration is

O(
M−1∑
i=0

h× w
4i
× L + N + N ) (9)

In the process of the image resampling, the cost is
O(h × w). Thus, for a video sequence with u scanning row
and v scanning column, the cost is

O((
M−1∑
i=0

h× w
4i
× L + N + N + h× w)× u× v) (10)

For comparisons, all the methods are tested using a PC
with a Intel(R) CoreTMi3-3110M CPU (2.4GHz) and 4 GB
RAM. For the three commercial tools AutoStitch, ICE and
Kolor Autopano, the processing and optimization have been
integrated into the executable programs, which are released
on their official websites. Thus, we can only count the running
time of the executable programs. For each tool, the running
time includes three parts: reading two images, stitching two
images and outputting the stitching result. Therefore, for the
sake of fairness, the other methods also count the time of the
three parts as the final running time.

ForAPAP, the code is provided by the authors of the papers,
and they are run in MATLAB. For the proposed method,
it is implemented in C++ code. Considering the different
compiling environments, the comparison of the running time
for these methods is unfair. We just list the running time
of these methods in TABLE 3 for reference. Apparently,
the processing times are different depending on the image
size.

VI. CONCLUSION
This paper proposes a multi-row panoramic image stitching
method. Firstly, it designs an optimal scanning path to cover
the large viewing field, and then selects the center frame to
start to stitch. This process can cover the viewing field as
large as possible, and also avoid the strabismus and accu-
mulative errors. And then, the stitching process uses first-
column and second-rowmanner, rather than uses the common
stitching along the scanning direction, or uses the reference
frame along horizontal and vertical directions synchronously.
The first-column and second-row manner is in favor of han-
dling the accurate alignment. Furthermore, multi-point joint
stitching is proposed to guarantee the accurate matching in

subtle regions, especially the stitching border and the non-
overlapping region.

Experimental results show that the proposed method can
provide a faster and more accurate panoramic image than
other state-of-the-art image stitching methods, and also give
a better visual effect in a large view panorama.
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