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Abstract— Dual Energy X-ray Absorptiometry (DXA) is the 

standard exam for osteoporosis diagnosis and fracture risk 

evaluation at the spine. However, numerous patients with bone 

fragility are not diagnosed as such. In fact, standard analysis of 

DXA images does not differentiate between trabecular and 

cortical bone; neither specifically assess of the bone density in the 

vertebral body, which is where most of the osteoporotic fractures 

occur. Quantitative Computed Tomography (QCT) is an 

alternative technique that overcomes limitations of DXA-based 

diagnosis. However, due to the high cost and radiation dose, QCT 

is not used for osteoporosis management.  We propose a method 

that provides a 3D subject-specific shape and density estimation 

of the lumbar spine from a single anteroposterior (AP) DXA 

image. A 3D statistical shape and density model is built, using a 

training set of QCT scans, and registered onto the AP DXA 

image so that its projection matches it. Cortical and trabecular 

bone compartments are segmented using a model-based 

algorithm. Clinical measurements are performed at different 

bone compartments. Accuracy was evaluated by comparing 

DXA-derived to QCT-derived 3D measurements for a validation 

set of 180 subjects. The shape accuracy was 1.51 mm at the total 

vertebra and 0.66 mm at the vertebral body. Correlation 

coefficients between DXA and QCT-derived measurements 

ranged from 0.81 to 0.97. The method proposed offers an 

insightful 3D analysis of the lumbar spine, which could 

potentially improve osteoporosis and fracture risk assessment in 

patients who had an AP DXA scan of the lumbar spine without 

any additional examination. 

 
Copyright (c) 2018 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

This work was supported by: Industrial Doctorates program (Generalitat de 

Catalunya), QUAES Foundation - UPF Chair for Computational Tools for 

Healthcare, Programa Estatal de Investigación, Desarrollo e Innovación 

Orientada a los Retos de la Sociedad, MINECO (Reference: RTC-2014-2740-

1) and Eurostars program (Project ID: 9 140) funded by CDTI. L. Humbert 
and Y. Martelli are stakeholders at Galgo Medical.  

*M. López Picazo is with BCN Medtech, Universitat Pompeu Fabra, 

08018 Barcelona, Spain and with Galgo Medical S.L., 08036 Barcelona, Spain 
(correspondence e-mail: mirella.lopez.picazo@gmail.com). A. Magallón 

Baro, Y. Martelli, J. Romera, M. Steghöfer and L. Humber are with Galgo 

Medical S.L., Barcelona, Spain. L. M. del Río Barquero and S. di Gregorio are 
with CETIR Grup Mèdic, Barcelona, Spain. M. A. González Ballester is with 

BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain and with ICREA, 

Barcelona, Spain. 
This paper contains supplementary materials and color versions of the 

figures available online at http://ieeexplore.ieee.org in the supplementary files 

/multimedia tab. 

Index Terms— Bone mineral density, cortical thickness, DXA, 

image registration, lumbar spine, statistical model 

I. INTRODUCTION 

STEOPOROSIS is defined as “a systemic skeletal disease 

characterized by low bone mass and microarchitectural 

deterioration of bone tissue with a consequent increase in bone 

fragility and susceptibility to fracture” [1]. It is the most 

common bone disease: approximately 22 million women and 

5.5 million men older than 50 years are estimated to have 

osteoporosis in the EU [2]. The absence of symptoms in the 

early stage leads to millions of people remaining undiagnosed 

and untreated [3], increasing their probabilities to suffer from 

a fracture. Worldwide, 1 in 3 women and 1 in 5 men aged over 

50 years old experience osteoporotic fractures [4], [5]. 

The World Health Organization recommends the evaluation 

of Bone Mineral Density (BMD) to diagnose osteoporosis [6], 

[7]. The BMD is used to calculate the T-score as: the 

difference between the patient’s BMD and the mean BMD of 

a reference young healthy population, divided by the standard 

deviation of the reference population. Postmenopausal women 

and men age 50 years and older are diagnosed with 

osteoporosis when their T-score measured at the lumbar spine, 

total hip, or femoral neck is ≤ -2.5 [8].  

Dual Energy X-ray Absorptiometry (DXA) is the most used 

technique to evaluate BMD, as it is a low radiation, painless 

and non-expensive technique. DXA provides 2D images in 

which the areal bone mineral density (aBMD, g/cm2) is 

measured. The International Society for Clinical Densitometry 

(ISCD) recommends to use the projected density along the 

anteroposterior (AP) direction to diagnose osteoporosis at the 

lumbar spine [8]. Vertebral fractures mainly take place in the 

vertebral body [9]. However, in AP DXA scans of the lumbar 

spine, the vertebral bodies superimpose with the posterior part 

of the vertebrae (pedicles, spinous processes and facets). 

Therefore, the vertebral body BMD cannot be estimated in AP 

DXA scans without including the posterior part of the 

vertebra, which is a limitation of DXA-based diagnosis of 

osteoporosis at the lumbar spine. Bone strength and fracture 

risk do not only depend on BMD but also on bone quality 
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[10]. Whereas low aBMD is among the strongest fracture risks 

[11], it is not sufficient to explain all osteoporotic fractures 

[12]. In fact, low aBMD only explains 60 to 80 % of bone 

strength under laboratory conditions [13], and only 50 % of 

osteoporotic fractures are observed in postmenopausal women 

with a T-score below -2.5 [14]. Trabecular bone architecture 

and cortical bone thickness are important elements that 

determine bone quality [15]. In osteoporotic bones, trabecular 

and cortical volumetric BMD (vBMD) decrease (with 

different rates), as trabecular bone becomes more porous and 

cortical bone thickness decreases [16]. Trabecular and cortical 

bone have different metabolic processes and response to 

medication [17]. However, trabecular and cortical tissues are 

difficult to assess separately in a DXA scan. 

An alternative technique to measure BMD is Quantitative 

Computed Tomography (QCT). QCT uses a standard CT 

scanner with a calibration phantom to convert Hounsfield 

Units of the CT image to BMD values. Using this technology, 

a 3D analysis of the bony structure can be performed, 

vertebral body vBMD can be measured independently of the 

posterior part of the vertebra, and even trabecular or cortical 

structures can be evaluated separately. However, QCT results 

in exposure to a higher dose of radiation and is more 

expensive, compared to DXA. Moreover, cortical thickness 

(especially at the vertebral body) has dimensions in the range 

of the spatial resolution of clinical QCT scans and thin 

cortices need advanced techniques to be measured accurately 

[18]. Consequently, QCT is rarely used in clinical practice for 

osteoporosis management [16].  

To overcome the limitations of DXA and QCT, methods 

using statistical models and registration algorithms were 

proposed to estimate the 3D shape and density of bones from a 

limited number of DXA scans. Statistical Shape Models 

(SSM), proposed by Cootes [19], capture statistical shape 

variability of anatomical structures within a population from a 

training dataset. Statistical Appearance Models (SAM) [20] 

capture grey-level appearance, allowing to characterize the 

inner structure of the objects. Active Shape and Appearance 

Models register and fit the SSM and SAM, with the aim to 

characterize and interpret similar structures in new data. 

SSMs, generated from CT images, are used to recover the 

3D shape of the proximal femur from a few radiographs  [21]–

[23]. Individual vertebral SSMs are used to estimate 3D 

subject-specific scoliotic spines from posterior-anterior and 

lateral radiographs [24], [25]. These methods focus on 

estimating the 3D bone shape from 2D images. Other methods 

are proposed to estimate, in addition to bone shape, the BMD 

distribution, [26]–[28].  

However, in the above-described methods, no specific 

algorithm is proposed to quantify the cortical and the 

trabecular bone. Väänänen et al. [29] rely on a 3D-2D 

modelling method, and estimate the cortical thickness using 

thresholding and morphological operations. Thresholding 

techniques, however, have been shown to be less accurate 

when estimating thin cortices [30]. Humbert et al. [31] 

propose a method to assess the cortex and trabecular 

macrostructure of the proximal femur in 3D from an AP DXA 

scan. A model-based approach is used to estimate the cortical 

thickness and density [32], providing accurate measurements 

even for thin cortices. 

Applying such methodologies to obtain 3D subject-specific 

shape and density estimation of the lumbar spine from DXA 

scans is not straightforward: DXA spine images are much 

noisier than hip DXA scans because rays have more biological 

tissue to penetrate; geometry of the spine is more complex 

than the one of the femur; and the presence of more than one 

anatomical structure (i.e. 4 lumbar vertebrae) requires 

modelling inter-object relationships besides shape and density. 

Moreover, the cortex of the vertebral body is very thin (from 

180 to 600 µm with a mean thickness of 380 µm [33], [34]), 

which makes the segmentation of the cortical and trabecular 

bone very challenging. Whitmarsh et al. [35] obtain 3D 

subject-specific estimates of the lumbar spine (from L2 to L4) 

using two DXA images (AP and lateral views). For each 

vertebra, a statistical shape and density model is generated. 

The three models are simultaneously registered onto the AP 

and lateral DXA scans to generate a 3D model of the lumbar 

spine. Although measurements are performed in the trabecular 

compartment, no specific algorithm is proposed to quantify the 

cortical bone. Furthermore, lateral spine imaging with 

densitometric Vertebral Fracture Assessment (VFA) is used in 

clinical practices to evaluate the presence of vertebral 

fractures. However, VFA (which uses single-energy X-rays) 

does not measure BMD. Due to high precision errors, lateral 

DXA (i.e. double-energy) scans should not be used for 

osteoporosis screening [8]. To the best of our knowledge, no 

3D modelling methods of the shape and density of the lumbar 

spine, or its cortical and trabecular bone assessment, using a 

single AP DXA scan, has been reported in the literature.   

In this paper, we propose a method to estimate the shape and 

vBMD at the lumbar spine (from vertebra L1 to L4) using a 

single AP DXA image. The method is based on a 3D 

statistical shape and density model built from a training set of 

90 QCT scans. The model describes the principal statistical 

variations in shape and density observed in the training 

database. A 3D shape and density estimation of the lumbar 

spine is obtained by registering and fitting the statistical model 

onto the AP DXA image. Then, a model-based algorithm is 

used to segment the cortical layer and propose a separate 

assessment of the trabecular and cortical bone at the vertebral 

body. Clinical measurements are performed at different 

vertebral regions and bone compartments. Finally, the 

accuracy of the method is evaluated by comparing DXA-

derived with QCT-derived 3D subject-specific models and 

clinical measurements for a validation set of 180 subjects.   

II. MATERIALS AND METHODS 

A. Study subjects and medical images 

Two different databases collected by the CETIR Centre 

Mèdic (Barcelona, Spain) were used in this study: a training 

database (90 subjects) to generate the statistical shape and 

density model (Section II.B), and a validation database (180 

subjects) to evaluate the accuracy of the DXA-derived 3D 
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measurements (Section II.E). 

Subjects included in both databases were adult men and 

women. Exclusion criteria included skeletal disease other than 

osteoporosis, such as severe osteoarthritis, severe scoliosis or 

abnormal bone growth and vertebral fracture. An additional 

criterion to recruit the subjects included in the validation 

database was to obtain the same number of subjects in each 

category used to define bone density: 30 subjects with 

osteoporosis, 30 with osteopenia and 30 with normal bone 

density; with a 2/3 female and 1/3 male ratio.  

All subjects included in the training and validation database 

presented clinical indications for an AP DXA scan at the 

lumbar spine. When DXA scan confirmed that 

inclusion/exclusion criteria were met, the subjects were 

invited to participate to the study and abdominal QCT scans 

were performed. AP DXA and QCT scans were therefore 

performed for all participants. Both scans were analyzed and 

interpreted by radiologists. AP DXA scans of the training set 

were used to ensure inclusion/exclusion criteria were met; 

whereas AP DXA scans of the validation set were also used to 

generate the 3D subject-specific estimations. QCT scans of the 

training set were used to generate the statistical shape and 

density model; whereas QCT scans of the validation set were 

used as ground truth to evaluate the accuracy of the estimated 

DXA-derived 3D measurements. Volunteers were informed 

about the purpose of the study, the potential risks of 

undergoing explorations in which they would be subjected to 

ionizing radiations and the subsequent use of their 

anonymized scans. Volunteers were recruited until achieving 

the desired number of subjects in each group. The study was 

approved by the Committee of Clinical Investigation of 

“Fundació d’unió Catalana d’hospitals” and written informed 

consent was obtained from all subjects. Subjects included in 

the training and validation sets were collected prospectively 

within the European Eurostars Project (ID: 9 140). 

The AP DXA scans were performed at CETIR Centre Mèdic 

using a Lunar iDXA scanner (GE Healthcare, Madison, WI) or 

a Stratos dR DXA scanner (DMS, Mauguio, France). aBMD 

at vertebrae L1 to L4 (L1-L4 segment) was measured in the 

DXA images and T-score was computed using the enCORE 

software (GE Healthcare) or Stratos software (DMS), 

respectively. Participants were categorized using the T-score 

of the L1-L4 segment, following the ISCD recommendations 

[8], as: normal bone mass or healthy (T-score ≥ -1), low bone 

mass or osteopenia (-2.5 < T-score < -1) or osteoporosis (T-

score ≤ -2.5). Vertebrae affected by local structural changes or 

artefacts were excluded to derive the T-score. However, this 

criterion was not used as exclusion criteria for the subject, 

neither to discard vertebrae for the statistical model generation 

nor for the 3D estimation. 

The QCT scans were performed at the lumbar spine, in a 

region of interest including at least vertebrae L1 to L4. The 

study subjects were scanned at CETIR Esplugues PET 

(Esplugues de Llobregat, Spain) using a Philips Gemini GXL 

16 (Philips Healthcare, Best, The Netherlands) or a GE 

HiSpeed QX/I scanner (GE Healthcare), and at CETIR Clinica 

del Pilar (Barcelona, Spain) using a GE Discovery CT750 HD 

scanner (GE Healthcare).  The QCT voxel size ranged from 

0.64 mm × 0.64 mm × 0.5 mm to 1.10 mm × 1.10 mm × 0.5 

mm (average pixel size: 0.86 mm × 0.86 mm), with a matrix 

size of 512 × 512 pixels. The scans were acquired with a 

distance between consecutive slices of 0.5 mm, slice thickness 

ranging from 1 to 1.25 mm, convolution kernel A (Philips 

scanner) and standard (GE scanners), x-ray source potential of 

120 kVp, tube current ranging from 138 to 188 mA, resulting 

in a dose index (CTDIvol) ranging from 10.0 to 11.6 mGy. A 

calibration phantom (Mindways Software Inc., Austin, TX) 

was scanned together with the subjects. 

Three subjects of the validation set were selected as 

examples for some of the figures presented in this paper: a 

healthy female (T-score of 1.1), a female with osteopenia (T-

score of -2) and a female with osteoporosis (T-score of -3.9)1.     

B. Statistical shape and density model generation 

A statistical shape and density model was built using the 90 

QCT scans collected from the training database as follows. 

1) Data pre-processing 

DICOM images from QCT scans were converted in 

volumetric images (i.e. 3-dimensional matrices where each 

element is a sampled density) and calibrated using the 

Mindways phantom. The calibration process was performed 

for each L1-L4 segment, for the 90 subjects in the training set, 

following the protocol recommended by the manufacturer. 

The calibrated QCT volumes were filtered to enhance the 

contrast in the facet joints, thereby helping the individual 

segmentation of each vertebra [36], as follows. First, small 

groups of bright voxels at vertebral joint space were darkened 

using a 3D opening filter. Then, a top-hat filter was applied to 

highlight the brightest areas (vertebral bone); and a bottom-hat 

filter was applied to highlight the darkest areas (facet joints). 

Finally, the contrast between bone and facet joints was 

enhanced adding to the QCT volume the top-hat filtered 

volume and subtracting the bottom-hat filtered volume. The 

filtered QCT volumes were used only to help segmentation, 

not to generate the statistical density model. 

Vertebrae were semi-automatically segmented in the pre-

processed QCT volumes using the software TurtleSeg [37], 

[38], which implements the following process. The vertebral 

contours are manually identified in a set of non-parallel slices. 

The software automatically interpolates the contours to form a 

3D segmentation, resulting in a volumetric mask for each 

vertebra. If the results are not satisfactory, additional contours 

are identified and the interpolation is repeated. Local 

deformities, such as spurs, were manually segmented by 

painting and erasing techniques.  The segmentation process 

was performed for each vertebra, and for the 90 subjects in the 

training set. The segmentation process took between forty 

minutes and two hours to segment each vertebra of the L1-L4 

segment, depending on the image quality and the presence of 

local deformities of the vertebrae. 

 
1 The AP DXA and QCT images obtained for these subjects with close ups 

on the L2 vertebra are provided as supplementary downloadable material 

(Appendix A) in the supplementary files /multimedia tab. 



0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2845909, IEEE
Transactions on Medical Imaging

4 

 

Finally, the resulting 3D vertebral masks are subsampled and 

smoothed with a Gaussian filter. A triangulated surface mesh 

between 5638 and 15368 vertices and between 11276 and 

30772 faces is generated for each vertebra2.  

2) Shape alignment 

The surface meshes resulting from the segmentation process 

have different number and arrangement of vertices and faces. 

Point set registration techniques are used at each vertebral 

level (L1, L2, L3 and L4) to create correspondence between 

the vertices of the surface meshes. First, a lumbar spine having 

a normal aBMD (T-score ≥ -1) and without local deformities, 

such as bone spurs, is chosen among the subjects of the 

training set. The vertebrae L1 to L4 of the chosen lumbar 

spine are used as reference for its respective vertebral level. 

Then, the vertices of the reference mesh are non-rigidly 

registered onto the vertices of each surface mesh of the 

training set using the Coherent Point Drift (CPD) algorithm. 

Details of CPD algorithm can be found elsewhere [39], [40].  

To improve the accuracy of the meshes resulting from the 

CPD registration process, each surface mesh is projected onto 

its corresponding original surface mesh using the normal 

vectors of the vertices of the meshes. This sometimes results 

in meshes including flipped faces, which are detected by 

comparing the orientation of the normal vectors to the faces of 

the meshes after and before projection. Flipped faces are then 

corrected by replacing the projected vertices by its nearest 

point on the original surface mesh, and by smoothing the 

neighboring region. Projection of the mesh vertices and 

flipped faces detection/correction algorithm is repeated 

iteratively until no flipped face is detected. This results in a set 

of surface meshes having the same number and arrangement 

of vertices and faces within each vertebral level (4545, 5025, 

5437 and 5421 vertices and 9090, 10050, 10874 and 10842 

faces for L1, L2, L3 and L4, respectively). The accuracy of the 

point set registration process was evaluated by computing the 

signed distance between each vertex of registered reference 

mesh and its nearest point in the original surface mesh. At the 

end of the process, the mean distance (± SD) computed for all 

vertebrae of the training database was -0.0017 ± 0.0765 mm, 

with a maximum distance of 1 mm.  

Finally, the surface meshes of the L1-L4 segment obtained 

for the 90  subjects are aligned (scaled, rotated and translated) 

using Generalized Procrustes Analysis (GPA) [41]. 

The above-described registration process is biased by the 

choice of the reference shape that is used at the beginning of 

the process. The shape alignment process is thus iterated to 

correct for this bias. At each iteration 𝑖𝑡, the reference mesh is 

replaced by the average shape of the surface meshes obtained 

at the end of iteration 𝑖𝑡 − 1 (i.e. after GPA alignment). The 

point-to-surface distances between the reference shapes at 

iterations 𝑖𝑡 and 𝑖𝑡 − 1 are computed to study the convergence 

of the process. The process converged after five iterations. 

 
2 Details and images showing the segmentation process are provided as 

supplementary downloadable material (Appendix B) in the supplementary 

files / multimedia tab. 

3) Statistical shape model 

The SSM of the lumbar spine is defined as the mean position 

of the vertices and the main modes of variation describing the 

linear displacements of the vertices from their mean position 

[42]. Each 𝑖𝑡ℎ lumbar spine (L1-L4 segment) obtained after 

the shape alignment process is represented by a 3n element 

vector 𝒔𝑖 = (𝒙1, 𝒙2, . . . 𝒙𝑛)𝑇 with 𝒙 =  [𝑥, 𝑦, 𝑧] gathering the 

position of its 𝑛 vertices. Principal Component Analysis 

(PCA) [43] is used to reduce the space dimensionality, 

assuming all lumbar spine shapes in the training dataset follow 

a Gaussian distribution. The mean 𝒔̅  and covariance 𝜮 of the 

point cloud take the form: 

𝒔̅ =  
1

𝑘
 ∑ 𝒔𝑖

𝑘

𝑖=1

 (1) 

𝜮 =  
1

𝑘 − 1
∑(𝒔𝑖 − 𝒔̅)(𝒔𝑖 −  𝒔̅)𝑇

𝑘

𝑖=1

 (2) 

where 𝑘 is the number of training shapes. Eigenvectors 𝝆𝑗 and 

eigenvalues 𝜆𝑗 with 𝑗 =  1, . . . , 𝑘 − 1 of the covariance matrix 

𝚺 are computed as described by Cootes et al. [44]. The 

eigenvectors 𝝆𝑗 represent the principal modes of variation, 

and the eigenvalues 𝜆𝑗 represent the variance of the data 

around the mean in the direction of the corresponding 

eigenvector 𝝆𝑗. Lumbar spine shapes in the PCA domain can 

be expressed as: 

𝒔 =  𝒔̅ + 𝑷𝒂 (3) 

where 𝑷 =  (𝝆1𝝆2. . . 𝝆𝑝) is the matrix of the principal 

components (the first 𝑝 modes of variation, corresponding to 

the most significant eigenvectors) and 𝒂 is a p-dimensional 

vector of scalar coefficients weighting the contribution of each 

principal component. 

The range of variation of the shape parameters 𝒂 is bounded 

to avoid that implausible lumbar spine shapes are modelled. 

After examining the distribution of the 𝒂 values required to 

generate the shapes of the training set [44], we choose to 

approximate the shape space domain (subspace of allowed 

shapes) by a hyperrectangular space, applying hard limits of 

±3 times the standard deviations along each principal 

component: 

|𝑎𝑗|  <  3√𝜆𝑗    (4) 

4) Volume alignment 

The calibrated QCT volumes at the L1-L4 segment are 

aligned to remove the shape variability and to assure that the 

statistical density model captures only variations related to 

density. Thin Plate Spline (TPS) transformations [45] are 

computed between the mean SSM (𝒔̅) of the L1-L4 segment 

and each one of the spine shapes obtained before GPA 

alignment (and after the correspondence of the vertices), Fig. 

1a. 8000 vertices (resulting from the decimation of the mean 

shape) are used as control points to compute the TPS 

transformations. The accuracy of the TPS transformations was 
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evaluated by applying the transformations to the mean shape 𝒔̅  

and computing the signed distance between each vertex of the 

transformed shape and its nearest point in the surface mesh 

obtained before GPA alignment. The mean distance (± SD) 

computed for all spine shapes of the training database was 

0.00023 ± 0.14830 mm.   

A volumetric grid initialized over 𝒔̅ is used as template for 

sampling. The grid size is set up so that it encompasses the 

mean L1-L4 segment shape plus 15 mm in each direction, 

with a voxel size of 1 mm3. The reference volumetric grid is 

filled with null values. The computed TPS transformations are 

applied to the reference grid to obtain 3D displacement fields, 

Fig. 1b. Density values at the deformed grid coordinates are 

computed by tri-linear interpolation in the original calibrated 

QCT volumes. The computed density values are used to fill 

the reference 3D template, Fig. 1c. This results in a set of 

volumetric images with the size and resolution of the 3D 

reference template, and the shape of the mean SSM, however 

maintaining their original density content. 

5) Statistical density model 

The statistical density model of the lumbar spine is defined 

as the mean density values, each one corresponding to a voxel 

in the reference 3D template image, and the main modes of 

variation describing the density distribution from their mean 

value. A binary mask is generated over the mean SSM (𝒔̅) and 

applied to the aligned volumetric density images to capture 

only the density variations inside the 4 lumbar vertebrae. Each 

lumbar spine obtained after the volume alignment process is 

represented by an 𝑚 element vector 𝐠i = (𝑑1, 𝑑2, . . . , 𝑑𝑚)𝑇 

gathering the bone density values contained in the 𝑚 voxels 

inside the binary mask.  PCA is used to extract principal 

density variation modes using the computed density matrix as 

inputs. New density volumes are defined as: 

𝒈 =  𝒈̅ + 𝑸𝒃 (5) 

where 𝐠̅ is the mean density volume of the training set, 𝑸 =
(𝝆1𝝆2. . . 𝝆𝑞) is the matrix of the principal components (the 

first 𝑞 modes of variation) and 𝒃 is a q-dimensional vector of 

scalar coefficients weighting the contribution of each principal 

component. The parameters are calculated as in Section 

II.B.3). Density parameters 𝒃 are constrained as in (4). 

6) Model instance 

The statistical shape and density model built is composed by 

a mean shape and density volume, and a set of components 

modelling the principal variations observed in the training set3. 

An instance of the statistical model is generated as follows. 

 Starting from the mean density 𝒈̅ and the mean shape 𝒔̅ of 

the statistical model, a temporary density instance 𝒈 is 

generated, using (5), over the mean shape  𝒔̅,  Fig. 2a. Then, a 

shape instance 𝐬 is generated by deforming the mean shape 𝒔̅ 

using (3) and by subsequently applying a similarity transform 

𝑻: 

 
3The statistical model variations in the three principal directions, can be 

seen in a video graphical abstract available in the supplementary files 

/multimedia tab. 

𝑻(𝑠) =  𝛼𝑹𝒔 + 𝒕 (6) 

where 𝛼 is the scaling, 𝑹 the 3x3 rotation matrix determined 

by the rotation angles (𝜃𝑥 , 𝜃𝑦, 𝜃𝑧) around (𝑥⃗, 𝑦⃗, 𝑧)  axes and 

t =  (𝑡𝑥, 𝑡𝑦 , 𝑡𝑧)𝑇  the translation vector, Fig. 2b. Then, the 

temporary density instance 𝒈 is deformed onto the shape 

instance 𝐬 as follows. A TPS transformation between the 

shape instance 𝐬 and the mean shape 𝒔̅ is computed using 1000 

vertices as control points, Fig. 2c. The control points are 

obtained by decimation of the original shapes. A reference 

volumetric grid is created over the shape instance 𝐬 and the 

calculated TPS transformation is applied to the reference grid, 

Fig. 2d. The density values at the transformed grid are 

interpolated in the temporary density instance. Finally, the 

reference volumetric grid is filled using the interpolated 

density values, Fig. 2e. 

C. 3D subject-specific shape and density estimation from 

DXA images 

A 3D subject-specific shape and density lumbar spine 

estimation is obtained by performing a 3D-2D registration of 

the statistical shape and density model onto the AP DXA scan 

of the patient, Fig. 3. The AP DXA scans from the validation 

database are used to generate the DXA-derived 3D subject-

specific estimations. 

 
Fig. 2. Model instance generation a) Generate density instance; b) 
Generate shape instance; c) Compute TPS transformation; d) Apply TPS 

transformation; e) Interpolate. The model instance is generated for the four 

vertebrae simultaneously (L1-L4 segment); in this figure, only one vertebra is 
shown for better visualization. 

 

 
Fig. 1. Lumbar spine volume alignment: a) Compute TPS transformations 

between the mean shape and surface shapes; b) Apply TPS transformations to 

the reference volumetric grid; c) Interpolate and assign density values to the 
reference grid. The alignment process is applied to the four vertebrae 

simultaneously (L1-L4 segment); in this figure, only one vertebra is shown 

for better visualization. 
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1) 2D Mask 

A 2D binary mask is automatically generated over the 

lumbar spine region to define the region of interest of the 

DXA image to be used in the 3D-2D registration process. A 

mask over the bony structures and a set of landmarks that 

defines a quadrilateral over each vertebra, both provided by 

the DXA scanner manufacturer software, are used. The mask 

over the bony structures is cropped over L1 and below L4, 

using the landmarks associated with these two vertebrae, Fig. 

3 (“Bone Mask” image). Then, the resulting mask is slightly 

dilated in the lateral direction using a disk-shaped structural 

element (radius 8), Fig. 3 (“L1-L4 Mask” image).  

2) 3D-2D Registration 

The 3D-2D registration is an iterative process of registration 

and fitting based on a 3D-2D intensity-based registration 

method4. At each iteration, an instance of the 3D model is 

created, and a 2D image is generated using a parallel 

projection of the 3D model in the AP direction, Fig. 3 (“Model 

Instance” and “2D Projection” images). Current narrow-angle 

fan beam DXA scanners, such as Lunar iDXA (GE) and 

Stratos dR DXA (DMS), generate AP DXA images essentially 

without magnification. Therefore, the density of the model 

instance 𝑰𝑀𝑜𝑑𝑒𝑙  is projected, using a parallel projection in the 𝑧   

direction, to generate the simulated 2D image  𝑰𝑆𝑖𝑚: 

𝑰Sim(𝑥, 𝑦) =  ∑ 𝑰𝑀𝑜𝑑𝑒𝑙(𝑥, 𝑦, 𝑧)

𝑧

 (7) 

The following model instance parameters are optimized to 

maximize the similarity between the projection of the model 

instance 𝑰𝑆𝑖𝑚 and the DXA image  𝑰𝐷𝑋𝐴: the pose parameters 

(α, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧, 𝑡𝑥, 𝑡𝑦), the shape model parameters 𝒂 and the 

density model parameters 𝒃. The translation in the 𝑧 direction 

is not optimized because the model is projected in that 

direction.   

The similarity between 𝑰𝑆𝑖𝑚 and 𝑰𝐷𝑋𝐴 is measured in the 2D 

binary mask region of interest as: 

𝐸(𝛼, 𝜽, 𝒕, 𝒂, 𝒃) =
1

𝑃
∑ (𝑰𝑆𝑖𝑚(𝑣) − 𝑰𝐷𝑋𝐴(𝑣))2

𝑣 ∈𝑀𝑎𝑠𝑘

 (8) 

where 𝑃 is the number of pixels set to 1 in the mask. The 

parameters of the model are optimized in a 3-step process 

using Powell's conjugate direction method [46]. In the first 

step, translation and scale parameters are optimized. In the 

second step, the rotation is optimized in addition to the 

translation and scale parameters. In the third step, a non-rigid 

registration is performed and all parameters are optimized. 

Each step is iterated until the cost function values at the 

current parameter and at the local extrema are within a 

tolerance of 0.01. 

3) Model initialization  

The model is initialized as follows. The scale is set to 1 and 

 
4 The 3D-2D registration process can be seen in a video graphical abstract 

available in the supplementary files /multimedia tab. 

the rotation angles to 0. The initial translation is set up to align 

the center of the model with the center of the 2D mask (Fig. 3, 

“L1-L4 Mask” image). The mean density and shape instance 

of the statistical model is used in the first iteration (shape and 

density parameters 𝒂 and 𝒃 set to 0). Shape and density model 

parameters 𝒂 and 𝒃 are bounded by (4), thereby guaranteeing 

new model instances deform into lumbar spines conforming to 

global constraints imposed by the training set. The accurate 

model initialization obtained using the L1-L4 mask (Fig. 3) 

and the coarse-to-fine registration described in Section II.C.2) 

helps the convergence of the optimization process.  

D. Geometrical and bone mineral density measurements 

1) Periosteal and endocortical shapes 

The cortical layer is segmented in the density volumes 

resulting from the 3D-2D registration process to perform a 

separate assessment of the cortical and trabecular bone. The 

periosteal (outer) and endocortical (inner) surfaces of the 

cortical layer are found by adapting the model-based 

algorithm described in Humbert et al. [32] as described below 

and illustrated in Fig. 4. At each vertex of the shape model 

instance 𝐬, the density profile along the normal vector to the 

vertebral surface is measured by linearly interpolating in the 

density volume 𝐠 (black line in Fig. 4). The profile extends 2 

mm outside the vertebral surface shape and 4 mm inside. The 

modelled density profile (grey line in Fig. 4) is described as:  

𝑑𝑚𝑜𝑑(𝒙) = 𝑑0 +
𝑑1−𝑑0

2
 (1 + erf (

𝒙−(𝑥1−
∆

2
)

𝜎√2
)) +

                                
𝑑2−𝑑1

2
 (1 + erf (

𝑥−(𝑥1+
∆

2
)

𝜎√2
))  

(9) 

 

where 𝑑0,𝑑1 and 𝑑2 represent the density values in the 

surrounding tissue, within the cortex and within the 

trabeculae, respectively; 𝒙1 the central position of the cortical 

shell; ∆ is the cortical thickness; and 𝜎 is the standard 

deviation of the blur caused for the response of the imaging 

system and modelled as a normalized Gaussian function.  

The position of the outer and inner surfaces of the cortical 

layer are determined by searching the optimal values of the 

cortical thickness ∆ and the center position of the cortical shell 

     Model         2D    

    Instance     Projection      L1-L4 Mask       Bone Mask            AP DXA 

 
Fig. 3. 3D-2D registration process. Left to right: instance of the statistical 

shape and density model, parallel projection of the 3D model in the AP 

direction, 2D mask over the L1-L4 segment, mask over bony structures and 
landmarks, and AP DXA image. 
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𝐱1, so that the modelled density matches the measured density 

profile. The Levenberg-Marquardt algorithm is used to find 

the optimal values. Fig. 4 shows a density model instance with 

line crossing the cortex shell where the density profile is 

measured. The measured density profile across the line is 

represented by the black dashed line.  

In the optimization the model is constrained using prior 

information about the relationship between the cortical       

thickness ∆ and the cortical density 𝑑1, in the form of a look-

up table, thus eliminating 𝑑1 from the optimization. The 

periosteal and endocortical surfaces are only estimated at the 

vertebral body5. The interior of the endocortical shape defines 

the trabecular compartment, and the volume between the 

periosteal and endocortical shapes the cortical one. The 

integral bone is the union of the cortical and trabecular bone 

compartments. 

2) Clinical measurements 

Geometry and density measurements are provided for 

clinical practice purposes. Volume, BMC and vBMD are 

measured at the integral bone of the total vertebra and 

vertebral body. These measurements are also obtained for the 

trabecular and cortical compartments individually at the 

vertebral body. The cortical thickness is obtained by 

measuring the distance between the periosteal and 

endocortical surfaces. The mean cortical thickness at the 

vertebral body (CTh) is provided. Besides individual 

measurements for each vertebral level, measurements of the 

L1-L4 segment are also provided. In total, 65 features are 

measured for each subject. Finally, a surface map of the 

cortical thickness distribution of each vertebra is generated. 

E. Validation method 

The developed method was validated by comparing DXA-

derived with QCT-derived 3D subject-specific shape and 

density estimates and clinical measurements using the 

validation set (180 subjects). The DXA and QCT-derived 

shape and density obtained for the three subjects selected as 

examples are shown in Fig. 5.  

3D subject-specific shape and density estimations (Fig. 5 2nd 

column) were generated from the AP DXA scans of the 

validation set (Fig. 5 1st column) by using the methodology 

proposed in Section II.C. Two surfaces delimiting the cortical 

shell (periosteal and endocortical surfaces) at the vertebral 

bodies were estimated, and the cortical thickness and density 

were measured at each vertex of the surface meshes as 

described in Section II.D.1). The clinical measurements were 

computed as described in Section II.D.2).  

On the other hand, QCT scans from the validation set were 

calibrated and segmented using the method described in 

Section II.B.1) (Fig. 5 3rd column). Position and curvature of 

the L1-L4 segments slightly differed between QCT and DXA 

acquisitions. For comparison purposes, each DXA-derived 

vertebral surface was aligned with its corresponding QCT-

derived surface using rigid transformations (Fig. 5 4th 

 
5 The cortex analysis can be seen in a video graphical abstract available in 

the supplementary files /multimedia tab. 

column). Rigid alignments were performed using the CPD 

algorithm [39], [40]. The region corresponding to the vertebral 

body of each aligned DXA-derived mesh was projected onto 

its corresponding QCT-derived mesh. The resulting vertebral 

body regions of interest, defined over the QCT surfaces, were 

used to estimate the cortical shell (using the model-based 

approach described in Section II.D.1) and to compute the 

clinical measurements (Section II.D.2). 

At each vertebral level, shape accuracy was measured using 

the point-to-surface distances between the vertices of the 

aligned DXA-derived and their corresponding QCT-derived 

periosteal surfaces. The cortical thickness and density 

distributions obtained with the two modalities were compared. 

The linear correlations between DXA and QCT-derived 

measurements were evaluated using the Pearson’s correlation 

coefficient. The statistical significance of the differences 

between measurements was evaluated using the Student’s t-

test. The experiments were done using an IntelCore i7-4790K 

CPU 3.60 GHz, 4 cores (8 treads), 64-bit, 16 GB of RAM with 

Windows 10. 

III. RESULTS 

The training set was formed by 90 subjects (66 females and 

24 males) with a mean age of 55.2 ± 11.3 years and a range 

between 30 and 83 years. The set was composed by 36 

subjects with normal bone mass, 37 with low bone mass and 

17 with osteoporosis. Mean T-score was -1.29 ± 1.31 with a 

range between -3.5 and 2.4.  

The validation set was formed by 180 participants. 90 

subjects (60 females and 30 males) with a mean age of 59.1 ± 

10.5 years and a range between 28 and 84 years were scanned 

using the Lunar iDXA device. 90 other subjects (60 females 

and 30 males) with a mean age of 54.1 ± 12.3 years and a 

range between 22 and 84 years were scanned using the Stratos 

dR device. Mean T-score was -1.26 ± 1.83 with a range 

between -4.4 and 3.4. 

 
Fig. 4. (Left) Shape and density model instance (axial view) with red line 
crossing the cortex shell where the density profile is measured. (Right) 

Density profile measured along the red line (d𝑚𝑒𝑠) and modelled density 

(𝑑𝑚𝑜𝑑) resulting from the Gaussian blur applied to the underlying density 

variations.  𝑑0, 𝑑1, 𝑑2 are the density values in the surrounding tissue, within 

the cortex, and within the trabecular bone, respectively;  ∆ is the cortical 

thickness, and 𝑥1 the location of the center of the cortex.  
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A. Shape accuracy 

Shape accuracy was measured at each vertebral level as 

described in Section II.E. Average point-to-surface distance 

between subject-specific periosteal surfaces obtained by DXA 

and QCT was 1.51 mm for the L1-L4 segments (Table I). A 

shape accuracy of 0.66 mm was achieved at the vertebral 

body. Similar point-to-surface distances were obtained for 

different vertebrae (L1 to L4) and datasets (using GE and 

DMS scanner). The systematic error (or bias) for the total 

vertebra shape was low (-0.05 mm for the L1-L4 segment), 

however significant (p-value < 0.01). The systematic error at 

the vertebral body was slightly higher (0.13 mm for the L1-L4 

segment, p-value < 0.01). The random error was lower for the 

vertebral body (SD of 0.84 mm), compared to total vertebra 

(SD of 2.02 mm), due to larger errors in modelling the back 

process. 

B. Cortical thickness and density distribution 

DXA-derived and QCT-derived cortical thickness and 

density were compared. An average difference of -0.01 ± 0.14 

mm and a mean absolute error of 0.10 mm were found for the 

cortical thickness in the L1-L4 segment. An average 

difference of -4.07 ± 74.49 mg/cm3 and a mean absolute error 

of 47.00 mg/cm3 was measured for the cortical density. The 

systematic error for the cortical thickness and density were 

low, however significant (p-value < 0.01). Differences for 
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Fig. 5.  Comparison of the DXA-derived and QCT-derived 3D subject-specific shape and density of the lumbar spine for three subjects selected as examples. 
1st column: AP DXA image with its 2D mask over the L1-L4 segment. 2nd column: Frontal slice of the 3D subject-specific shape and density estimated from the 

AP DXA image. 3rd column: Frontal slice of the QCT density and segmented shape. 4th column: QCT segmented shape and DXA-derived shape rigidly aligned 

onto the QCT shape. 
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each vertebral level and each dataset were similar6.  

The DXA and QCT-derived cortical thickness distribution 

obtained for the three example subjects are shown in Fig. 6. 

Cortical thicknesses follow a similar distribution between each 

pair, although the DXA-derived cortical thickness tends to be 

slightly thinner than the QCT-derived. The figure also shows 

that the healthy subject has a higher cortical thickness, 

compared to the subject with osteopenia and osteoporosis. 

C. Clinical measurements 

DXA and QCT-derived clinical measurements for the L1-L4 

segment were compared, Table II. A correlation coefficient 

(R) of 0.91 was found between DXA and QCT-derived 

integral vBMD at the total vertebra, and of 0.85 at the 

vertebral body (whole database). The R-values ranged from 

0.81 to 0.97, depending on the clinical measurements and 

datasets used. R-values obtained for vBMD and BMC in the 

cortical layer were slightly higher than the ones found for the 

trabecular compartment. Using the whole database of subjects, 

the integral vBMD of total vertebra was on average higher 

when estimated by DXA, compared to QCT (4.63 ± 23.82 

mg/cm3), although this difference was not significant. A 

statistically significant difference between DXA and QCT-

derived measurements was found for the trabecular vBMD 

and BMC at the vertebral body (p < 0.01), when the whole 

database is compared7.  

 The mean computing time to generate the DXA-derived 3D 

subject-specific models and clinical measurements was 3 min 

28 s and ranged between 2 min 38 s and 5 min 31 s.  

IV. DISCUSSION 

In this paper, we introduced a method to estimate the 3D 

shape and vBMD distribution of the lumbar spine (L1-L4 

segment) from a single AP DXA image, and to assess the 

cortical and trabecular bone. The method proposed is fully 

automated: no user iteration is needed8. Most of state-of-the-

art 3D modelling methods require a set of landmarks to be 

positioned in the DXA image, [28], [29], [35].  

An IntelCore i7-4790K CPU 3.60 GHz was used to process 

the AP DXA scans and obtained the 3D subject-specific 

models. The mean (±SD) number of iterations was 1628 ± 

218, achieving a mean computing time of 3 min 28 s. The 

computing time mostly depended on the size of the region of 

interest used in the 3D-2D registration process (L1-L4 mask, 

Fig. 3). The larger or wider the L1-L4 segment, the higher the 

computing time. Low computation time is one of the 

requirements of clinical practice. Humbert et al. [31] achieved 

the lowest computing time for the femur (1 min 30 s using an 

 
6 Details are provided in Appendix C (supplementary files/multimedia tab). 
7 DXA and QCT-derived clinical measurements and their comparison for 

each vertebral level (i.e. L1, L2, L3 and L4); and a comparison of the 

measurements for each category used to define bone density (healthy, 
osteopenia and osteoporosis) are provided in Appendix D. The DXA-derived 

vBMD value was plotted against its corresponding QCT-derived vBMD 

measure for each subject of the DMS validation set, Appendix E 
(supplementary files /multimedia tab).   

8 The workflow of the proposed method can be seen in a video abstract 

available in the supplementary files / multimedia tab. 

IntelCore i7-4790K CPU 4.0 GHz), in comparison with 

Väänänen et al. [29] (40 hours using an Intel Sandy Bridge 2.6 

GHz) or Whitmarsh et al. [28] (1 hour using an IntelCore i7 

CPU 920 2.67 GHz). The method developed by Whitmarsh et 

al. [35] took more than 4 h (using an IntelCore i7 CPU 920 

 
Fig. 6. Comparison of DXA-derived and QCT-derived cortical thickness 

distribution for the three subjects selected as examples.   
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Table I.  

Point-to-surface distances (mm) between the aligned periosteal surfaces of 
the 3D subject-specific shapes estimated by DXA and QCT: Mean ± 

Standard Deviation (SD) of the signed distances and mean of the unsigned 

(uns.) distances. Region of interest: vertebral shape (“Total”) and vertebral 

body (“Body”). 

 

 
 

 

All (N =180) GE (N =90) DMS (N =90)  

Mean ± SD 
Mean  

(uns.) 
Mean ± SD 

Mean  

(uns.) 
Mean ± SD 

Mean  

(uns.) 

L1 
Total 0.02 ± 1.80* 1.37 0.02 ± 1.82* 1.39 0.03 ± 1.78* 1.36 

Body 0.22 ± 0.85* 0.68 0.20 ± 0.86* 0.68 0.25 ± 0.85* 0.68 

L2 
Total -0.03 ± 1.82* 1.39 -0.03 ± 1.83* 1.39 -0.04 ± 1.81* 1.38 

Body 0.17 ± 0.83* 0.65 0.16 ± 0.84* 0.66 0.18 ± 0.83* 0.65 

L3 
Total -0.06 ± 4.05* 1.53 -0.09 ± 2.03* 1.52 -0.04 ± 2.06* 1.53 

Body 0.09 ± 0.82* 0.63 0.06 ± 0.81* 0.63 0.13 ± 0.83* 0.64 

L4 
Total -0.10 ± 2.35* 1.72 -0.15 ± 2.34* 1.71 -0.05 ± 2.35* 1.73 

Body 0.06 ± 0.86* 0.67 0.02 ± 0.86* 0.68 0.10 ± 0.86* 0.67 

L1-L4  

segment 

Total -0.05 ± 2.02* 1.51 -0.06 ± 2.02* 1.51 -0.03 ± 2.0* 1.51 

Body 0.13 ± 0.84* 0.66 0.11 ± 0.85* 0.66 0.16 ± 0.93* 0.66 

* p-value < 0.01, Student’s Test 
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2.67 GHz) to generate a 3D subject-specific estimation of the 

L2-L4 segment. We use C++, ITK and multi-core system 

techniques to achieve low computation times. Geometry of the 

spine is more complex than the one of the femur (our model 

had 20428 nodes, against 5546 for [31]; and four bone 

structures are assessed instead of one, which explains a higher 

computing time. This average computing time of less than 5 

min, however, should be sufficiently low for the method to be 

used in clinical practice. 

Regarding the shape accuracy, we reported mean unsigned 

distances between DXA and QCT-derived surfaces in a range 

between 1.37 mm and 1.72 mm at the total vertebra and 

between 0.63 mm and 0.68 mm at the vertebral body (Table I). 

Whitmarsh et al. [35] reported lower errors at the total 

vertebra (between 1.00 mm and 1.34 mm), but larger errors at 

the vertebral body (between 0.73 mm and 1.12 mm). We 

found similar correlation coefficients (R) for the vBMD. Our 

R-values ranged between 0.90 and 0.92 for the integral vBMD 

at the total vertebra, versus 0.86 and 0.93 in [35]. At the 

vertebral body, we achieved R-values between 0.82 and 0.85 

(integral vBMD) and between 0.79 and 0.83 (trabecular 

vBMD) versus 0.80 and 0.89 (integral vBMD) and 0.82 and 

0.90 (trabecular vBMD) in [35]. Reported results in [35] show 

lower errors in modelling the shape of the posterior processes, 

compared to our results, which can be explained using both 

AP and lateral DXA projection. However, a slightly lower 

accuracy in modelling the vertebral body shape was found. 

One important limitation of the method proposed in [35] is the 

use of the lateral DXA scans, which are not currently used in 

clinical practice. Moreover, no specific algorithm was 

proposed to quantify the cortical bone and L1 was not 

assessed. In Humbert et al. [31], a similar approach to the one 

proposed in our paper was developed for the proximal femur. 

They reported R-values of 0.95, 0.85 and 0.94 (integral, 

trabecular and cortical vBMD) at the total femur, against 0.85, 

0.83 and 0.84 at the L1-L4 segment vertebral bodies in our 

work. Regarding the CTh, they achieved an R-value of 0.92, 

against 0.83 in the present paper. The slightly lower accuracy 

reported in our work can be explained by the fact that the 

geometry of the spine is more complex than the one of the 

femur, the cortex is on average thinner in the vertebral body, 

compared to the total femur region of interest, and the spine 

DXA scans are noisier than hip DXA scans. 

In the 180 subjects included in this study, bone masks and 

landmarks at L1-L4 segment (Fig. 3. “Bone Mask”) 

automatically provided by the software of the DXA 

manufacturers were accurate enough to provide proper 

identification of the “L1-L4 Mask” (Fig. 3) to be used to 

initialize the statistical model and performed the registration. 

However, this process might fail, especially in the presence of 

pathologies such as severe scoliosis or severe osteoarthritis. In 

this case, manual input for the operator would be required to 

modify the data provided by the software of the DXA 

manufacturer prior to run the 2D/3D modelling process. 

Modelling the outer and inner surfaces of the cortical shell 

was only performed in the vertebral body. The complex 

geometry of the back processes would make the segmentation 

of the cortical bone in this region of interest particularly 

challenging. 

The lumbar vertebrae included in the training and validation 

databases are not only affected by bone density loss due to 

osteoporosis, but also by shape deformation due to 

degenerative osteoarthritis, compression, or the presence of 

calcifications (local accumulation of bone mineral) in the 

periphery of the vertebral body. Osteoarthritis is the most 

common of these conditions, with estimated rates as high as 

Table II. 

Values (mean ± standard deviation) and differences (mean ± standard deviation) between DXA-derived and QCT-derived clinical measurements: Values and 
correlation coefficients R are provided for the total vertebra (“Total”) and vertebral bodies (“Body”). 

 

 
  

L1 – L4 Segment 

All (N = 180) GE (N = 90) DMS (N = 90) 

QCT DXA  
Difference 
(DXA - QCT) 

 
Difference 
(DXA - QCT) 

 
Difference 
(DXA - QCT) 

 

Mean ±   SD Mean ±   SD Mean ±   SD R** Mean ±   SD R** Mean ±   SD R** 

vBMD 
(mg/cm3) 

Integral 
Total 281.65 ± 55.38 286.28 ± 57.31 4.63 ± 23.82 0.91 11.32 ± 23.73 0.91 -2.05 ± 22.08 0.93 

Body 212.61 ± 44.88 219.16 ± 43.32 6.55 ± 23.84 0.85 8.23 ± 24.36 0.83 4.87 ± 23.33 0.87 

Trabecular Body 150.32 ± 40.35 161.57 ± 38.85 11.25 ± 23.31* 0.83 12.12 ± 23.30 0.81 10.37 ± 23.43 0.85 

Cortical Body 611.18 ± 46.26 610.43 ± 40.77 -0.74 ± 25.14 0.84 0.82 ± 26.82 0.82 -2.30 ± 23.38 0.86 

BMC 
(g) 

Integral 
Total 51.97 ± 13.90 52.46 ± 14.28 0.49 ± 4.29 0.95 1.49 ± 4.57 0.95 -0.51 ± 3.77 0.96 

Body 24.62 ± 6.79 25.86 ± 6.99 1.25 ± 2.82 0.92 1.31 ± 3.03 0.91 1.18 ± 2.61 0.93 

Trabecular Body 15.04 ± 4.75 16.61 ± 4.95 1.56 ± 2.49* 0.87 1.54 ± 2.65 0.86 1.59 ± 2.35* 0.88 

Cortical Body 9.58 ± 2.34 9.26 ± 2.20 -0.32 ± 0.88 0.93 -0.23 ± 0.92 0.93 -0.41 ± 0.84 0.93 

Volume 

(cm3) 

Integral 
Total 184.80 ± 34.37 183.49 ± 33.78 -1.31 ± 9.33 0.96 -2.24 ± 9.65 0.96 -0.38 ± 8.95 0.97 

Body 116.17 ± 22.42 118.14 ± 21.83 1.97 ± 6.56 0.96 1.31 ± 6.48 0.96 2.63 ± 6.61 0.96 

Trabecular Body 100.62 ± 20.12 103.08 ± 19.55 2.46 ± 6.34 0.95 1.69 ± 6.24 0.95 3.23 ± 6.39 0.95 

Cortical Body 15.55 ± 2.92 15.05 ± 2.81 -0.49 ± 1.04 0.93 -0.38 ± 1.09 0.93 -0.60 ± 0.99 0.94 

CTh (mm) Cortical Body 0.72 ± 0.08 0.71 ± 0.08 -0.02 ± 0.05 0.83 -0.01 ± 0.05 0.82 -0.03 ± 0.04 0.86 

*p-value < 0.01, Student’s Test 

**R with p-value < 0.01 for all measurements. 
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40% in women older than 50 years, and 60% in those older 

than 70 years [47]. Our shape and density statistical model 

was mainly designed to capture global variations, while very 

local variations (as bone spurs, or osteophytes) were not 

included. Moreover, osteophytes are often not seen in the AP 

DXA scans. Therefore, the method proposed in our paper 

could hardly model local deformities, which is an important 

limitation. The accuracy in measuring the cortical bone 

volume and CTh is directly impacted by this limitation. Future 

work should consider the development of advanced statistical 

models for the lumbar spine, including articulated and/or 

multi-level model, which should be more accurate in 

modelling local deformations and the posterior arch of the 

vertebra. 

The presence of osteoarthritis can also lead to a wrong 

diagnosis of the disease, since local accumulation of bone 

mineral at the periosteal surface might lead to an 

overestimation of the aBMD computed by DXA, and hence, to 

a higher T-score. In this sense, the DXA-derived 3D 

measurements of the trabecular bone at the vertebral body 

could provide an alternative measurement, overcoming this 

limitation by discarding bone spurs, local deformations at the 

periosteal surface, or in the back processes. 

Our algorithm cannot model fractured vertebrae since the 

presence of fracture was an exclusion criterion for the subjects 

to be included to build the statistical model. This could, 

however, be handled by manually, or automatically, hiding the 

fractured vertebra(s) in the 2D mask to be used in the 

registration process. The L1-L4 model would be registered as 

described in Section II.C. The excluded region of interest (for 

example L3) would be statistically estimated based on the 

regions included (L1-L2-L4) and could be subsequently 

discarded in the following processing steps (cortical shell 

modelling, and clinical measurements). As future research, 

other measurements that could arise clinical interest in the 

lumbar spine should include: the intervertebral space, the 

lumbar curvature (so-called lordosis) and vertebral body 

heights, which are parameters associated to fracture risk. 

V. CONCLUSION 

To the best of our knowledge, the method proposed in this 

paper is the first attempt in the literature to estimate the 3D 

subject-specific shape and density of the lumbar spine from a 

single AP DXA scan, which makes it fully compatible with 

current clinical practices. We proposed a separate assessment 

of the cortical and the trabecular compartments, and gave 

special emphasis to the vertebral body, which is the most 

affected region by osteoporotic fractures. A very good 

agreement was found between the DXA-derived and QCT-

derived clinical measurements that were evaluated in this 

paper. This method could potentially improve osteoporosis 

and fracture risk management in patients who had an AP DXA 

scan of the lumbar spine without any additional examination. 
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