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ABSTRACT
YouTube has emerged as the largest player among video streaming
services, serving QoE-optimized content for users using DASH. Re-
search studies on various aspects of YouTube, especially its stream-
ing service, abound in the literature. However, these works study
YouTube streaming from the periphery, and report results based
on their understanding of general DASH recommendations. In this
study, we explore in depth YouTube’s implementation of the DASH
client. We identify important parameters in YouTube’s rate adapta-
tion algorithm, and study their roles. In a departure from existing
literature, we observe that YouTube opportunistically adapts seg-
ment length, in addition to quality level, in response to bandwidth
�uctuations. We report that this scheme results in a much lower
average data wastage ratio (0.82x10−6), than reported earlier. We
also propose an analytical model, augmented with a machine learn-
ing based classi�er (with average accuracy of 85.75%), to predict
data consumption for a playback session in advance.
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1 INTRODUCTION
Mobile tra�c has exhibited colossal growth over the past half-
decade (18-fold over the last 5 years1), with video contributing to
60% of the total usage in 2016. Google’s YouTube, already a part of
1h�p://www.cisco.com/c/en/us/solutions/service-provider/
visual-networking-index-vni/index.html
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the common Internet parlance, has emerged as the largest player
in the mobile video market, accounting for 40–70% of total video
tra�c across most mobile networks2. Not surprisingly, YouTube
has garnered signi�cant interest in the research community over
the years, furnishing studies which explore various aspects of the
service – a large majority of which focus on its video playback
mechanism. However, the interest in YouTube’s video streaming
behavior is far from satiated – a phenomenon largely propelled by
YouTube’s practice of incessant technical evolution.

Existing literature and limitations: Consequentially, the re-
search community has strived to keep pace with YouTube’s techni-
cal evolution, churning out studies focused on YouTube’s stream-
ing behavior during di�erent time periods. Even recently, sev-
eral works [8–10] have studied YouTube’s DASH behavior to an-
alyze the trade-o� between quality of experience and wastage of
downloaded data. However, such studies have largely looked at
YouTube’s streaming behavior through the tinted glass of their
understanding of the DASH recommendations. �e studies have,
in essence, focused on the impact of variation in input parameters
(such as bandwidth via thro�ling), on the streaming output (video
bit-rate adaptation), treating YouTube’s implementation of DASH
as a black-box.

Approach in this work: In a departure from existing literature,
we, in this paper, adopt a focused approach to understand the in-
ternals of YouTube’s bit-rate and quality adaptation algorithm. We
endeavor to explore YouTube’s implementation of the DASH recom-
mendations by studying the interplay between various parameters
of YouTube adaptive video streaming. In terms of methodology, we
capture a sizeable volume of YouTube tra�c traces (∼ 500 videos)
in the form of HTTP archives (HAR), which give us access to the
contents of HTTP request and response message headers; from
these headers, we �rst identify the parameters used by YouTube in
their rate adaptation algorithm, followed by controlled experiments
to understand their individual roles.

Experimental observations: Our experiments reinforce the
earlier reported observation that video quality adaptation is based
on bu�er size distribution at the YouTube client. However, we also

2h�ps://www.ericsson.com/assets/local/mobility-report/documents/2016/
ericsson-mobility-report-november-2016.pdf

http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf


NOSSDAV ’17, June 2017, Taipei, Taiwan A. Mondal et al.

observe that when encountered with a drop in network bandwidth,
YouTube makes an e�ort to adaptively change segment lengths of
the downloaded video chunks, before downgrading video quality
– this observation, to the best of our knowledge, has not been
reported in any prior work. In fact, we �nd that YouTube employs
an opportunistic approach of joint video quality and streaming rate
adaptation, which is similar to the elastic behavior characteristic
observed in TCP tra�c (§4).

Data wastage during YouTube streaming: Downloaded data
can end up being wasted in adaptive bit-rate streaming when, due
to a sudden improvement in network conditions, a higher qual-
ity video segment is downloaded for viewing, even when a lower
quality segment for the same playback duration already exists –
the lower quality segment is rendered unproductive. In light of
our experimental observations, we ask the following research ques-
tion: “How does segment length adaptation a�ect data wastage in
YouTube adaptive streaming?” �e question is particularly inter-
esting, since many existing works (including [10] recently) have
studied data wastage in DASH implementations, including that
of YouTube. We experimentally determine the data wastage ratio
involved in YouTube adaptive streaming to be around 0.82x10−6

on an average, which is signi�cantly lesser than values reported
by earlier studies.We reason that such overestimations in earlier
works stemmed from their incorrect assumption that the segment
size remains constant, which led to gross approximations in their
data wastage computations.

Model to predict data consumption: Furthermore, we realize
that prediction of data consumption (both productive and wasted)
even before a video has actually played, can serve as an important
parameter for more intelligent streaming in challenging scenarios.
Suppose an user is traveling through a zone of irregular connec-
tivity, thereby resulting in �uctuating bandwidth. It can be noted
that existing mechanisms, such as [14] and the references therein,
can predict the bandwidth �uctuation pa�ern a priori under many
mobility pa�erns such as predicted urban mobility. �e user would
ideally wish to watch videos for as long as possible, without sac-
ri�cing her quality of experience too much (streaming in lowest
available resolution is too extreme for her). Assuming the YouTube
client has prior information of these challenges, and can predict
data consumption, it can decide upon the most balanced quality
level to start streaming in, so that the data download is minimized.
To such ends, we propose an analytical model, augmented with a
machine learning based classi�er, using which one can estimate
data consumption even before actually playing a YouTube video, if
channel conditions and the initial video quality level are known.

Contributions: In summary, our contributions in this work are:

(1) We illustrate a methodology to study YouTube’s adaptive
streaming behavior in-depth (§3) – we identify and closely
study the interplay among important parameters enabling
this streaming algorithm (§4).

(2) Our experiments reveal that YouTube adapts the segment
length parameter before a�empting to adapt video resolu-
tion – a phenomenon not reported in the literature (§4.2).

(3) We observe that segment length adaptation leads to much
lower values of data wastage on average, than reported by
prior studies.

Figure 1: DASH Architecture – On the le� side, the server-
side media storage is shown, where content is divided into
small segments of alternative bit-rates. On the right side, the
DASH client architecture is shown; the DASH Access Engine mon-
itors network bandwidth at the client and accordingly decides
which segment to request from the server. (Image Source:
https://www.w3.org/2011/09/webtv/slides/W3C-Workshop.pdf)

(4) We propose an analytical model, augmented with a ma-
chine learning based classi�er, which enables prediction
of data consumption for an initial playback video quality
when it is possible to estimate the network conditions a
priori using existing mechanism like [14] (§5).

2 BACKGROUND AND PRELIMINARIES
In this section, we provide the reader with a detailed background
on YouTube’s video streaming strategy.

Evolution of YouTube’s playback mechanism: Since its in-
ception in 2005, viewing videos on YouTube required the Adobe
Flash plug-in to be installed on the user’s browser3. In an a�empt
to reduce third party dependency, and to take advantage of the
HTML5 standard which allowed embedded multimedia, YouTube
launched an experimental version of the site in January 2010. �e
service, which encompassed only a section of available videos,
was extended to users who opted-in for the trial4 and were on
a browser which supported HTML5 video using WebM or H.264
formats. YouTube experimented with Dynamic Adaptive Streaming
over HTTP (DASH) around 20135 to elevate quality of experience of
viewers, before adopting it as the default playback mechanism on
January 27, 20156.

DASHspeci�cations: Dynamic Adaptive Streaming over HTTP
(DASH), also referred to as MPEG-DASH, is an adaptive bit-rate
solution for video streaming, which enables client-operated video
delivery over HTTP. DASH is implemented by breaking down the
video content into small segments, each worth a short duration
of playback time. For every segment of playback time, alternative
versions at various bit-rates are available at the server. �e client
typically requests for the highest quality segment possible under
current network conditions, such that it is received (downloaded)
3h�p://news.bbc.co.uk/2/hi/8287239.stm
4h�ps://www.youtube.com/html5
5h�ps://www.youtube.com/watch?v=UklDSMG9�U
6h�ps://arstechnica.com/gadgets/2015/01/youtube-declares-html5-video-ready-for
-primetime-makes-it-default/
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https://arstechnica.com/gadgets/2015/01/youtube-declares-html5-video-ready-for
-primetime-makes-it-default/
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in time for playback, without causing stalling or re-bu�ering. How-
ever, DASH is not a protocol – it only speci�es an architecture
(Fig. 1) to enable adaptive video streaming over HTTP. Every video
streaming service (e.g., YouTube, Net�ix, etc.) is free to de�ne its
own implementation of the DASH modules. In this work, our aim
is to study in depth YouTube’s implementation of the DASH Access
Engine module (as seen in Fig. 1).

Encoding technique: YouTube uses the VP9 codec7, which is a
free video codec developed by Google to serve YouTube video. �e
codec speci�es that video �les encoded using it shall consist of two
types of frames – (1) key-frame, and (2) intra-frame; key-frames
contain complete frame information, while every subsequent intra-
frame contains incremental information relative to the last seen
key-frame. Such speci�cations mandate that a VP9 decoder can
start decoding only at key-frames, an observation we utilize to
model data consumption more accurately in §5.

Related Works: Existing studies on YouTube streaming and
quality of experience (QoE) can be grouped into two broad classes.
�e �rst class of works explore tra�c pa�erns and video QoE
properties of YouTube [3, 5–7, 11, 12]. �ese papers mostly study
YouTube behavior at the periphery, which although provides a
summary of performance metrics, but fails to say much about the
internals of YouTube’s video streaming protocol. �e second class
of studies, however, explore adaptive streaming characteristics of
YouTube. In [4], the authors investigate YouTube’s data delivery
system from the end user view, and illustrate evidence of massive
wastage of downloaded data, since viewers o�en do not watch en-
tire videos – the study, however, was performed at a time when
YouTube used progressive download as the streaming mechanism,
and is therefore stale. [6] is probably the �rst work to evaluate
YouTube’s performance since its adoption of adaptive streaming –
the authors claim that YouTube gains 83%-95% in terms of band-
width by switching from progressive download to DASH. Some
recent works [8–10] study YouTube’s DASH behavior to analyze the
trade-o� between quality and data wastage – however, as already
pointed out in §1, their approximations lead to gross overestimation.
they perform controlled experiments by varying the underlying
link bandwidth, and compute wastage.

3 EXPERIMENTAL SETUP
In this study, experiments are conducted with two broad objectives:
(1) Observing YouTube’s adaptive streaming behavior under di�er-
ent network conditions, and (2) Extracting protocol level parame-
ters from granular video playback data under controlled network
conditions, and deducing their individual roles.

Experimental setup for observing streaming behavior: In
the preliminary experiment, we play a YouTube video (video ti-
tle: “�e Division Walkthrough Gameplay Part 1 – �e Virus (PS4
Xbox One)”, video ID: b80ShWk Aro, URL: h�ps://www.youtube.
com/watch?v=b80ShWk Aro, video duration: 34 min. 22 sec.) by
varying the link bandwidth using a dynamic thro�ling mecha-
nism. We refer to this video as our sample video throughout the
rest of the paper. Link thro�ling is enabled using the Unix library

7h�ps://youtube-eng.googleblog.com/2015/04/vp9-faster-be�er-bu�er-free-youtube.
html

Table 1: Information regarding YouTube videos used in the exper-
iments

Video Size Number of Videos Total Playback Duration
< 10 mins 195 19h 44m

10 − 30 mins 104 26h 07m
30 − 60 mins 122 94h 33m
> 60 mins 30 37h 15m

NetFilterQueue8, which is a user-space library with an API to han-
dle packets queued by the kernel packet �lter. Based on this library,
we develop a tra�c shaper to control link bandwidth. However, we
continuously monitor and ensure that the backbone network has
su�cient bandwidth so that the overall link bandwidth is controlled
only by the thro�ling procedure. During the video playback, we
capture video data packets using the Unix tool tcpdump; from these
packet traces, we extract the amount of video data transferred from
the YouTube server to the client, with respect to time. Additionally,
we note the resolution in which the video is rendered, w.r.t. time.

Experimental setup to identify parameters and their in-
terplay: Since DASH works on top of HTTP, the video playback
information and the requested video quality are embedded in HTTP
request/response headers. As part of the developer tools for Mozilla
Firefox, a network monitor is available, where the browser dumps
information regarding all requests made by the current page –
HTTP-request, HTTP-response, request/response time, link speed,
etc. �e entire information can be exported to HTTP ARchive
(HAR) �les, which are in the JSON9 �le format. We develop an au-
tomated tool called AutoHARExporter using Selenium10 to capture
a HAR from the browser with the help of har export trigger
(version 0.5.0-beta) Firefox plugin. �is tool automatically opens
a Firefox browser, loads a YouTube video (in the format h�ps:
//youtube.com/watch?v=〈videoid〉), waits for the video to �nish,
and �nally saves the HAR and other information to the disk. Dur-
ing video playback, we also control network bandwidth (using the
thro�ling mechanism described earlier) by progressively increasing
and then dropping it from a given set of bandwidth levels ranging
from 200 Kbps to 2400 Kbps, in a step of 200 Kbps. Each level of
bandwidth is kept �xed for 200 seconds. We repeat the experiment
for ∼ 500 videos (detailed statistics shown in Tab. 1), the list of
which is collected in advance by crawling the YouTube website .

4 IDENTIFYING PARAMETERS INVOLVED IN
YOUTUBE ADAPTIVE STREAMING, AND
THEIR INTERPLAY

4.1 Parameters involved in YouTube adaptive
streaming algorithm

Inspection of the HAR traces obtained using our experimental setup
indicates that YouTube uses video playback requests to grab media
data from the server. URLs for these video playback requests contain
35 parameters (and their values): pl ,dur , expire , sver ,дir ,pcm2cms ,
mime , itaд, siдnature , ipbits , source , keepalive , mt , mv , ms , mm,
mn, key, clen, requiressl , lmt , initcwndbps , id , upn, sparams , f exp,
ip, cpn, alr , ratebypass , c , cver , ranдe , rn, and rbu f . We observe
8h�p://www.net�lter.org/projects/libnet�lter queue/
9h�p://www.json.org/
10h�p://www.seleniumhq.org/

https://www.youtube.com/watch?v=b80ShWk_Aro
https://www.youtube.com/watch?v=b80ShWk_Aro
https://youtube-eng.googleblog.com/2015/04/vp9-faster-better-buffer-free-youtube.html
https://youtube-eng.googleblog.com/2015/04/vp9-faster-better-buffer-free-youtube.html
https://youtube.com/watch?v=<video id>
https://youtube.com/watch?v=<video id>
http://www.netfilter.org/projects/libnetfilter_queue/
http://www.json.org/
http://www.seleniumhq.org/
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Table 2: Values of lmt for itaд over time and the converted lmt
values using epoch converter

itag lmt lmt value through epoch converter
242 1454101693286140 2016-01-29 21:08:13.286140
243 1454101777404229 2016-01-29 21:09:37.404229
244 1454101749889990 2016-01-29 21:09:09.889990
250 1454089995528810 2016-01-29 17:53:15.528810
251 1454089993768128 2016-01-29 17:53:13.768128
278 1454101689089978 2016-01-29 21:08:09.089978

the behavior of these parameters across all the request/response
messages that we collected, under various scenarios, as presented
below. Note that in the ensuing analysis, a video session is de�ned
as a complete rendering of the video on YouTube player.

Parameters constant acrossmultiple videos overmultiple
sessions: Such parameters do not take part in video adaptation
procedure, and only forward some static information, such as the
device and OS related information. �e parameters alr , c , дir ,
iptbits , keepalive , key, mm, mn, ms , mv , pcm2cms , pl , playretry,
ratebypass , requiressl , source and sver fall under this category.

Parameters constant for the same video across multiple
sessions: �ese parameters are essentially video speci�c parame-
ters. �e parameters cpn, cver , ei , expire , f exp, id , initcwndbps , ip,
mt , rbu f , rn, siдnature , sparams ,upn and ranдe �t this description.

Parameters changing within a single video session: Out
of such parameters, the ones which change only in response to
variation in the link bandwidth, possibly take part in the video
adaptation process. We �gure out that clen, dur , itaд, lmt , mime ,
rbu f , rn, siдnature , and ranдe are such parameters. However, on
closer inspection, we �nd the parametersmime and siдnature relate
to audio and video channels. Further the parameter dur denotes
video duration, and we observe that it changes only in the order
of microseconds, which is due to the change in video encoding
technique. Consequentially, we select the rest of the parameters,
i.e. clen, itaд, lmt , ranдe , rbu f , and rn, for more detailed analysis.

itag: YouTube samples every video under di�erent video quality
levels based on its resolution, bit rate and encoding techniques used
for sampling, and assigns a numeric level to every quality, which
is the itaд value [1]. Since itaд indicates the video quality level,
we explore how the other 5 parameters respond to changes in the
itaд values. We observe that rbu f , rn and ranдe change even for
a single itaд; whereas, parameters like clen change overall, but
remain constant for a single itaд value, indicating that it may have
a direct relationship with itaд.

lmt: Our analysis reveals that the numeric values expressed
by this parameter resemble Unix timestamps, although the length
is 6 digits longer. �e values, converted using epoch converter11,
are shown in Tab. 2 for our sample video (de�ned in §3). We �nd
that the date matches with the video upload date, while the time
changes slightly. We repeat this experiment for many other ran-
domly chosen YouTube videos, and conclude that lmt de�nes the
time when the chunk was created at the YouTube server. However,
it does not participate in video bit-rate adaptation; since YouTube
downloads data from multiple servers [6], lmt is possibly used to
avoid playing outdated video chunks.

11h�p://www.epochconverter.com/

Table 3: Evolution of ranдe across rn and the corresponding itaд,
payload is in bytes

rn itag range Payload rn itag range Payload
0 251 0-65535 65536 6 251 259193-509255 250063
1 244 0-234840 234841 7 244 856823-2396798 1539976
2 244 234841-451095 216255 8 251 509256-739523 230268
3 251 65536-131071 65536 9 251 739524-1113523 3740001
4 244 451096-856822 405727 10 244 2396799-4296833 1900035
5 251 131072-259192 128121 11 251 1113524-1480791 367268

rn: Our experiments unveil that rn is non-decreasing for a video
session. By observing the sequence of HTTP requests sent by the
YouTube client to YouTube server, we conclude that rn is the request
number to uniquely identify a DASH video playback request.

rbuf: We plot evolution of rbu f for 4 videos and the correspond-
ing itaд values in Fig. 2 with varying link bandwidth. In the �gure,
the lines denote results for the di�erent videos, while color codes
are used to distinguish between itaд values. Each point in the graph
corresponds to a video playback request sent from the YouTube
client. We observe that rbu f increases as the YouTube client fetches
more data from the server, while it depletes if there is no request
from the client to the server. Further, whenever rbu f starts de-
creasing, the client starts fetching data for a di�erent itaд value
(as we observe near 1600 secs). Also, as bandwidth increases, rbu f
keeps on increasing until it reaches a threshold, and then remains
constant. Conversely, as bandwidth drops, rbu f either remains
constant or diminishes. �e observations obviate that rbu f denotes
the receive bu�er at the client.

range: Tab. 3 presents sample values of ranдe for a particular
video. �e ranдe values consist of two integers separated by ‘-’;
the �rst integer is always smaller than the second one – there-
fore, the two integers indicate start and end of a ranдe value. We
also observe that the sizes of the response payloads are given
by (end − start + 1). We conclude that ranдe is the byte range
parameter in HTTP request header. As a proof of concept, we
also perform the following experiment: YouTube provides an API
called get video info through the URL h�p://www.youtube.com/
get video info?video id=〈video ID〉 – the API provides information
regarding itaд values used in a video, as well as URLs to download
a complete video (with unrestricted access), or video chunks (using
ranдe) for a particular itaд. Using the API, we download the video
chunks of di�erent videos for di�erent available itaд values. �en
for these videos, we also download di�erent video chunks using
the wget utility, by changing the values of the ranдe parameter. We
observe that MD5 checksums of the downloaded video chunks for a
itaд value are equal to the MD5 checksum of the byte range of the
original video of that particular itaд. �is reinforces our conclusion
that ranдe indicates HTTP byte range; YouTube client adaptively
changes this parameter to increase or decrease the video chunk size
to be fetched, based on network conditions.

clen: In order to interpret the signi�cance of clen, we start a
browser with developer mode enabled and start monitoring network
activities. We render a video in YouTube client and collect the
video playback request URLs. We then change the value of the
ranдe parameter with 4 di�erent cases where ranдe is equal to (a)
[0, clen], (b) [0, (clen − x )] where 0 < x < clen is some positive
random number, (c) [0, (clen+x )], and (d) with the range parameter
omi�ed. Chunks are fetched from these URLs using wget command

http://www.epochconverter.com/
http://www.youtube.com/get_video_info?video_id=<video_ID>
http://www.youtube.com/get_video_info?video_id=<video_ID>
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Figure 4: Segment length adaptation

and the lengths and MD5 checksums of the received data segments
are checked. We observe that for a particular itaд, (i) the length and
MD5 checksum of the received data are exactly same for the cases
when ranдe is omi�ed or ranдe is either [0, clen] or [0, (clen + x )]
– in such cases, the length of the data is clen. However, the length
of the data is clen − x when the range value is [0, (clen − x )]. We
observe similar behavior across all videos that we randomly chose.
From these observations, we conclude that clen is the length of the
video chunk for a particular itaд value. �e YouTube server stores
a video chunk with clen amount of data for a particular itaд, and
therefore the length of received data never shoots beyond clen even
if the byte range requested through ranдe is higher.

Summary: ranдe and itaд are parameters responsible for adap-
tiveness in YouTube video streaming, while rbu f is the client-side
indicator of channel quality. Although the maximum length of a
video segment is de�ned by clen for a particular itaд, YouTube has
the option to download lesser data per request, which is speci�ed
by the ranдe parameter.

4.2 Insights into YouTube’s bitrate adaptation
algorithm

Opportunistic (quality) upscale vs. conservative downscale:
We concentrate on the nature of YouTube video playback requests
whenever it switches from one video quality to another. We �rst
convert the ranдe parameter to equivalent video segment length
in terms of video playback time – this can be done by looking into
the video �le header (using the Python package python-ebml) that
provides a mapping between the byte range and playback time.
Fig. 3 plots the video segments (in terms of video playback time,
as shown in x-axis) and the corresponding itaд values for which
the client makes a request. We make an interesting observation –
whenever the video quality improves, there is an overlap between
the segments of lower quality and higher quality (shown using cir-
cles in the �gure); however, there is no such overlap when the video
quality drops. �erefore, we can conclude that the YouTube video
adaptation algorithm works in a way where it takes an opportunis-
tic approach for downloading higher quality video segments when
the link quality improves, but takes a conservative approach when
the link quality drops. In the opportunistic approach, it downloads
the video chunks of both the video qualities in parallel, whenever it
decides to switch from the lower quality to the higher quality – this
o�en leads to data wastage, as mentioned earlier in §1. However, in
the conservative approach, it directly sends the request for lower
quality video when the link quality drops.

Segment length adaptation: As mentioned earlier, YouTube
adapts both the video quality and the streaming data rate whenever
network conditions change. In order to explore the behavior of
streaming data rate adaptation, we analyze how the requested
video segment length (speci�ed by the ranдe parameter) per video
playback request, changes with change in link bandwidth. We
convert the byte range mentioned in the video playback request to
the equivalent video playback time, and �nd out the video segment
length in terms of playback time. �e sample results from 4 videos
are shown in Fig. 4 where x-axis denotes the video playback request
time, and y-axis denotes the segment length in seconds. We use
di�erent color codes to indicate the itaд values associated with
corresponding playback requests. �e �gures give very interesting
insights into YouTube video streaming behavior – whenever the link
bandwidth increases, YouTube �rst increases the segment length of
lower quality video and bu�ers maximum amount of video data. It
then switches to the higher quality video but with smaller segment
lengths. At this point, we observe an overlap between the segments
of two di�erent video qualities, as discussed earlier with Fig. 3.
�en it progressively increases the segment length and repeats the
procedure for the next higher quality level video if the link quality
improves further (measured through the increase rate of rbu f ).
However, when the link quality drops, in a similar way, YouTube
�rst starts requesting for same quality video chunks of smaller
segments, and drops the segment length. If it still observes a drop
in rbu f a�er reducing the segment length in the playback requests,
then it switches to request for the next lower quality level video
chunks of smaller segments. Segment length is increased only
if rbu f becomes stable. In this manner, YouTube jointly adapts
the video quality as well as the segment length (indirectly, the
streaming data rate). �is observation has not been reported in
existing literature, to the best of our knowledge.

Implication on data wastage: Segment length adaptation may
have far-reaching implications in terms of advantages for YouTube
streaming, one of which is minimal data wastage. Since segment
length increases gradually from a low value to higher values when
bandwidth improves, overlaps between the segments of a lower
quality and the next higher quality are largely diminished. �is
implies that data wastage values come down drastically (as op-
posed to a scenario with no segment length adaptation) – in our
experiments, we compute the average wastage ratio, de�ned as
data downloaded−data played

data played , to be 0.82x10−6. �is is in sharp
contrast with previously reported values.
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5 PREDICTIVE MODEL FOR DATA
CONSUMPTION DURING STREAMING

Let i, 1 ≤ i ≤ n represent an itaд value; where n is the total
number of itaд values used by YouTube. Let λi represent the frame
rate for itaд value i; from our observations, frame rate per itaд
is constant. Let us also consider an indicator variable p (t ), where
p (t ) = 1 denotes that at a particular instance of time (t ), a key-
frame has arrived. Let αi be the size of a key-frame (in bits) for itaд
value i , and βi be the size of an intra-frame (in bits) at itaд value i .
�erefore, the amount of data arrived (in bits) in a single frame for
itaд i , say µi , is given by:

µi = [p (t ).αi +
{1 − p (t )} .βi ] (1)

Since frame rate is λi , the amount of data (in bits) downloaded per
unit time for itaд i , is given by:

δi = µi .λi (2)

Let us consider an in�nitesinally small time instance dt , during
the YouTube streaming process. �e amount of data downloaded
per instance of time would be: δi .dt , for a single itaд i . However,
data may be downloaded for di�erent itaд values at the same time
instance, which is where the data wastage stems from. Let us de�ne
another indicator variable qi (t ), where qi (t ) = 1 indicates that data
corresponding to itaд i has been downloaded at time t . In such a
scenario, the total amount of data (in bits) downloaded in playback
time duration τ , is given by:

∆ =

∫ τ

0




n∑
i=1

qi (t ).δi


dt (3)

∆ is the measure of data consumption due to YouTube playback.
Let us also de�ne f (t ), which is the maximum itaд value at time t ,
for which data is available (since data may be available for multiple
itaд values simultaneously):

f (t ) =max {i} ∀i : qi (t ) = 1 (4)

�erefore, the data (in bits) actually played by the YouTube player
in time τ , is given by:

ρ =

∫ τ

0
qf (t ).δf dt (5)

ρ is therefore the measure of productive data downloaded during
YouTube streaming. Consequently, data wastage ratio (say ω), is
de�ned as:

ω =
∆ − ρ

ρ
(6)

�e key to determining ∆, ρ, and therebyω, is to estimate the values
of qi for all i , at every time instance t .

Classi�cation Problem: For every itaд value i , we consider 1
λi

(inverse of frame rate) as the sampling interval, since 1 frame arrives
every such interval. We hypothesize that the value of qi (t̂ ) (where t̂
indicates a sampled time instance) depends on the following factors
– (1) β (t̂ − 1) (bandwidth at previous instance), (2) β (t̂ ) (bandwidth
at current instance), (3) i (t̂ − 1) (itaд at previous instance), and (4)
p (t̂ ) (presence of key-frame at current instance). We identify that
estimating qi (t̂ ) is a binary classi�cation problem, with every qi (t̂ )
assuming a value of either 0 (absence) or 1 (presence) of data of
itaд i at time instance t̂ .

Model Accuracy: A machine learning based classi�er is em-
ployed for this purpose – we use Weka [13], a machine learning
tool, and select the Random Forest classi�cation [2] technique, with
100 iterations (I = 100) and unlimited depth (K = 0) as hyperparam-
eters. In the classi�cation technique, we try to predict the value of
qi (t̂ ) using the four parameters mentioned above as classi�cation
features. �e results (average precision = 0.86, average recall
= 0.85, and average accuracy = 85.75%) across all itaдs indicate
high classi�cation prowess, which validates our hypothesis regard-
ing parameters a�ecting qi (t̂ ). Using this model, a user can predict
the amount of data consumption for YouTube video streaming.

6 CONCLUSION
In this work, we studied the internal working of YouTube’s bitrate
adaptation algorithm, by identifying important parameters and
exploring their roles. We observed that YouTube adapts segment
length in addition to quality level, a behavior not been reported
earlier. As an implication, we observed that data wastage for a play-
back session is signi�cantly lower than estimated previously. We
further provided an analytical model, augmented with a machine
learning based classi�er, to predict data consumption in adavance
for a video playback session. As an immediate future direction,
we would like to explore other important implications of segment
length adaption for YouTube.
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