
Lightweight and Privacy-Preserving
Delegatable Proofs of Storage?

Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

Institute for Infocomm Research, Singapore1,
{xuj,jyzhou}@i2r.a-star.edu.sg

City University of Hong Kong, China2,
ayang3-c@my.cityu.edu.hk, duncan@cityu.edu.hk

Abstract. Proofs of storage (POR or PDP) is a cryptographic tool, which
enables data owner or third party auditor to audit integrity of data stored
remotely in a cloud storage server, without keeping a local copy of data or
downloading data back during auditing. We observe that all existing publicly
verifiable POS schemes suffer from a serious drawback: It is extremely slow to
compute authentication tags for all data blocks, due to many expensive group
exponentiation operations. Surprisingly, it is even much slower than typical
network uploading speed, and becomes the bottleneck of the setup phase of
the POS scheme. We propose a new variant formulation called “Delegatable
Proofs of Storage”. In this new relaxed formulation, we are able to construct
a POS scheme, which on one side is as efficient as private key POS schemes,
and on the other side can support third party auditor and can switch auditors
at any time, close to the functionalities of publicly verifiable POS schemes.
Compared to traditional publicly verifiable POS schemes, we speed up the
tag generation process by at least several hundred times, without sacrificing
efficiency in any other aspect. Like many existing schemes, we can also speed
up our tag generation process by N times using N CPU cores in parallel.
We prove that our scheme is sound under Bilinear Strong Diffie-Hellman
Assumption, and it is privacy preserving against auditor under Discrete Log
Assumption. Both proofs are given in standard model.

1 Introduction

Since POR [18] and PDP [4] are proposed in 2007, a lot of effort of research com-
munity is devoted to constructing proofs of storage schemes with more advanced
features. The new features include, public key verifiability [24], supporting dynamic
operations [10,15,28] (i.e. inserting/deleting/editing a data block), supporting mul-
tiple cloud servers [12], supporting data sharing [30], etc. We look back into the very
first feature—public verifiability, and observe that all existing publicly verifiable POS
schemes suffer from serious drawbacks: (1) Merkle Hash Tree based method is not
disk IO-efficient and not even a sub-linear memory authenticator [19]: Every bit of
the file has to be accessed by the cloud storage server in each remote integrity audit-
ing process. (2) By our knowledge, all other publicly verifiable POS schemes employ
expensive operation (e.g. group exponentiation) to generate authentication tags for
data blocks. As a result, it is prohibitively expensive to generate authentication tags

? Anjia Yang contributes to this work when he takes his internship in Institute for Info-
comm Research, Singapore.

2 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

for medium or large size data file. For example, Wang et al. [31] achieves throughput
of data pre-processing at speed 17.2KB/s with an Intel Core 2 1.86GHz workstation
CPU, which means it will take about 17 hours to generate authentication tags for
a 1GB file. Even if the user has a CPU with 8 cores, it still requires more than 2
hours’ heavy computation. Such amount heavy computation is not appropriate for
a laptop, not to mention tablet computer (e.g. iPad) or smart phone.

The benefit of publicly verifiable POS schemes is that, anyone with the public
key can audit the integrity of data in cloud storage, to relieve the burden from
the data owner. However, one should not allow any third party to audit his/her
data at their will, and delegation of auditing task has to be in a controlled and
organized manner. Otherwise, we have no guarantee to prevent extreme cases: (1)
on one hand, some data file could attract too much attention from public, and are
audited unnecessarily too frequently by the public, which might actually result in
distributed denial of service attack against the cloud storage server; (2) on the other
hand, some unpopular data file may be audited by the public too rarely, so that the
possible data loss event might be detected and alerted to the data owner too late
and no effective countermeasure can be done to reduce the damage.

Instead, the data owner could delegate the auditing task to some semi-trusted
third party auditor, and this auditor is fully responsible to audit the data stored in
cloud storage on behalf of the data owner, in a controlled way, with proper frequency.
We call such an exclusive auditor as Owner-Delegated-Auditor or ODA for short. In
real world applications, ODA could be another server that provides free or paid
auditing service to many cloud users.

To address the issues of existing publicly verifiable POS schemes, we propose a
hybrid POS scheme, which on one hand supports delegation of data auditing task,
like publicly verifiable POS schemes, and on the other hand is as efficient as a
privately verifiable POS scheme.

1.1 Overview of Our Scheme

Our scheme generates two pairs of public/private keys: (pk, sk) and (vpk, vsk). The
verification public/private key pair (vpk, vsk) is delegated to the ODA and will be
updated (or re-randomized) once an ODA is revoked and a new ODA is chosen. The
master public/private key pair (pk, sk) will always keep unchanged. Our scheme
proposes a novel linear homomorphic authentication tag function [5], which is ex-
tremely lightweight, without any expensive operations (e.g. group exponentiation
or bilinear map). Our tag function generates two tags (σi, ti) for each data block,
where tag σi is generated in a similar way as Shacham and Waters’ scheme [24],
and tag ti is generated in a completely new way. The size of all tags {(σi, ti)} is
2/m-fraction of the whole file size, where system parameter m can take any positive
integer value and typical value is from a hundred to a thousand. ODA is able to
verify data integrity remotely by checking consistency among the data blocks and
both tags {(σi, ti)} that are stored in the cloud storage server, using the verification
secret key vsk. The data owner retains the capability to verify data integrity by
checking consistency between the data blocks and tags {σi}, using the master secret
key sk, in a way similar to Shacham and Waters’ scheme [24]. When an ODA is
revoked and replaced by a new ODA, all authentication tags {ti} will be updated
(or re-randomized) together with the verification key pair (vpk, vsk), but tags {σi}
will keep unchanged.

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 3

We combine our new linear homomorphic authentication tag function with exist-
ing techniques, in order to reduce communication cost and achieve privacy protec-
tion. We customize the polynomial commitment scheme proposed by Kate et al. [2]
and integrate it into our scheme, in order to reduce proof size from O(m) to O(1).
We also customize the “generalized Okamoto identification scheme” [1,20] and inte-
grate it in our scheme to prevent information leakage to the ODA during the auditing
process.

We emphasize that: (1) The naive method that runs an existing private key POS
scheme on an input file twice to generate two key pairs and two authentication
tags, is unsatisfactory. This naive method does not support efficient updating of
verification key (i.e. switching auditors), and the data owner has to download the
whole data file to refresh the verification key pair, for every time that an auditor is
revoked. (2) If the data file is encrypted using some semantic-secure cipher, and the
POS scheme is applied over the ciphertext, then the privacy-preserving feature of
the POS is not necessary. However, in some application scenario, the semi-trusted
cloud server has to access the data file, in order to provide more kinds of services
(e.g. analyzing/querying the data) rather than pure storage backup service. It is not
storage efficient to require cloud server to keep both ciphertext copy and plaintext
copy, where the ciphertext copy is audited by third party auditor and the plaintext
copy is used to provide other services.
Table 1. Performance Comparison of Proofs of Storage (POR,PDP) Schemes. In this
table, publicly verifiable POS schemes appear above our scheme, and privately verifiable
POS schemes appear below our scheme.

Scheme
Computation

(Data Pre-process)
Communication bits Storage

Overhead
(Server)

Computation (Verifier) Computation (Prover)

exp. mul. add. Challenge Response exp. mul. pair. add. exp. mul. pair. add.

[3, 4] 2 |F |
mλ

|F |
mλ

0 log ` + 2κ 2λ |F |
m

` ` 0 0 ` 2` 0 `

[24, 25] |F |
λ

+ |F |
mλ

|F |
λ

0 `λ+` log(|F |
mλ

) (m+ 1)λ |F |
m

`+m `+m 2 0 ` m`+ ` 0 m`

[36, 37] 2 |F |
λ

|F |
λ

0 `λ+` log(|F |
mλ

)

(`+ 3)λ +

`(plog(|F |
mλ

)q
−1) |h|

|F | ` ` 4 0 ` 2` 0 `

[35] 2 |F |
λ

|F |
λ

0 `λ+ ` log(|F |
mλ

) 3λ |F | ` ` 2 0 ` 2` 0 `

[31]† |F |
λ

+ |F |
mλ

|F |
λ

0 `λ+ ` log(|F |
mλ

) (2m+ 1)λ |F |
m

`+m `+ 2m 2 0 `+m m`+ ` 1 m`

[44] |F |
mλ

+m
2 |F |
λ

+m

|F |
λ

+m
`λ+ ` log(|F |

mλ
) (m+ 3)λ |F |

m
`+m `+m 3 0 `+m

m`+ 2`
+2m

1 m`

[17] |F |
mλ

0 0 λ+ k λ 0†† |F |
mλ

|F |
mλ

0 0
log(|F |

mλ
)

+m
|F |
mλ

0 |F |
mλ

[40]
|F |
λ

+ |F |
mλ

+m
|F |
λ

0
(`+ 1)λ

+` log(|F |
mλ

)
2λ |F |

m
` 2` 2 0 `+m

m`+m
+`

m m`

[41] |F |
λ

+ 2|F |
mλ

|F |
λ

0 2λ+ ` log(|F |
mλ

) 3λ |F |
m

` 2` 4 0 `+m
m`+m

+`
0 m`

Our Scheme 0 2|F |
λ

2|F |
λ

5λ+ 280 10λ 2|F |
m

6 ` 7 ` 5m
m`+ 2`

+6m
0

m`+ 2`
+2m

[24, 25]††† 0 |F |
λ

|F |
λ

`λ+` log(|F |
mλ

) (m+ 1)λ |F |
m

0 `+m 0 `+m 0 m`+ ` 0 m`+ `

† [31] is a journal version of [35], and the main scheme is almost the same as [35].
We now consider the one that divides each data block into m sectors.
†† In Hao et al.’s paper [17], the authentication tags are stored at both the client
and the verifier side, rather than the server side.
††† The private POS scheme of Shacham and Waters [24,25]. Notice that the public POS
scheme of [24,25] also appears in this table.
κ, k are system parameters, |h| is the length of a hash output. |F | is the data file
size. λ is group element size. m is the number of sectors in each data block. ` is
the sampling size.

4 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

1.2 Contributions

Our contributions can be summarized as below:

• We propose a new formulation called “Delegatable Proofs of Storage” (DPOS),
as a relaxed version of public key POS. We design a new scheme under this
formulation. Our scheme is as efficient as private key POS: The tag generation
throughput is slightly larger than 10MB/s per CPU core. On the other side, our
scheme allows delegation of auditing task to a semi-trusted third party auditor,
and also supports switching auditor at any time, like a publicly verifiable POS
scheme. We compare the performance complexity of our scheme with the state
of arts in Table 1, and experiment shows the tag generation speed of our scheme
is more than hundred times faster than the state of art of publicly verifiable
POS schemes.

• We prove that our scheme is sound under Bilinear Strong Diffie-Hellman As-
sumption, and privacy preserving under Discrete Log Assumption, in standard
model.

2 Related Work

Recently, much growing attention has been paid to integrity check of data stored at
untrusted servers [3–6,8,9,11–15,17,18,22–27,29–44]. In CCS’07, Ateniese et al. [4]
defined the provable data possession (PDP) model and proposed the first publicly
verifiable PDP scheme. Their scheme used RSA-based homomorphic authenticators
and sampled a number of data blocks rather than the whole data file to audit
the outsourced data, which can reduce the communication complexity significantly.
However, in their scheme, a linear combination of sampled blocks are exposed to the
third party auditor (TPA) at each auditing, which may leak the data information to
the TPA. At the meantime, Juels and Kaliski [18] described a similar but stronger
model: proof of retrievability (POR), which enables auditing of not only the integrity
but also the retrievability of remote data files by employing spot-checking and error-
correcting codes. Nevertheless, their proposed scheme allows for only a bounded
number of auditing services and does not support public verification.

Shacham and Waters [24, 25] presented a publicly verifiable POR scheme and
gave a comprehensive proof of security under the POR model [18]. Similar to [4],
their scheme utilized homomorphic authenticators built from BLS signatures [7].
Subsequently, Zeng et al. [42], Wang et al. [36, 37] proposed some similar construc-
tions for publicly verifiable remote data integrity check, which adopted the BLS
based homomorphic authenticators. With the same reason as [4], these protocols
do not support data privacy. In [31, 35], Wang et al. extended their scheme to be
privacy preserving. The idea is to mask the linear combination of sampled blocks in
the server’s response with some random value. With the similar masking technique,
Zhu et al. [44] introduced another privacy-preserving public auditing scheme. Later,
Hao et al. [17] and Yang et al. [40] proposed two privacy-preserving public audit-
ing schemes without applying the masking technique. Yuan et al. [41] gave a POR
scheme with public verifiability and constant communication cost.

However, all of the publicly verifiable PDP/POR protocols require the data owner
to do a large amount of computation of exponentiation on big numbers for generating

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 5

the authentication tags upon preprocessing the data file. This makes these schemes
impractical for file of large size.

3 Formulation

We propose a formulation called DPOS, based on existing POR and PDP formula-
tions. We provide the system model in Sec 3.1 and the trust model in Sec 3.2. We
will defer the security definition to Sec 5, where the security analysis of our scheme
will be provided.

3.1 System Model

Definition 1 A Delegatable Proofs of Storage (DPOS) scheme consists of three
algorithms (KeyGen, Tag, UpdVK), and a pair of interactive algorithms 〈P,V〉, where
each algorithm is described as below

• KeyGen(1λ)→ (pk, sk, vpk, vsk) : Given a security parameter 1λ, this random-
ized key generating algorithm generates a pair of public/private master keys
(pk, sk) and a pair of public/private verification keys (vpk, vsk).

• Tag(sk, vsk, F) → (ParamF , {(σi, ti)}) : Given the master secret key sk, the
verification secret key vsk, and a data file F as input, the tagging algorithm
generates a file parameter ParamF and authentication tags {(σi, ti)}, where a
unique file identifier idF is a part of ParamF .

• UpdVK(vpk, vsk, {ti}) → (vpk′, vsk′, {t′i}) : Given the current verification key
pair (vpk, vsk) and the current authentication tags {ti}, this updating algorithm
generates the new verification key pair (vpk′, vsk′) and the new authentication
tags {t′i}.

• 〈P(pk, vpk, { ~Fi}),V(vsk, vpk, pk, ParamF)〉 → Accept or Reject : The prover
algorithm P interacts with the verifier algorithm V to output a decision bit
Accept or Reject, where the input of P consists of the master public key pk,
the verification public key vpk, and file blocks { ~Fi}, and the input of V consists
of the verification secret key vsk, verification public key vpk, master public key
pk, and file information ParamF .

1 4

2

3

Owner Delegated Auditor
Data Owners

Server

vp
k

pk
t

F

i
i

,
},

,
{,

vskvpkpk ,,

challenge
response

(a) The framework of DPOS

Server

F

nii 0}{

niit 0}{

New Owner Delegated Auditor

n
i

it

0}
{.

1

),(new.2 vpkvsk

n
i

it
vp

k

0}'

{,

ne
w

.2

Data Owners

(b) Updating Verification key (vpk, vsk)

Fig. 1. Illustration of system model of DPOS.

A DPOS system is described as below and illustrated in Fig 1(a) and Fig 1(b).

Definition 2 A DPOS system among three parties—data owner, cloud storage server
and auditor, can be implemented by running a DPOS scheme (KeyGen, Tag, UpdVK,〈P,V〉)

6 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

in the following three phases, where the setup phase will execute at the very begin-
ning, for only once (for one file); the proof phase and revoke phase can execute for
multiple times and in any (interleaved) order.
Setup phase The data owner runs the key generating algorithm KeyGen(1λ) for
only once, to generate the master key pair (pk, sk) and the verification key pair
(vpk, vsk). For every input data file, the data owner may choose to apply some error
erasure code [21] on this file, and runs the tagging algorithm Tag over the (erasure
encoded) file, to generate authentication tags {(σi, ti)} and file parameter ParamF .
At the end of setup phase, the data owner sends the (erasure encoded) file F , all au-
thentication tags {(σi, ti)}, file parameter ParamF , and public keys (pk, vpk) to the
cloud storage server. The data owner also chooses an exclusive third party auditor,
called Owner-Delegated-Auditor (ODA, for short), and delegates the verification key
pair (vpk, vsk) and file parameter ParamF to the ODA. After that, the data owner
may keep only keys (pk, sk, vpk, vsk) and file parameter ParamF in local storage, and
delete everything else from local storage.
Proof phase The proof phase consists of multiple proof sessions. In each proof ses-
sion, the ODA, who runs algorithm V, interacts with the cloud storage server, who
runs algorithm P, to audit the integrity of data owner’s file, on behalf of the data
owner. Therefore, ODA is also called verifier and cloud storage server is also called
prover.
Revoke phase In the revoke phase, the data owner downloads all tags {ti} from
cloud storage server, revokes the current verification key pair, and generates a fresh
verification key pair and new tags {t′i}. The data owner also chooses a new ODA,
and delegates the new verification key pair to this new ODA, and sends the updated
tags {t′i} to the cloud storage server to replace the old tags {ti}.

A DPOS scheme (KeyGen, Tag, UpdVK, 〈P,V〉) is complete, if for all keys (pk,sk,
vpk,vsk) output by KeyGen, for all files F , if all parties follow our scheme exactly
and the data stored in cloud storage is intact, then interactive proof algorithms
〈P,V〉 will always output Accept.

3.2 Trust Model

In this paper, we aim to protect data integrity and privacy of data owner’s file. The
data owner is fully trusted, and the cloud storage server and ODA are semi-trusted
in different sense: (1) The cloud storage server is trusted in data privacy (We assume
the server has to access plaintext to provide additional services to the data owner),
and is not trusted in maintaining data integrity (e.g. the server might delete some
rarely accessed data for economic benefits, or hide the data corruption events caused
by server failures or attacks to maintain reputation). (2) Before he/she is revoked,
the ODA is trusted in performing the delegated auditing task and protecting his/her
verification secret key securely, but is not trusted in data privacy. A revoked ODA
could be potentially malicious and might surrender his/her verification secret key to
the cloud storage server.

We assume that all communication among the data owner, the cloud storage
server and ODA is via some secure channel (i.e. channel privacy and integrity are
protected). Framing attack among these three parties can be dealt with existing
technique and is out of scope of this paper.

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 7

4 Our Proposed Scheme

4.1 Preliminaries

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
randomly chosen generator of group G. A bilinear map is a map e : G × G → GT
with the following properties:

(1) Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b ∈ Zp.
(2) Non-degeneracy: If g is a generator of G, then e(g, g) is a generator of GT , i.e.

e(g, g) 6= 1.

(3) Computable: There exists an efficient algorithm to compute e(u, v) for all u, v ∈
G.

In the rest of this paper, the term “bilinear map” will refer to the non-degenerate
and efficiently computable bilinear map only.

For vector ~a = (a1, . . . , am) and ~b = (b1, . . . , bm), the notation
〈
~a, ~b

〉
def
=

m∑
j=1

ajbj

denotes the dot product (a.k.a inner product) of the two vectors ~a and ~b. For

vector ~v = (v0, . . . , vm−1) the notation Poly~v(x)
def
=

m−1∑
j=0

vjx
j denotes the polynomial

in variable x with ~v being the coefficient vector.

4.2 Construction of the Proposed DPOS Scheme

We define our DPOS scheme (KeyGen,Tag,UpdVK, 〈P,V〉) as below, and these al-
gorithms will run in the way as specified in Definition 2 (on page 5).

KeyGen(1λ) → (pk, sk, vpk, vsk) Executed by Data Owner

Choose at random a λ-bits prime p and a bilinear map e : G × G → GT , where G
and GT are both multiplicative cyclic groups of prime order p. Choose at random
a generator g ∈ G. Choose at random α, β, γ, ρ ∈R Z∗p. For each j ∈ [1,m], define

αj := αj mod p and βj := βj mod p, and compute gj := gαj , hj := gρ·βj . Let g0 =

gα
0

= g, h0 = gρ·β
0

= gρ, vector ~α := (α1, α2, . . . , αm), and ~β := (β1, β2, . . . , βm),
Choose two random seeds s0, s1 for pseudorandom function PRFseed : {0, 1}λ ×
{0, 1}N → Zp.

The secret key is sk = (α, β, s0) and the public key is pk = (g0, g1, . . . , gm).
The verification secret key is vsk = (ρ, γ, s1) and the verification public key is
vpk = (h0, h1, . . . , hm).

Tag(sk, vsk, F) → (ParamF , {(σi, ti)}) Executed by Data Owner

Split file1 F into n blocks, where each block is a vector of m elements from Zp: { ~Fi =
(Fi,0, . . . , Fi,m−1) ∈ Zmp }i∈[0,n−1]. Choose a unique identifier idF ∈ {0, 1}λ. Define
a customized2 pseudorandom function w.r.t. the file F : PRFs(i) = PRFs(idF , i).

1 Possibly, the input has been encoded by the data owner using some error erasure code.
2 With such a customized function PRF, the input idF will become implicit and this will

simplify our expression.

8 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

For each block ~Fi, 0 ≤ i ≤ n− 1, compute

σi =
〈
~α, ~Fi

〉
+ PRFs0(i) = α · Poly ~Fi(α) + PRFs0(i) mod p (1)

ti =ρ
〈
~β, ~Fi

〉
+ γPRFs0(i) + PRFs1(i) mod p (2)

=ρ · βPoly ~Fi(β) + γPRFs0(i) + PRFs1(i) mod p (3)

The general information of F is ParamF := (idF , n).

UpdVK(vpk, vsk, {ti}i∈[0,n−1]) → (vpk′, vsk′, {t′i}i∈[0,n−1])
Executed by Data Owner

Parse vpk as (h0, . . . , hm) and vsk as (ρ, γ, s1). Verify the integrity of all tags {ti}
(We will discuss how to do this verification later), and abort if the verification fails.
Choose at random γ′ ∈R Z∗p and choose a random seed s′1 for pseudorandom function

PRF. For each j ∈ [0,m], compute h′j := hγ
′

j = g(ρ·γ′)·βj ∈ G. For each i ∈ [0, n−1],
compute a new authentication tag

t′i :=γ′ (ti − PRFs1(i)) + PRFs′1(i) mod p.

=γ′ · ρ
〈
~β, ~Fi

〉
+ (γ′ · γ)PRFs0(i) + PRFs′1(i) mod p

The new verification public key is vpk′ := (h′0, . . . , h
′
m) and the new verification

secret key is vsk′ := (γ′ · ρ, γ′ · γ, s′1).

〈P(pk, vpk, {~Fi}i∈[0,n−1]),V(vsk, vpk, pk, ParamF)〉

V1: Verifier parses ParamF as (idF , n), and sends the file identifier idF to the
prover to initiate a proof session.

P1: Prover locates the file F corresponding to idF and will proceed on the following
procedures based on file F and its associated tags {σi, ti}. The prover chooses
at random a vector ~y = (y1, . . . , ym) ∈R Zmp and two elements yσ, yt ∈R Zp, and
computes (Yα, Yβ , Yσ, Yt) ∈ G4 as below

Yα :=

m∏
j=1

g
yj
j = gαPoly~y(α); Yβ :=

m∏
j=1

h
yj
j = gρ·βPoly~y(β); Yσ := gyσ ; Yt := gyt . (4)

Prover sends (Yα, Yβ , Yσ, Yt) to the verifier, in order to commit the secret values
(~y, yσ, yt).

V2: Verifier chooses at random r, rσ, rt, ξ ∈R Z∗p, and a random subset C ⊂ [0, n−1]
of size `. For each i ∈ C, choose at random a weight wi ∈R Zp. Verifier sends
(r, rσ, rt, ξ, {(i, wi) : i ∈ C}) to the prover.

P2: Prover computes ~̄F ∈ Zmp , and σ̄, t̄ ∈ Zp as below, where the random numbers
(~y, yσ, yt) are used to blind secret information and prevent data leakage to the
verifier.
~̄F := r

∑
i∈C

wi ~Fi + ~y; σ̄ := rσ
∑
i∈C

wiσi + yσ; t̄ := rt
∑
i∈C

witi + yt.

Evaluate polynomial Poly ~̄F (x) at point x = ξ to obtain z := Poly ~̄F (ξ) mod p.

Divide the polynomial (in variable x) Poly ~̄F (x) − Poly ~̄F (ξ) with (x − ξ) using
polynomial long division, and denote the resulting quotient polynomial as ~v =

(v0, . . . vm−2), that is, Poly~v(x) ≡ Poly ~̄F (x)−Poly ~̄F (ξ)

x−ξ . Compute (ψα, ψβ , φα) ∈ G3

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 9

as below

ψα :=

m−1∏
j=0

g
~̄F [j]
j =

m−1∏
j=0

(
gα

j
) ~̄F [j]

= g

m−1∑
j=0

~̄F [j]αj

= gPoly ~̄F (α) ∈ G; (5)

ψβ :=

m−1∏
j=0

h
~̄F [j]
j =

m−1∏
j=0

(
gρ·β

j
) ~̄F [j]

= g
ρ·
m−1∑
j=0

~̄F [j]βj

= gρPoly ~̄F (β) ∈ G; (6)

φα :=

m−2∏
j=0

g
vj
j =

m−2∏
j=0

(
gα

j
)vj

= g

m−2∑
j=0

vjα
j

= gPoly~v(α) ∈ G. (7)

Prover sends (z, φα, σ̄, t̄, ψα, ψβ) to the verifier.

V3: Verifier checks whether the following equalities hold:

e(ψα, g)
?
= e(φα, g

α/gξ) · e(g, g)z (8) e(ψα, g
α)

e
(
g, Yα · (gσ̄/Yσ)

r−1
σ ·r

)
γ

?
=

e(ψβ , g
β)

e

(
g, Yβ ·

(
gt̄/Yt

)r−1
t ·r · g

−r
∑
i∈C

wiPRFs1 (i)
) (9)

If all of the above equalities hold, then output Accept, otherwise output Reject.

We remark that the data owner retains the capability to audit the data integrity by
checking the data blocks and tags {σi}, in a similar way as Shacham and Waters [24].
We leave the details to the full paper.

4.2.1 Completeness If all parties are honest and data are intact, we have

e(g, g)αPoly ~̄F (α) = e(ψα, g
α), ;

(
gσ̄/Yσ

)r−1
σ = g

∑
i∈C

wiσi
, (10)

e(g, g)ρβPoly ~̄F (β) = e(ψβ , g
β),

(
gt̄/Yt

)r−1
t

= g

∑
i∈C

witi
. (11)

e(g, g)Poly ~̄F (α) = e(φα, g
α/gξ) · e(g, g)z, (12)

and the left hand side and right hand side of Eq (9) should be

LHS =

 1

g
r
∑
i∈C

wiPRFs0 (i)

γ

; RHS =
1

g
r
∑
i∈C

wi·γPRFs0 (i)
(13)

The detailed completeness (or correctness) proof is given in Appendix A.

4.3 Discussion

How to verify the integrity of all tag values {ti} in algorithm UpdVK? The data
owner is able to verify the integrity of all tag values {ti} using his/her secret keys.
Note that the data owner is able to replace the auditor to run the interactive proof
algorithm 〈P,V〉 with the cloud storage server, since the data owner also holds key
vsk. At first, the data owner downloads all tags {ti}. After receiving all tags ti’s,
the data owner audits all data blocks at once by running 〈P,V〉 with the cloud stor-
age server using sampling set C = [0, n − 1]. The data owner checks an additional

equality: gt̄
?
= grt

∑
i∈[0,n−1] witi · Yt, where rt and wi’s are chosen by the data owner,

10 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

t̄ and Yt come from the server’s response, and ti’s on the right hand side are down-
loaded from server before this interactive proof. If and only if 〈P,V〉 outputs Accept
and the additional equality check succeeds, the data owner will consider that the
downloaded tags {ti} are intact.

Alternatively, a simpler method is that: The data owner keeps tack a hash (e.g.
SHA256) value of t0‖t1 . . . ‖tn−1 in local storage, and updates this hash value when
executing UpdVK.

How to reduce the size of challenge {(i, wi) : i ∈ C}? Dodis et al. [14]’s result can
be used to represent a challenge {(i, wi) : i ∈ C} compactly as below:

1. Choose the subset C using Goldreich [16]’s (δ, ε)-hitter3, where the subset C
can be represented compactly with only log n+ 3 log(1/ε) bits. Assume n < 240

(sufficient for practical file size) and let ε = 2−80. Then C can be represented
with 280 bits.

2. The sequence (. . . , wi, . . .) of ` weights wi, i ∈ C, ordered by increasing i, forms
a simple geometric sequence (w1, w2, . . . , w`) for some w ∈ Z∗p.

4.4 Experiment Result

We implement a prototype of our scheme in C language and using PBC 4 library.
We run the prototype in a Laptop PC with a 2.5GHz Intel Core 2 Duo mobile
CPU (model T9300, released in 2008). Our test files are randomly generated and
of size from 128MB to 1GB. We achieve a throughput of data preprocessing at
speed slightly larger than 10 megabytes per second. Detailed experiment data will
be provided in the full paper.

In contrast, Atenesis et al. [3, 4] achieves throughput of data preprocessing at
speed 0.05 megabytes per second with a 3.0GHz desktop CPU [4]. Wang et al. [31]
achieves throughput of data pre-processing at speed 9.0KB/s and 17.2KB/s with an
Intel Core 2 1.86GHz workstation CPU, when a data block is a vector of dimension
m = 1 and m = 10, respectively. According to the pre-processing complexity of [31]
shown in Table 1, the theoretical optimal throughput speed of [31] is twice of the
speed for dimension m = 1, which can be approached only when m tends to +∞.

Therefore, the data pre-processing in our scheme is 200 times faster than Atenesis
et al. [3, 4], and 500 times faster than Wang et al. [31], using a single CPU core.
We remark that, all of these schemes (ours and [3, 4, 31]) and some others can be
speedup by N times using N CPU cores in parallel. However, typical cloud user who
runs the data pre-processing task, might have CPU cores number ≤ 4.

5 Security Analysis

5.1 Security Formulation

5.1.1 Definition of Soundness Based on the existing Provable Data Posses-
sion formulation [4] and Proofs of Retrievability formulation [18, 24]. The DPOS
soundness security game Gamesound between a probabilistic polynomial time (PPT)
adversary A (i.e. dishonest prover/cloud storage server) and a PPT challenger C
w.r.t. a DPOS scheme E = (KeyGen, Tag, UpdVK, 〈P,V〉) is as below.

3 Goldreich [16]’s (δ, ε)-hitter guarantees that, for any subset W ⊂ [0, n − 1] with size
|W | ≥ (1− δ)n, Pr[C ∩W 6= ∅] ≥ 1− ε. Readers may refer to [14] for more details.

4 The Pairing-Based Cryptography Library: http://crypto.stanford.edu/pbc/

http://crypto.stanford.edu/pbc/

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 11

Setup: The challenger C runs the key generating algorithm KeyGen(1λ) to obtain
two pair of public-private keys (pk, sk) and (vpk, vsk). The challenger C gives the
public key (pk, vpk) to the adversary A and keeps the private key (sk, vsk) securely.
Learning: The adversary A adaptively makes polynomially many queries, where
each query is one of the following:

• Store-Query(F): Given a data file F chosen by A, the challenger C runs tagging
algorithm (ParamF , {(σi, ti)})← Tag(sk, vsk, F), where ParamF = (idF , n), and
sends the data file F, authentication tags {(σi, ti)}, public keys (pk, vpk), and
file parameter ParamF , to A.
• Verify-Query(idF): Given a file identifier idF chosen by A, if idF is not the

(partial) output of some previous Store-Query that A has made, ignore this
query. Otherwise, the challenger C initiates a proof session with A w.r.t. the
data file F associated to the identifier idF in this way: The adversary C, who
runs the verifier algorithm V(vsk, vpk, pk, ParamF), interacts with the adversary
A, who replaces the prover algorithm P with any PPT algorithm of its choice,
and obtains an output b ∈ {Accept, Reject}. The challenger sends the decision
bit b to the adversary as feedback.

• RevokeVK-Query: To respond to this query, the challenger runs the verifica-
tion key update algorithm to obtain a new pair of verification keys (vpk′, vsk′,
{t′i}) := UpdVK(vpk, vsk, {ti}), and sends the revoked verification secret key vsk
and the new verification public key vpk′ and new authentication tags {t′i} to the
adversary A, and keeps vsk′ private.

Commit: AdversaryA chooses a file identifier id∗ among all file identifiers it obtains
from C by making Store-Queries in Learning phase. Let F∗ denote the data file
associated to identifier id∗. A also chooses a subset C ⊂ [0, nF∗ − 1], where nF∗ is
the number of blocks in file F ∗. A commits identifier id∗F and subset C of indices
to C.
Retrieve: The challenger C initiates polynomially many proof sessions with A w.r.t.
the data file F∗ and subset C, where challenger C plays the role of verifier and A
plays the role of prover, as in the Learning phase. Let transcriptA denote all
random coins chosen by the adversary A, and responseA denote all responses made
by the adversary A, during these proof sessions. The challenger C extracts file blocks
{F′i : i ∈ C} from A’s storage by applying some PPT knowledge extractor on input
(transcriptA, responseA, pk, sk, vpk, vsk).

The adversary A wins this DPOS security game, if the challenger C accepts A’s
responses in these proof sessions with some noticeable probability 1/λτ for some
positive integer τ . The challenger C wins this game, if the extracted blocks {(i, F′i) :
i ∈ C} are identical to the original {(i, Fi) : i ∈ C}.
Note: Events “adversary A wins” and “challenger C wins” are not mutual exclusive.

Definition 3 (Soundness) A DPOS scheme is sound against dishonest cloud stor-
age server, if for any PPT adversary A, the probability that A wins the above DPOS
security game is negligibly close to the probability that C wins the same security
game. That is

Pr[A wins Gamesound] ≤ Pr[C wins Gamesound] + negl(λ), (14)

where λ is the security parameter.

12 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

Discussion In case of POR, the knowledge extract does not require transcriptA
as input.

5.1.2 Privacy-Preserving against TPA The DPOS privacy security game
Gameprivate between a probabilistic polynomial time (PPT) adversary A (i.e. dishon-
est verifier/auditor) and a PPT challenger C w.r.t. a DPOS scheme E = (KeyGen,
Tag, UpdVK, 〈P,V〉) is as below.
Setup: The challenger C runs the key generating algorithm KeyGen(1λ) to obtain two
pair of public-private keys (pk, sk) and (vpk, vsk). The challenger C gives the public
key (pk, vpk) and verification secret key vsk to the adversary A and keeps the secret
key sk private. The challenger C chooses a random file F ∗ with bit-length ≥ mλ,
and computes (Param∗, {(σi, ti)})← Tag(sk, vsk, F∗), where Param∗ = (id∗, n∗).
Learning: The adversary A adaptively makes polynomially many queries, where
each query is one of the following:

• Store-Query(F): Given a data file F chosen by A, the challenger C runs tagging
algorithm (ParamF , {(σi, ti)})← Tag(sk, vsk, F), where ParamF = (idF , n), and
sends the data file F, the authentication tags {(σi, ti)}, public keys (pk, vpk)
together with ParamF to A.
• Verify-Query(idF): Given a file identifier idF chosen by A, if idF 6= id∗ and

it is not the (partial) output of some previous Store-Query that A has made,
ignore this query. Otherwise, the adversary A initiates a proof session with the
challenger C w.r.t. the data file F associated to the identifier idF in this way: The
adversary A, who replaces the verifier algorithm V(vsk, vpk, pk, ParamF) with
any PPT algorithm of its choice, interacts with the challenger C, who runs the
prover algorithm P(pk, vpk, { ~Fi}), and obtains an output b ∈ {Accept, Reject}.
• RevokeVK-Query: To respond to this query, the challenger runs the verifica-

tion key update algorithm to obtain a new pair of verification keys and update
authentication tags ti’s for all files: (vpk′, vsk′, {t′i}) := UpdVK(vpk, vsk, {ti}),
and sends the all verification keys (vpk, vsk, vpk′, vsk′) to the adversary A.

Guess: The adversary outputs a tuple (i, j, b), wins this game if b = ~F ∗i [j], i.e. b

equals to the j-th dimension of the i-th data block ~F ∗i .

Definition 4 (Privacy-Preserving) A DPOS scheme is privacy-preserving against
TPA, if for any PPT adversary A (dishonest verifier/auditor), A wins the above pri-
vacy security game Gameprivate with only negligible probability. That is,

Pr[A wins Gameprivate] ≤ negl(λ), (15)

where λ is the security parameter.

5.2 Security Proof

For ease of exposition, we clarify two related but distinct concepts: valid proof and
genuine proof. (1) A proof is genuine, if it is the same as the one generated by an
honest (deterministic) prover on the same query. (2) A proof is valid, if it is accepted
by the honest verifier. In our scheme, for each query, there exists only one genuine
proof, and there exist many valid proofs. To be secure, our scheme has to ensure
that it is computationally hard to compute a valid but not genuine proof.

Definition 5 (m-Bilinear Strong Diffie-Hellman (m-BSDH) Assumption)
Let e : G×G→ GT be a bilinear map where G and GT are both multiplicative cyclic

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 13

groups of prime order p. Let g be a randomly chosen generator of group G. Let ς ∈R
Z∗p be chosen at random. Given as input a (m + 1)-tuple T = (g, gς , gς

2

. . . , gς
m

) ∈
Gm+1, for any PPT adversary A, the following probability is negligible

Pr
[
d = e(g, g)1/(ς+c) where (c, d) = A(T)

]
≤ negl(log p). (16)

Theorem 1 Suppose m-BSDH Assumption hold, and PRF is a secure pseudoran-
dom function. The DPOS scheme constructed in Sec 4 is sound, according to Defi-
nition 3.

Game 1 The first game is the same as soundness security game Gamesound, except
that the pseudorandom function PRFs0 outputs true randomness. Precisely, for each
given seed s0, the function PRF is evaluated in the following way:

1. The challenger keeps a table to store all previous encountered input-output pairs
(v,PRFs0(v)).

2. Given an input v, the challenger lookups the table for v, if there exists an entry
(v, u), then return u as output. Otherwise, choose u at random from the range
of PRF, insert (v,PRFs0(v) := u) into the table and return u as output.

Game 2 The second game is the same as Game 1, except that the pseudorandom
function PRFs1 with seed s1 outputs true randomness. The details are similar as in
Game 1.

Lemma 2 Suppose m-BSDH Assumption holds. In Game 2, any PPT adversary
is unable to find two distinct valid tuples T0 6= T1 and the last four elements of tuple
T0 and T1 are equal, where T0 = (z, φα; σ̄, t̄, ψα, ψβ) and T1 = (z′, φ′α; σ̄, t̄, ψα, ψβ).
Precisely, for any PPT adversary A in Game 2, there exists a PPT algorithm B,
such that

Pr
[
T0 6=T1 are both valid and T0[2,3,4,5]=T1[2,3,4,5],

where (T0,T1)=AGame 2

]
(17)

≤ Pr [B solves m-BSDH Problem] (18)

(Proof of Lemma 2 is given in Appendix B.2)

Lemma 3 Suppose m-BSDH Assumption holds. In Game 2, any PPT adver-
sary is unable to find two distinct valid tuples T0 6= T1 such that the last four
elements of T0 and T1 are not equal, where T0 = (z, φα; σ̄, t̄, ψα, ψβ) and T1 =
(z′, φ′α; σ̄′, t̄′, ψ′α, ψ

′
β) and (σ̄, t̄, ψα, ψβ) 6= (σ̄′, t̄′, ψ′α, ψ

′
β). Precisely, for any PPT

adversary A in Game 2, there exists a PPT algorithm D, such that

Pr
[
T0 6=T1 are both valid and T0[2,3,4,5]6=T1[2,3,4,5],

where (T0,T1)=AGame 2

]
(19)

≤ 2Pr [D solves m-BSDH Problem] (20)

(Proof of Lemma 3 is given in Appendix B.3).

Proof (Sketch proof of Theorem 1). Since PRF is a secure pseudorandom function,
the soundness security game Gamesound and Game 1 are computationally indistin-
guishable. So are Game 1 and Game 2. Therefore, Lemma 2 and Lemma 3 also
hold in Gamesound with negligible difference in success probability.

Using proof of contradiction, one can show that: For any adversary A that wins
Gamesound, there exists noticeable fraction of possible weights W := {wi ∈ Zp :

14 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

i ∈ C} over the domain of weights W , such that for each weight W , there exists
noticeable fraction of points ξ ∈ Zp over the domain Zp, the adversary A can provide
the correct response to the challenge ({(i, wi) : i ∈ C}, ξ) where {wi : i ∈ C} = W .

Therefore, from sufficient number of points z = Poly ~̄F (ξ) along the same polyno-

mial Poly ~̄F (·), the knowledge extractor can find the coefficient vector ~̄F by solving
linear equation system over Zp. From transcriptA, the knowledge extractor can
recover the blinding randomness ~y, and thus recover the weighted sum of file blocks:∑
i∈C wi

~Fi. Furthermore, from sufficient number of weighted sum w.r.t different

weights W ’s, the knowledge extractor can recover each file block ~Fi, i ∈ C, by solv-
ing a linear equation system over Zp. Consequently, the challenger of Gamesound wins
the game, as we desire. ut

5.3 Privacy Preserving

Definition 6 (Discrete Log Assumption) Let e : G × G → GT be a bilinear
map where G and GT are both multiplicative cyclic groups of prime order p. Let g
be a randomly chosen generator g ∈ G and h ∈R G be a randomly chosen group
element. For any PPT adversary A, the probability that A can output x such that
gx = h is negligible. That is,

Pr [gx = h where x = A(g, h)] ≤ negl(log p). (21)

Theorem 4 Suppose Discrete Log (DL) Assumption holds in group G and PRF is
a secure pseudorandom function. The DPOS scheme constructed in Sec 4 is privacy-
preserving according to Definition 4.

Game 4 This game is identical to the privacy security game Gameprivate, except
that the pseudorandom values {PRFs0(i)} with seed s0 are replaced by true random
values, as in Game 1. Note: We emphasize that the values PRFs1(i) with seed s1 is not

replaced, and it is still the actual “pseudorandom” function output. In the privacy security

game, the adversary is the dishonest verifier, who will obtain the seed s1 as a part of the

verification secret key vsk.

Game 5 This game is identical to Game 4, except that adversary A (i.e the

dishonest verifier/auditor) is provided with extra information (g〈~α, ~Fi〉, gρ〈~β, ~Fi〉,
gσi , gti) for each i and for each file.

Lemma 5 Suppose the Discrete Log Assumption holds in group G. In Game 5,
any PPT adversary A (i.e. the dishonest verifier/auditor) is unable to output file

sector ~Fi[j] for any i ∈ [0, n − 1], j ∈ [0,m − 1]. Precisely, for any PPT adversary
A, there exists PPT algorithm E, such that

Pr [A wins Game 5] ≤ Pr [E solves DL problem] . (22)

(Proof of Lemma 5 is given in Appendix C)

Proof (of Theorem 4). Since PRF is a secure pseudorandom function, we have
Pr
[
A wins Gameprivate

]
≤ Pr [A2 wins Game 4] + negl(λ) for any PPT algorithm

A2. Since Game 5 is identical to Game 4, except that the adversary will obtain
extra information, we have Pr [A2 wins Game 4] ≤ Pr [A3 wins Game 5] for any
PPT algorithm A3.

Combining the above two inequalities and Lemma 5, Theorem 4 is proved. ut

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 15

6 Conclusion

We proposed a novel POS scheme which is lightweight and privacy preserving. On
one side, the proposed scheme is as efficient as private key POS scheme, especially
very efficient in authentication tag generation. On the other side, the proposed
scheme supports third party auditor and can revoke an auditor at any time, close to
the functionality of publicly verifiable POS scheme. Compared to existing publicly
verifiable POS scheme, our scheme improves the authentication tag generation speed
by more than 100 times. Our scheme also prevents data leakage to the auditor dur-
ing the auditing process. How to enable dynamic operations (e.g. inserting/deleting
a data block) in our scheme is in future work.

References
1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-

Retrieval Model. In: CRYPTO’09. pp. 36–54 (2009)

2. Aniket Kate, Gregory M. Zaverucha, I.G.: Constant-Size Commitments to Polynomials and Their

Applications. In: ASIACRYPT’10. pp. 177–194

3. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson, Z., Song, D.:

Remote data checking using provable data possession. ACM Tran. on Info. and Sys. Sec., TISSEC

2011 14(1), 12:1–12:34 (2011)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable data

possession at untrusted stores. In: ACM CCS’07. pp. 598–609. ACM (2007)

5. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identification protocols. In:

ASIACRYPT’09. LNCS, vol. 5912, pp. 319–333. Springer (2009)

6. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession.

In: SecureComm’08. pp. 9:1–9:10. ACM (2008)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal of Cryptology

17(4), 297–319 (2004)

8. Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for cloud storage.

In: ACM CCS’09. pp. 187–198. ACM (2009)

9. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implementation. In:

CCSW’09. pp. 43–54. ACM (2009)

10. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. In: EURO-

CRYPT’13. LNCS, vol. 7881, pp. 279–295. Springer (2013)

11. Chang, E.C., Xu, J.: Remote integrity check with dishonest storage server. In: ESORICS’08. LNCS,

vol. 5283, pp. 223–237. Springer (2008)

12. Curtmola, R., Khan, O., Burns, R., Ateniese, G.: MR-PDP: Multiple-replica provable data posses-

sion. In: ICDCS’08. pp. 411–420. IEEE (2008)

13. Deswarte, Y., Quisquater, J.J., Säıdane, A.: Remote integrity checking: How to trust files stored on

untrusted servers. In: Integrity and Internal Control in Information Systems VI. LNCS, vol. 140, pp.

1–11. Springer (2004)

14. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of Retrievability via Hardness Amplification. In: Proceed-

ings of TCC’09, LNCS, vol. 5444, pp. 109–127. Springer (2009)

15. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In: ACM

CCS’09. pp. 213–222. ACM (2009)

16. Goldreich, O.: A Sample of Samplers - A Computational Perspective on Sampling (survey). Elec-

tronic Colloquium on Computational Complexity (ECCC) 4(20) (1997)

17. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking protocol with data

dynamics and public verifiability. TKDE’11 23(9), 1432–1437 (2011)

18. Juels, A., Burton S. Kaliski, J.: PORs: Proofs of retrievability for large files. In: ACM CCS’07. pp.

584–597. ACM (2007)

19. Naor, M., Rothblum, G.N.: The complexity of online memory checking. Journal of the ACM 56(1)

(2009)

20. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature

schemes. In: CRYPTO’92. pp. 31–53

21. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for In-

dustrial and Applied Mathematics 8(2), 300–304 (1960)

22. Schwarz, T.J.E., Miller, E.L.: Store, forget, and check: Using algebraic signatures to check remotely

administered storage. In: ICDCS’06. IEEE (2006)

16 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

23. Sebé, F., Domingo-Ferrer, J., Mart́ınez-Ballesté, A., Deswarte, Y., Quisquater, J.J.: Efficient remote

data possession checking in critical information infrastructures. TKDE’08 20(8), 1034–1038 (2008)
24. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASIACRYPT’08. LNCS, vol. 5350,

pp. 90–107. Springer (2008)
25. Shacham, H., Waters, B.: Compact proofs of retrievability. Journal of Cryptology 26(3), 442–483

(2013)
26. Shah, M.A., Baker, M., Mogul, J.C., Swaminathan, R.: Auditing to keep online storage services

honest. In: HotOS’07. USENIX Association (2007)
27. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction of digital contents.

Cryptology ePrint Archive, Report 2008/186 (2008), http://eprint.iacr.org/2008/186
28. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: ACM CCS’13.

pp. 325–336. ACM (2013)
29. Wang, B., Li, B., Li, H.: Oruta: Privacy-preserving public auditing for shared data in the cloud. In:

IEEE Cloud 2012. pp. 295–302. IEEE (2012)
30. Wang, B., Li, B., Li, H.: Public auditing for shared data with efficient user revocation in the cloud.

In: INFOCOM’13. pp. 2904–2912. IEEE (2013)
31. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure

cloud storage. IEEE Tran. on Computers 62(2), 362–375 (2013)
32. Wang, C., Ren, K., Lou, W., Li, J.: Toward publicly auditable secure cloud data storage services.

IEEE Network Magazine 24(4), 19–24 (2010)
33. Wang, C., Wang, Q., Ren, K., Cao, N., Lou, W.: Towards secure and dependable storate services in

cloud computing. IEEE Transactions on Services Computing 5(2), 220–232 (2012)
34. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud computing. In:

Proceedings of IWQoS’09. pp. 1–9. IEEE (2009)
35. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage security

in cloud computing. In: INFOCOM’10. pp. 525–533. IEEE (2010)
36. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for

storage security in cloud computing. In: ESORICS’09. LNCS, vol. 5789, pp. 355–370. Springer (2009)
37. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for

storage security in cloud computing. TPDS’11 22(5), 847–859 (2011)
38. Xu, J., Chang, E.C.: Towards efficient proofs of retrievability. In: ASIACCS’12. pp. 79–90. ACM

(2012)
39. Yang, K., Jia, X.: Data storage auditing service in cloud computing: challenges, methods and op-

portunities. World Wide Web 15(4), 409–428 (2012)
40. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage in cloud

computing. TPDS’13 24(9), 1717–1726 (2013)
41. Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communication cost in

cloud. In: Proceedings of the 2013 International Workshop on Security in Cloud Computing, Cloud

Computing 2013. pp. 19–26. ACM (2013)
42. Zeng, K.: Publicly verifiable remote data integrity. In: ICICS’08. LNCS, vol. 5308, pp. 419–434.

Springer (2008)
43. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for integrity verification

in multicloud storage. TPDS’12 23(12), 2231–2244 (2012)
44. Zhu, Y., Wang, H., Hu, Z., Ahn, G.J., Hu, H., Yau, S.S.: Dynamic audit services for integrity

verification of outsourced storages in clouds. In: Proceedings of SAC’11. pp. 1550–1557. ACM (2011)

A Proof for Completeness
Substituting Eq (10) into Eq (9), we have left hand side of Eq (9):

LHSγ
−1

=
e(g, g)

αPoly ~̄F
(α)

e(g, Yα) · e(g, g
r
∑
i∈C

wiσi
)

=
e(g, g)

αPoly ~̄F
(α)

e(g, gαPoly~y(α)) · e(g, g
r
∑
i∈C

wiσi
)

(23)

=
e(g, g)

〈
~α, ~̄F

〉

e(g, g〈~α, ~y〉) · e

(
g, g

r
∑
i∈C

wi(〈~α, ~Fi〉+PRFs0 (i))
) (24)

=
e(g, g)

〈
~α, r

∑
i∈C

wi ~Fi+~y

〉

e(g, g)〈~α, ~y〉 · e (g, g)
r

(〈
~α,

∑
i∈C

wi ~Fi

〉
+
∑
i∈C

wiPRFs0 (i)

) (25)

=
1

e(g, g)
r
∑
i∈C

wiPRFs0 (i)
. (26)

http://eprint.iacr.org/2008/186

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 17

The right hand side (RHS) of Eq (9) can be shown in a similar way, we leave details to
full paper.

B Proof for Soundness

B.1 Simulate Game 2 using the input of m-BSDH Problem

Let bilinear map e : G×G→ GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be as stated in
the m-BSDH Assumption. With information T , we can simulate Game 2 as below. Recall
that the adversary A in this game is the dishonest prover (i.e. the cloud storage server).
Setup Choose at random a bit ι ∈ {0, 1}. If ι = 1, let α = ς, and choose at random
β ∈R Z∗p. If ι = 0, let β = ς, and choose at random α ∈R Z∗p.

Choose two random group elements γ, ρ ∈R Z∗p. For each j ∈ [1,m], we can find values

of gj , hj : gj = gα
j

∈ G;hj =
(
gβ
j
)ρ
∈ G. Let g0 = g and h0 = gρ. The secret key

is sk = (α, β, s0), the public key is pk = (g0, g1, . . . , gm), the verification secret key is
vsk = (ρ, γ, s1), and the verification public key is vpk = (h0, h1, . . . , hm), where the two
random seeds (s0, s1) for pseudorandom function PRF will be determined later. Notice
that, the simulator does not have information of (s0, s1), and does not know either α or β:
if ι = 1, α = ς is unknown and β is known; if ι = 0, β = ς is unknown and α is known.
Send (pk, vpk) to the adversary.
Learning

• Store-Query(F): Given a data file F chosen by the adversary A. The simulator sim-
ulates the algorithm Tag as below: For each i ∈ [0, n − 1], choose the authentication
tags σi, ti ∈R Zp at random, which will implicitly define the values of the file-specific

randomness PRFs0(i) and PRFs1(i). The simulator is able to compute: g〈~α, ~Fi〉 =
m∏
j=1

g
~Fi[j−1]
j ; gρ〈~β, ~Fi〉 =

m∏
j=1

h
~Fi[j−1]
j ; gPRFs0 (i) = gσi

g〈~α, ~Fi〉
; gPRFs1 (i) = gti

g
ρ〈~β, ~Fi〉·

(
g
PRFs0 (i)

)γ .
Send file F and authentication tags {(i, σi, ti)} to the adversary A.

• Verify-Query: The simulator has full information of pk, vpk, and γ. Although the
simulator does not know s1, it knows values gPRFs1 (i) for each i ∈ [0, n − 1]. The
simulator can execute the verifier algorithm V in the proposed DPOS scheme exactly,

except that when computing the right hand side of Eq (9), the term g
−r

∑
i∈C

wiPRFs1 (i)

is

computed as
∏
i∈C

(
gPRFs1 (i)

)−rwi
. So the simulator can find the exact the same decision

bit b ∈ {Accept, Reject} as in a real game.
• RevokeVK-Query: Choose at random γ′ ∈R Z∗p. Update hj exactly as in algorithm

UpdVK: h′j := hγ
′

j , j ∈ [1,m]. Update ρ as ρ′ := γ′ · ρ. For each i ∈ [0, n − 1], choose
the new authentication tag t′i ∈R Zp at random, which will implicitly define the new

version of file-specific randomness PRFs′1(i) as g
PRFs′1

(i)
:= gt

′
i ·
(

gti

g
PRFs1 (i)

)−γ′
. So the

simulator knows the value of g
PRFs′1

(i)
for each i ∈ [0, n− 1].

B.2 Proof for Lemma 2

Proof (of Lemma 2). Our hypothesis is: Adversary A can output such (T0, T1) as stated in

Lemma 2. Let bilinear map e : G × G → GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be
as stated in the m-BSDH Assumption. We will construct a PPT algorithm B, which will
simulate Game 2 to interact with adversary A, and then compute (c, d) from A’s output
(T0, T1), such that d = e(g, g)1/(ς+c).

The algorithm B simulates the Game 2 to interact with the adversary A, from infor-
mation T , as in Appendix B.1. By the hypothesis, both T0 and T1 are valid, i.e. satisfy

18 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

Eq (8) and Eq (9):

e(ψα, g) = e(φα, g
α/gξ) · e(g, g)z (27)

e(ψα, g) = e(φ′α, g
α/gξ) · e(g, g)z

′
(28)

Combining Eq (27) and Eq (28), we have e(φα/φ
′
α, g

α/gξ) = e(g, g)z
′−z.

Case 1: z′ = z mod p. If α = ξ, then find any value c 6= −α mod p, compute d =
e(g, g)1/(α+c) = e(g, g)1/(ξ+c). Output (c, d) as solution to m-BSDH problem. If α 6= ξ,
then φα = φ′α. As a result, T0 = T1, contradicting with the hypothesis that T0 6= T1.
Case 2: z′ 6= z mod p. The inverse 1/(z′ − z) mod p exists. Let c = −ξ mod p and

compute d as d = e(φα/φ
′
α, g)1/(z′−z) mod p ∈ GT . Output (c, d) as the solution to the

m-BSDH problem. One can verify that

dα+c =
(
e(φα/φ

′
α, g)1/(z′−z) mod p

)α−ξ
= e(φα/φ

′
α, g

α−ξ)1/(z′−z) mod p (29)

=
(
e(g, g)z

′−z
)1/(z′−z) mod p

= e(g, g). (30)

B.3 Proof for Lemma 3

Proof (of Lemma 3). Our hypothesis is: Adversary A can output such (T0, T1) as stated in

Lemma 3. Let bilinear map e : G × G → GT and tuple T = (g, gς , gς
2

, . . . , gς
m

) ∈ Gm be
as stated in the m-BSDH Assumption. We will construct a PPT algorithm D, which will
simulate Game 2 to interact with adversary A, and then compute (c, d) from A’s output
(T0, T1), such that d = e(g, g)1/(ς+c).

The algorithm D simulates the Game 2 to interact with the adversary A, from infor-
mation T , as in Appendix B.1. By the hypothesis, both T0 and T1 are valid, i.e. satisfy
Eq (8) and Eq (9): e(ψα, g

α)

e
(
g, Yα · (gσ̄/Yσ)r

−1
σ ·r

)
γ

=
e(ψβ , g

β)

e

(
g, Yβ · (gt̄/Yt)r

−1
t ·r · g

−r
∑
i∈C

wiPRFs1 (i)
) (31)

 e(ψ′α, g
α)

e
(
g, Yα · (gσ̄′/Yσ)

r−1
σ ·r

)

γ

=
e(ψ′β , g

β)

e

(
g, Yβ · (gt̄′/Yt)r

−1
t ·r · g

−r
∑
i∈C

wiPRFs1 (i)
) (32)

Divide Eq (31) with Eq (32), we have(
e(ψα
ψ′α
, gα)

e(g, g)r
−1
σ ·r·∆σ

)γ
=

 e(
ψβ
ψ′
β
, gβ)

e(g, g)r
−1
t ·r·∆t

 ∈ GT (33)

where ∆σ := σ̄′ − σ̄ and ∆t := t̄′ − t̄.
For ease of exposition, let us represent the above Eq (33) as Aγ = B, where the

meaning of variable A and B can be explained straightforwardly by looking at Eq (33).
The adversary A (i.e. the dishonest prover/cloud storage server) has sufficient information
to compute values of A and B by itself. So the adversary A is able to compute values A
and B, such that Aγ = B.

Notice that, in our scheme, among all data that the adversary (dishonest cloud storage
server) owns (i.e data blocks, authentication tags {σi, ti}, and public keys (pk, vpk)), the
secret value γ only appears in the computation of ti, where γ is perfectly protected by
PRFs1(i) (which is true randomness in Game 2) from the adversary A (dishonest prover).

Lightweight and Privacy-Preserving Delegatable Proofs of Storage 19

Once a verification public/private key pair is revoked, γ will be re-randomized as γ′γ, where
γ′ is a newly chosen uniform random variable hidden from A. herefore, γ is semantically
secure against A, and A is unable do brute-force search attack to find values of γ. Therefore,
the adversary A is unable to compute a pair (A,B) such that Aγ = B and A 6= 1. As a
result, it has to be the case that A = B = 1 = e(g, g)0 ∈ GT .

We have A =

(
e(ψα
ψ′α

, gα)

e(g,g)r
−1
σ ·r·∆σ

)
=

 e(
ψβ

ψ′
β
, gβ)

e(g,g)r
−1
t ·r·∆t

 = B = 1 ∈ GT

Recall that (ψα, ψβ , σ̄, t̄) 6= (ψ′α, ψ
′
β , σ̄

′, t̄′) are distinct, by our hypothesis. We define
three mutually exclusive events as below: (1) E1: σ̄ 6= σ̄′ mod p, i.e. ∆σ 6= 0 mod p. (2)
E2: ¬E1 ∧ (t̄ 6= t̄′ mod p). (3) E3: ¬E1 ∧ ¬E2.
Case 1: E1. Let c = 0 ∈ Zp and compute d ∈ GT as below

d = e(
ψα
ψ′α

, g)rσ·(r·∆σ)−1 mod p ∈ GT . (34)

In case ς = α, the solution to the m-BSDH problem is (c, d). One can verify that

e(g, g) =

(
e(
ψα
ψ′α

, gα)

)rσ·(r·∆σ)−1 mod p

(35)

e(g, g)1/(α+c) =

(
e(
ψα
ψ′α

, gα/(α+c))

)rσ·(r·∆σ)−1 mod p

= d ∈ GT (36)

Case 2: E2 Similar as above, the algorithm D can break m-BSDH Assumption w.r.t. ς = β.
Case 3: E3. Under the hypothesis that (ψα, ψβ , σ̄, t̄) 6= (ψ′α, ψ

′
β , σ̄

′, t̄′), we have Pr[E3] =
0. By the definition of event E3, ∆σ = ∆t = 0 mod p. From A = B = 1, we have

e(ψα
ψ′α
, gα) = e(g, g)0 = e(

ψβ
ψ′
β
, gβ) ∈ GT . Since α, β ∈ Z∗p and α 6= 0 6= β, we have ψα = ψ′α

and ψβ = ψ′β . As a result, we have (ψα, ψβ , σ̄, t̄) = (ψ′α, ψ
′
β , σ̄

′, t̄′), which contradicts with
our hypothesis that (ψα, ψβ , σ̄, t̄) 6= (ψ′α, ψ

′
β , σ̄

′, t̄′) are distinct.
Recall that in the simulation in Appendix B.1, if the random bit ι = 1, then ς = α and

if ι = 0, then ς = β. It is easy to see that, the random bit ι is perfectly protected from the
adversary A in the simulated game. Therefore,

Pr [(c, d) solves m-BSDH problem] = Pr [ι = 1 ∧E1] + Pr [ι = 0 ∧E2] (37)

=
1

2
Pr [E1 ∨E2] =

1

2
Pr [A wins Lem 3] (38)

ut

C Proof for Privacy-Preserving

Proof (of Lemma 5). Given input (g, gx) ∈ G2, where e : G×G→ GT is a bilinear map of
prime order p, and g is a generator of group G. The goal of DL problem is to output the
secret exponent x ∈ Zp. We construct algorithm E as below.

Algorithm E simulates the challenger in Game 5 to interact with the adversary A.
Setup. Simulate key generation algorithm KeyGen as below: Choose α, β, γ, ρ, s1 and com-
pute gj , hj , j ∈ [0,m] and keys (pk, vpk, vsk) in the same way as in algorithm KeyGen. Let
sk = (α, β, s0), where PRF seed s0 will be determined later.

Simulate the algorithm Tag for the target input file F ∗ as below: Choose at random
xi,j ∈R Zp for each i ∈ [0, n − 1] and j ∈ [0,m − 1]. Set the (unknown) target file as
F ∗ = (~F ∗0 , . . . , ~F

∗
n−1), where (unknown) data sector ~F ∗i [j] := x+ xi,j mod p. Algorithm E

can compute g
~F ∗i [j] = gx · gxi,j for the unknown data sector ~F ∗i [j]. If the adversary A can

20 Jia Xu1, Anjia Yang1,2, Jianying Zhou1, and Duncan S. Wong2

output the value of some file sector ~F ∗i [j], then E can find the solution x = ~F ∗i [j]− xi,j to
the DL problem.

For each i ∈ [0, n − 1], choose at random the authentication tag σi ∈R Zp, which will
implicitly define the value of PRFs0(i) and authentication tag ti:

gPRFs0 (i) := gσi/

m∏
j=1

g
~F ∗i [j−1]
j ; gti := gγσi ·

∏
j∈[1,m]

(
g
~Fi[j−1]

)ρβj−γαj
· gPRFs1 (i) (39)

Notice that the above computation of gti utilizes this equation: ti = γσi+
〈
ρ~β − γ~α, ~Fi

〉
+

PRFs1(i) mod p.

Compute and send extra information {g〈~α, ~Fi〉, gρ〈~β, ~Fi〉, gσi , gti : i ∈ [0, n− 1]} to the
adversary A.
Learning.
Store-Query: For any file F chosen by the adversary A, simulate algorithm Tag for input
file F as in the setup phase, except that the unknown file F ∗ is replaced by known file F .
Verify-Query: For any r, rσ, rt, ξ chosen by the adversary A, A is able to compute the

response of the prover by itself, with the identical distribution: Choose ~̄F ∈R Zmp , σ̄, t̄ ∈R Zp
at random and compute (Yα, Yβ , Yσ, Yt) as below:

Yα =
∏

j∈[1,m]

g
~̄F [j−1]
j

/∏
i∈C

(
g〈~α, ~Fi〉

)rwi
; Yσ = gσ̄

/∏
i∈C

(gσi)rσwi ; (40)

Yβ =
∏

j∈[1,m]

h
~̄F [j−1]
j

/∏
i∈C

(
gρ〈~β, ~Fi〉

)rwi
; Yt = gt̄

/∏
i∈C

(
gti
)rtwi . (41)

The dishonest verifier A is able to compute z, ψα, ψβ , φα from ~̄F and public keys (pk, vpk),
in the same way as by an honest prover algorithm P. One can verify that the distribution
of (Yα, Yβ , Yσ, Yt; z, φα, σ̄, t̄, ψα, ψβ) computed by A, is identical to the distribution of an
honest prover’s response. The only difference is that, in real case, the honest prover is able
to commit the values of (Yα, Yβ , Yσ, Yt), before seeing the value (r, rσ, rt) chosen by the
verifier (here it is A); in the simulated case here, A has to choose values (r, rσ, rt) first and
then compute (Yα, Yβ , Yσ, Yt). But such ordering does not provide more information to the
adversary A. We remark that A’s simulation in the Verify-Query borrows ideas from the
proof of the Okomato-Identity scheme.
RevokeVK-Query: Follow the algorithm UpdVK exactly, except that the new authenti-

cation tag t′i is implicitly defined by value gt
′
i :=

(
gti/gPRFs1 (i)

)γ′
· gPRFs′1 (i) ∈ G.

Guess The adversary A outputs (i, j, b).
The algorithm E outputs x := b− xi,j mod p as solution to DL problem. Therefore,

Pr [A wins Game 5] = Pr
[
b = ~F ∗i [j]

]
= Pr [gx = h where x = E(g, h)] . (42)

ut

	Lightweight and Privacy-Preserving Delegatable Proofs of Storage
	Introduction
	Overview of Our Scheme
	Contributions

	Related Work
	Formulation
	System Model
	Trust Model

	Our Proposed Scheme
	Preliminaries
	Construction of the Proposed DPOS Scheme
	Completeness

	Discussion
	Experiment Result

	Security Analysis
	Security Formulation
	Definition of Soundness
	Privacy-Preserving against TPA

	Security Proof
	Privacy Preserving

	Conclusion
	Proof for Completeness
	Proof for Soundness
	Simulate Game 2 using the input of m-BSDH Problem
	Proof for Lemma 2
	Proof for Lemma 3

	Proof for Privacy-Preserving

