

 EFFICIENT PROVABLE OF SECURE KEY DISTRIBUTION MANAGEMENT

Abstract

The project titled “Efficient provable of secure key distribution management” is designed using Microsoft Visual Studio.Net 2005 as front end and Microsoft SQL Server 2000 as back end which works in .Net framework version 2.0. The coding language used is C# .Net.
We authenticated three parties into this project. He will distribute the key to both sender and receiver to avoid the hacking of keys. So this architecture will provide high level security. This work presents key distribution to safeguard high level security in large networks, new directions in classical cryptography and symmetric cryptography.
Two three-party key distributions, one with implicit user authentication and the other with explicit Trusted centers’ authentication, are proposed to demonstrate the merits of the new combination, which include the following:

1) Security against such attacks as man-in-the-middle, eavesdropping and

replay,

2) Efficiency is improved as the proposed protocols contain the fewest number of communication rounds among existing systems, and

3) Two parties can share and use a long-term secret (repeatedly). To prove the security of the proposed schemes, this work also presents a new primitive called the three parties (trusted center as like administer in assumption

INTRODUCTION

KEY distribution protocols are used to facilitate sharing secret session keys between users on communication networks. By using these shared session keys, secure communication is possible on insecure public networks.

However, various security problems exist in poorly designed key distribution protocols; for example, a malicious attacker may derive the session key from the key distribution process.

A legitimate participant cannot ensure that the received session key is correct or fresh and a legitimate participant cannot confirm the identity of the other participant. Designing secure key distribution protocols in communication security is a top priority.

In cryptography, Hierarchical key distribution protocols employ hierarchical key distribution mechanisms to distribute session keys and public discussions to check for end points and verify the correctness of a session key.

However, public discussions require additional communication rounds between a sender and receiver and cost precious key distribution. By contrast, classical cryptography provides convenient techniques that enable efficient key verification and user authentication.

An important and unique property of quantum cryptography is the ability of the two communicating users to detect the presence of any third party trying to gain knowledge of the key. This result from a fundamental part of quantum mechanics: the process of measuring a quantum system in general disturbs the system. A third party trying to eavesdrop on the key must in some way measure it, thus introducing detectable anomalies.

By using quantum superposition or quantum entanglement and transmitting information in quantum states, a communication system can be implemented which detects eavesdropping.

If the level of eavesdropping is below a certain threshold a key can be produced which is guaranteed as secure (i.e. the eavesdropper has no information about), otherwise no secure key is possible and communication is aborted.

The security of quantum cryptography relies on the foundations of quantum mechanics, in contrast to traditional public key cryptography which relies on the computational difficulty of certain mathematical functions, and cannot provide any indication of eavesdropping or guarantee of key security.

Quantum cryptography is only used to produce and distribute a key, not to transmit any message data. This key can then be used with any chosen encryption algorithm to encrypt (and decrypt) a message, which can then be transmitted over a standard communication channel.

PROJECT DESCRIPTION

PROJECT MODULE

Login

· Sender Login

· Receiver Login

Sender

· Secret key Authentication

· The sender give the secret key to the trusted center, then the TC will verify the secret and authenticate to the corresponding sender and get the session key from TC or else TC not allow the user transmission

· Encryption
· The message is encrypted by the received session key and appends the quit with that encrypted message, then transmit the whole information to the corresponding receiver.
Trusted Center

· Secret Key Verification

· Verify the secret key received from the user and authenticate the corresponding user for secure transmission.

· Session Key Generation

· It is shared secret key which is used to for encryption and decryption. The size of session key is 8 bits. This session key is generated from pseudo random prime number and exponential value of random number

· Quit Generation

· Quantum Key Generation

· Hashing
· Key Distribution

Receiver

· Secret key Authentication

· Decryption

EXISTING SYSTEM

In classical cryptography, three-party key distribution protocols utilize challenge response mechanisms or timestamps to prevent replay attacks.

 However, challenge response mechanisms require at least two communication rounds between the TC and participants, and the timestamp approach needs the assumption of clock synchronization which is not practical in distributed systems (due to the unpredictable nature of network delays and potential hostile attacks) .

 Furthermore, classical cryptography cannot detect the existence of passive attacks such as existing.

PROPOSED SYSTEM

In hierarchical key distribution cryptography, key distribution protocols (KDPs) employ efficient mechanisms to distribute session keys and public discussions to check for sender to receiver through the trusted center and verify the correctness of a session key.

However, public discussions require additional communication rounds between a sender and receiver and cost precious and secure key distribution. By contrast, classical cryptography provides convenient techniques that enable efficient key verification and user authentication

SYSTEM SPECIFICATION

Hardware Requirements

· SYSTEM

: Pentium IV 2.4 GHz

· HARD DISK

: 40 GB

· FLOPPY DRIVE
: 1.44 MB

· MONITOR

: 15 VGA colour

· MOUSE
 : Logitech.

· RAM

: 256 MB
· KEYBOARD

: 110 keys enhanced.

Software Requirements

· Operating system
:- Windows XP Professional

· Front End

:- Microsoft Visual Studio .Net 2003

· Coding Language
:- Visual C# .Net

