
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

1

FiDoop-DP: Data Partitioning in Frequent Itemset
Mining on Hadoop Clusters

Yaling Xun, Jifu Zhang, Xiao Qin, Senior Member, IEEE , and Xujun Zhao

Abstract—Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group
of computing nodes. We start this study by discovering a serious performance problem of the existing parallel Frequent Itemset Mining
algorithms. Given a large dataset, data partitioning strategies in the existing solutions suffer high communication and mining overhead induced
by redundant transactions transmitted among computing nodes. We address this problem by developing a data partitioning approach called
FiDoop-DP using the MapReduce programming model. The overarching goal of FiDoop-DP is to boost the performance of parallel Frequent
Itemset Mining on Hadoop clusters. At the heart of FiDoop-DP is the Voronoi diagram-based data partitioning technique, which exploits
correlations among transactions. Incorporating the similarity metric and the Locality-Sensitive Hashing technique, FiDoop-DP places highly
similar transactions into a data partition to improve locality without creating an excessive number of redundant transactions. We implement
FiDoop-DP on a 24-node Hadoop cluster, driven by a wide range of datasets created by IBM Quest Market-Basket Synthetic Data Generator.
Experimental results reveal that FiDoop-DP is conducive to reducing network and computing loads by the virtue of eliminating redundant
transactions on Hadoop nodes. FiDoop-DP significantly improves the performance of the existing parallel frequent-pattern scheme by up to
31% with an average of 18%.

Index Terms—Frequent Itemset Mining, Parallel Data Mining, Data Partitioning, MapReduce Programming Model, Hadoop Cluster

F

1 INTRODUCTION

T RADITIONAL parallel Frequent Itemset Mining tech-
niques (a.k.a., FIM) are focused on load balancing; data

are equally partitioned and distributed among computing
nodes of a cluster. More often than not, the lack of analysis
of correlation among data leads to poor data locality. The
absence of data collocation increases the data shuffling
costs and the network overhead, reducing the effectiveness
of data partitioning. In this study, we show that redun-
dant transaction transmission and itemset-mining tasks are
likely to be created by inappropriate data partitioning
decisions. As a result, data partitioning in FIM affects
not only network traffic but also computing loads. Our
evidence shows that data partitioning algorithms should
pay attention to network and computing loads in addition
to the issue of load balancing. We propose a parallel FIM
approach called FiDoop-DP using the MapReduce pro-
gramming model. The key idea of FiDoop-DP is to group
highly relevant transactions into a data partition; thus, the
number of redundant transactions is significantly slashed.
Importantly, we show how to partition and distribute a
large dataset across data nodes of a Hadoop cluster to
reduce network and computing loads induced by making
redundant transactions on remote nodes. FiDoop-DP is
conducive to speeding up the performance of parallel FIM
on clusters.

• Y. Xun, J. Zhang? and X. Zhao, are with Taiyuan University of Sci-
ence and Technology (TYUST), Taiyuan, Shanxi, China. 030024. E-Mail:
zjf@tyust.edu.cn, ?corresponding author: zjf@tyust.edu.cn.

• X. Qin is with the Department of Computer Science and Software Engineering,
Samuel Ginn College of Engineering, Auburn University, AL 36849-5347. E-
mail: xqin@auburn.edu.

1.1 Motivations

The following three observations motivate us to develop
FiDoop-DP in this study to improve the performance of
FIM on high-performance clusters.

• There is a pressing need for the development of par-
allel FIM techniques.

• The MapReduce programming model is an ideal data-
centric mode to address the rapid growth of big-data
mining.

• Data partitioning in Hadoop clusters play a critical
role in optimizing the performance of applications
processing large datasets.

Parallel Frequent Itemset Mining. Datasets in modern data
mining applications become excessively large; therefore,
improving performance of FIM is a practical way of sig-
nificantly shortening data mining time of the applications.
Unfortunately, sequential FIM algorithms running on a
single machine suffer from performance deterioration due
to limited computational and storage resources [1][2]. To
fill the deep gap between massive amounts of datasets and
sequential FIM schemes, we are focusing on parallel FIM
algorithms running on clusters.

The MapReduce Programming Model. MapReduce - a highly
scalable and fault-tolerant parallel programming model -
facilitates a framework for processing large scale datasets
by exploiting parallelisms among data nodes of a clus-
ter [3][4]. In the realm of big data processing, MapReduce
has been adopted to develop parallel data mining algo-
rithms, including Frequent Itemset Mining (e.g., Apriori-
based [5][6], FP-Growth-based [7][8], as well as other classic
association rule mining [9]). Hadoop is an open source im-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

2

plementation of the MapReduce programming model [10].
In this study, we show that Hadoop cluster is an ideal
computing framework for mining frequent itemsets over
massive and distributed datasets.

Data Partitioning in Hadoop Clusters. In modern dis-
tributed systems, execution parallelism is controlled
through data partitioning which in turn provides the means
necessary to achieve high efficiency and good scalabil-
ity of distributed execution in a large-scale cluster. Thus,
efficient performance of data-parallel computing heavily
depends on the effectiveness of data partitioning. Existing
data partitioning solutions of FIM built in Hadoop aim at
balancing computation load by equally distributing data
among nodes. However, the correlation between the data is
often ignored which will lead to poor data locality, and the
data shuffling costs and the network overhead will increase.
We develop FiDoop-DP, a parallel FIM technique, in which
a large dataset is partitioned across a Hadoop cluster’s data
nodes in a way to improve data locality.

1.2 Data Partitioning Problems Solved in FiDoop-DP
In Hadoop clusters, the amount of transferred data dur-
ing the shuffling phase heavily depends on localities and
balance of intermediate results. Unfortunately, when a data
partitioning scheme partitions the intermediate results, data
locality and balance are completely ignored. In the existing
Hadoop-based FIM applications [7][8][11], the traditional
data partitioning schemes impose a major performance
problem due to the following reasons:

Conventional wisdoms in data partitioning aim to yield
balanced partitions using either a hash function or a set
of equally spaced range keys [12][13]. Interestingly, we
discover that excessive computation and network loads
are likely to be caused by inappropriate data partitions in
parallel FIM. Fig. 1 offers a motivational example showing
various item grouping and data partitioning decisions and
their effects on communication and computing load. In Fig.
1, each row in the middle table represents a transaction (i.e.,
a total of ten transactions); twelve items (e.g., f, c, a, etc.) are
managed in the transaction database (see the left-hand and
right-hand columns in Fig. 1). Note that the two columns
indicate two grouping strategies divided by a midline. The
traditional grouping strategy evenly groups the items into
two groups by descending frequency (see the column on
the left-hand side of Fig. 1). Unfortunately, this grouping
decision forces all the transactions to be transmitted to the
two partitions prior to being processed. We argue that such
a high transaction-transfer overhead can be reduced by
making a good tradeoff between cross-node network traffic
and load balancing.

In a multi-stage parallel process of mining frequent item-
sets, redundant mining tasks tend to occur in later stages.
It is more often than not difficult to predict such redundant
tasks before launching the parallel mining program. Hence,
existing data partitioning algorithms that performed prior
to the parallel mining process are inadequate for solving
the problem of redundant tasks.

f c a m p
f c a b m
f b
c b p
f c a m p
f’c' a' m' p'
f' c' a' b' m'
f' b'
c' b' p'
f' c' a' m' p'

f
c
a
b
m
p

f’
c’
a’
b’
m’
p’

f
f’
c
c’
a
a’

b
b’
m
m’
p
p’

Fig. 1. A motivational example of items grouping and data partitioning.

1.3 Basic Ideas

The overarching goal of FiDoop-DP is to boost the per-
formance of parallel FIM applications running on Hadoop
clusters. This goal is achieved in FiDoop-DP by reducing
network and computing loads through the elimination of
redundant transactions on multiple nodes. To alleviate the
excessive network load problem illustrated in Fig. 1, we
show that discovering correlations among items and trans-
actions create ample opportunities to significantly reduce
the transaction transfer overhead (see the column on the
right-hand side of Fig. 1). This new grouping decision
makes it possible to construct small FP trees, which in turn
lower communication and computation cost.

We incorporate the data partitioning scheme into
Hadoop-based frequent-pattern-tree (FP-tree) algorithms.
In addition to FP-tree algorithms (e.g., FP-Growth [14]
and FUIT [15]), other FIM algorithms like Apriori [5][6]
can benefit from our data partitioning idea (see further
discussions in Section 8). Fig. 2 outlines the typical process
flow (see also [11]) adopted by our FiDoop-DP, which
consists of four steps. In this process flow, we optimize the
data partitioning strategy of the second MapReduce job,
because it is the most complicated and time-consuming job
in FiDoop-DP. In the second MapReduce job, the mappers
divide frequent 1-itemsets (FList in Fig.2) into Q groups,
while simultaneously assigning transactions to computing
nodes based on the grouping information. Then, the reduc-
ers concurrently perform mining tasks for the partitioned
groups.

In the mappers of the second MapReduce job, we propose
a novel way of incorporating LSH (a.k.a., Locality Sensitive
Hashing) scheme into Voronoi diagram-based partition-
ing, thereby clustering similar transactions together and
determining correlation degrees among the transactions.
Next, frequent items produced by the first MapReduce job
are grouped according to the correlation degrees among
items, and transactions are partitioned. This frequent-items
grouping and partitioning strategy is capable of reducing
the number of redundant transactions kept on multiple
nodes and, as a result, both data transmission traffic and
redundant computing load are significantly decreased.

1.4 Contributions

We summarize the main contributions of this study as
follows:

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

3

• In the context of FIM, we design an efficient data parti-
tioning scheme, which facilitates an analysis of correla-
tions among transactions to reduce network and com-
puting load. Our scheme prevents transactions from
being repeatedly transmitted across multiple nodes.

• We implement the above data partitioning scheme
by integrating Voronoi-diagram with LSH (Locality-
Sensitive Hashing).

• To validate the effectiveness of our approach, we de-
velop the FiDoop-DP prototype, where the data par-
titioning scheme is applied to a Hadoop-based FP-
Growth algorithm.

• We conduct extensive experiments using synthetic
datasets to show that FiDoop-DP is robust, efficient,
and scalable on Hadoop clusters.

1.5 Roadmap

The remainder of this paper is organized as follows. Sec-
tion 2 describes the background knowledge. Section 3
summarizes the traditional solutions and formulates the
data partitioning problem. Section 4 presents the design
issues of FiDoop-DP built on the MapReduce framework,
followed by the implementation details in Section 5. Sec-
tion 6 evaluates the performance of FiDoop-DP on a real-
world cluster. Section 7 discusses the related work. Finally,
Section 8 and 9 conclude the paper with future research
directions.

2 PRELIMINARIES

In this section, we first briefly review FIM. Then, to facilitate
the presentation of FiDoop-DP, we introduce the MapRe-
duce programming framework. Finally, we summarize the
basic idea of Parallel FP-Growth Algorithm - Pfp [11] which
has been implemented in mahout [16]. We use Pfp as a
case study to demonstrate that data partitioning can help
in improving the performance of FIM.

2.1 Frequent Itemset Mining

Frequent Itemset Mining is one of the most critical and
time-consuming tasks in association rule mining (ARM), an
often-used data mining task, provides a strategic resource
for decision support by extracting the most important
frequent patterns that simultaneously occur in a large
transaction database. A typical application of ARM is the
famous market basket analysis.

In FIM, support is a measure defined by users. An itemset
X has support s if s% of transactions contain the itemset.
We denote s = support(X); the support of the rule X ⇒ Y
is support(X∪Y). Here X and Y are two itemsets, and X∩
Y =∅. The purpose of FIM is to identify all frequent itemsets
whose support is greater than the minimum support. The
first phase is more challenging and complicated than the
second one. Most prior studies are primarily focused on
the issue of discovering frequent itemsets.

2.2 MapReduce Framework

MapReduce is a popular data processing paradigm for effi-
cient and fault tolerant workload distribution in large clus-
ters. A MapReduce computation has two phases, namely,
the Map phase and the Reduce phase. The Map phase splits
an input data into a large number of fragments, which are
evenly distributed to Map tasks across a cluster of nodes
to process. Each Map task takes in a key-value pair and
then generates a set of intermediate key-value pairs. After
the MapReduce runtime system groups and sorts all the
intermediate values associated with the same intermediate
key, the runtime system delivers the intermediate values to
Reduce tasks. Each Reduce task takes in all intermediate
pairs associated with a particular key and emits a final set
of key-value pairs. MapReduce applies the main idea of
moving computation towards data, scheduling map tasks
to the closest nodes where the input data is stored in order
to maximize data locality.

Hadoop is one of the most popular MapReduce imple-
mentations. Both input and output pairs of a MapReduce
application are managed by an underlying Hadoop dis-
tributed file system (HDFS [17]). At the heart of HDFS
is a single NameNode a master server managing the file
system namespace and regulates file accesses. The Hadoop
runtime system establishes two processes called JobTracker
and TaskTracker. Job-Tracker is responsible for assigning
and scheduling tasks; each TaskTracker handles mappers
or reducers assigned by JobTracker.

When Hadoop exhibits an overwhelming development
momentum, a new MapReduce programming model Spark
attracts researchers’ attention [18]. The main abstraction in
Spark is a resilient distributed dataset (RDD), which offers
good fault tolerance and allows jobs to perform computa-
tions in memory on large clusters. Thus, Spark becomes
an attractive programming model to iterative MapReduce
algorithms. We decide to develop FiDoop-DP on Hadoop
clusters; in a future study, we plan to extend FiDoop-DP to
Spark to gain further performance improvement.

2.3 Parallel FP-Growth Algorithm

In this study, we focus on a popular FP-Growth algorithm
called Parallel FP-Growth or Pfp for short [11]. Pfp im-
plemented in Mahout [16] is a parallel version of the FP-
Growth algorithm [2]. Mahout is an open source machine
learning library developed on Hadoop clusters. FP-Growth
efficiently discovers frequent itemsets by constructing and
mining a compressed data structure (i.e., FP-tree) rather
than an entire database. Pfp was designed to address the
synchronization issues by partitioning transaction database
into independent partitions, because it is guaranteed that
each partition contains all the data relevant to the features
(or items) of that group.

Given a transaction database DB, Fig.2 depicts the pro-
cess flow of Parallel FP-Growth implemented in Mahout.
The parallel algorithm consists of four steps, three of which
are MapReduce jobs.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

4

...

M

M

M

...

R

R

R

...

M

M

M

...

R

R

R

...

M

M

M

...

R

R

R

Final
result

Frequent 1-i
temset(FList)

Group-dependent data

TopkFrequentPatterns

Transaction
DB

Sort
and
group
FList

Fig. 2. The process flow of Pfp implemented in Mahout.

Step 1. Parallel Counting: The first MapReduce job counts
the support values of all items residing in the database
to discover all frequent items or frequent 1-itemsets in
parallel. It is worth noting that this step simply scans the
database once.

Step 2. Sorting frequent 1-itemsets to FList: The second
step sorts these frequent 1-itemsets in a decreasing order
of frequency; the sorted frequent 1-itemsets are cached in a
list named FList. Step 2 is a non-MapReduce process due
to its simplicity as well as the centralized control.

Step 3. Parallel FP-Growth: This is a core step of Pfp, where
the map stage and reduce stage perform the following two
important functions.
• Mapper - Grouping items and generating group-dependent

transactions. First, the Mappers divide all the items in
FList into Q groups. The list of groups is referred to
as group list or GList, where each group is assigned a
unique group ID (i.e., Gid). Then, the transactions are
partitioned into multiple groups according to GLists.
That is, each mapper outputs one or more key-value
pairs, where a keys is a group ID and its corresponding
value is a generated group-dependent transaction.

• Reducer - FP-Growth on group-dependent partitions. lo-
cal FPGrowth is conducted to generate local frequent
itemsets. Each reducer conducts local FPGrowth by
processing one or more group-dependent partition one
by one, and discovered patterns are output in the final.

Step 4. Aggregating: The last MapReduce job produces
final results by aggregating the output generated in Step
3.

The second MapReduce job (i.e., Step 3) is a performance
bottleneck of the entire data mining process. The map tasks
apply a second-round scan to sort and prune each transac-
tion according to FList, followed by grouping the sorted
frequent 1-itemsets in FList to form group list GList. Next,
each transaction is placed into a group-dependent data
partition; thus, multiple data partitions are constructed.
Each data partition corresponds to a group identified by
Gid.

The above partitioning approach ensures data complete-
ness with respect to one group of GList. A downside is
that such data completeness comes at the cost of data
redundancy, because a transaction might have duplicated
copies in multiple data partitions. Not surprisingly, the

data redundancy in data partitions are inevitable, because
independence among the partitions has to be maintained
to minimize synchronization overhead. Redundant trans-
actions incur excessive data transfer cost and computing
load of local FP-Growth.

3 PROBLEM STATEMENT
3.1 Baseline Methods and Problems
Evidence [7] shows that most existing parallel FP-Growth
algorithms basically followed the workflow plotted in
Fig. 2, where the second MapReduce job is the most perfor-
mance critical and time-consuming among the four steps.
Experiment results reported in [7] suggest that (1) local
FP-Growth cost accounts for more than 50% of the overall
mining time and (2) the grouping strategy plays the most
important role in affecting subsequent data partitioning and
local FP-Growth performance.

Reordered transactions are partitioned and assigned to
corresponding reducers, each of which inserts the transac-
tions into an FP-tree using the grouping strategy. That is,
the grouping strategy not only directly governs the amount
of transferred data in the partitioning stage, but also affects
computing load of the local FP-Growth stage. To alleviate
the problem of expensive grouping, we propose to cluster
input data prior to running the grouping and partitioning
stages. Our input data partitioning policy takes into account
the correlations among transactions to optimize the group-
ing process.

A straightforward MapReduce-based FIM method is to
adopt the default data partitioning policy implemented
in Hadoop; then, a simple grouping strategy (see [11]) is
applied. The grouping strategy first computes group size,
which equals to the total number of frequent 1-itemsets in
FList divided by number of groups.

Let GListi be a set of items that belong to the ith group
of GList. One can easily determine what items should be
included in set GListi (i > 0) by evenly distributing all the
items into the groups. Specifically, the first item in GListi
is the jth item in FList; j is calculated as (

∑i−1
i=0 | GListi |

)+1. Shuffling cost and computing load are not intentionally
reduced in existing parallel FIM algorithms such as the Pfp
algorithm implemented in Mahout.

An improvement to the aforementioned grouping and
partitioning strategy is to incorporate a load balancing

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

5

feature in Pfp (see, for example, the balanced parallel
FP-Growth algorithm or BPFP [7]). BPFP divides all the
items in FList into Q groups in a way to balance load
among computing nodes during the entire mining process.
BPFP estimates mining load using the number of recursive
iterations during the course of FP-Growth execution, the
input of which is conditional pattern bases of each item.
The location of each item in FList is estimated to be the
length of the longest path in the conditional pattern base.
Meanwhile, the number of recursive iterations is exponen-
tially proportional to the longest path in the conditional
pattern base. Thus, the load of item i can be estimated
as Ti = logLi, where Ti represents the estimated load
and Li represents the location of item i in FList. As can
be seen from the aforementioned description, BPFP only
concerns the balance of CPU resource for each node by
evenly dividing all computing load among the Q groups.
However, fig. 2 shows when one partitions items into
grouped without considering the correlation among trans-
actions, an excessive number of duplicated transactions
must be transmitted among the nodes in order to guarantee
data completeness with respect to each group. In other
words, the number of transferred transactions coupled with
participating computing inevitably increases; thus, data
transfer overhead (i.e., shuffling cost) and FIM load tend
to be significant.

3.2 Design Goals

FiDoop-DP aims to partition input transactions (1) to re-
duce the amount of data transferred through the network
during the shuffle phase and (2) to minimize local mining
load. Recall that high shuffling cost and local mining load
are incurred by redundant transactions. In what follows,
we formally state the design goal of Fidoop-DP.

Let the input data for a MapReduce job be a set of trans-
actions D = {t1, t2, ..., tn} and function DBPart : D → C
partitions D into a set of chunks C = {C1, C2, ..., Cp}.
Correspondingly, map tasks M = {m1,m2...,mp} and re-
duce tasks R = {r1, r2..., rq} are running on a cluster. We
denote a set of intermediate key-value pairs produced by
the mappers as I = {(G1, D1), ..., (Gm, Dm), in which Di

represents the collection of transactions belonging to group
Gi. Intuitively, we have output(mi) ⊆ I and input(ri) ⊆ I ,
where output(mi) and input(ri) respectively represent a set
of intermediate pairs produced by map task mi and a set
of intermediate pairs assigned to reduce task ri. After Map
tasks are completed, the shuffle phase applies the default
partitioning function to assign intermediate key-value pairs
to reduce tasks according to the keys (i.e., Gi) of output(mi).
In this process, if intermediate key-value pair ((Gi, Di)) is
partitioned into a reducer running on a remote node, then
intermediate data shuffling will take place. Let S(Gi) and
T (Gi) be a source node and a target node, respectively. We
have

pi =

{
1, S(Gi) 6= T (Gi)

0, Otherwise.
(1)

where pi is set to 0 when the intermediate pair is produced
on a local node running the corresponding reduce task;
otherwise, pi is set to 1.

The design goal of FiDoop-DP is to partition transactions
in a way to minimize the data transfer cost. Applying (1),
we formally express the design goal as:

Minimize:
∑m

i=1
Di×pi. (2)

4 DATA PARTITIONING
FIM is a multi-stage parallel process, where redundant
transactions transmission and redundant mining tasks oc-
cur in the second MapReduce job. Recall that (see Sec-
tion 3.1) it is a grand challenge to avoid these downsides
by using traditional grouping strategies and default parti-
tioning function. And transferring redundant transactions
is a main reason behind high network load and redundant
mining cost. To solve this problem, we propose to partition
transactions by considering correlations among transactions
and items prior to the parallel mining process. That is,
transactions with a great similarity are partitioned into
one partition in order to prevent the transactions from
being repeatedly transmitted to remote nodes. We adopt
the Voronoi diagram-based data partitioning technique [19],
which is conducive to maintaining data proximity, espe-
cially for multi-dimensional data. Therefore, when the sec-
ond MapReduce job is launched, a new Voronoi diagram-
based data partitioning strategy is deployed to minimize
unnecessary redundant transaction transmissions.

Voronoi diagram is a way of dividing a space into a
number of regions. A set of points referred to as pivots
(or seeds) is specified beforehand. For each pivot, there
is a corresponding region consisting of all objects closer
to it than to the other pivots. The regions are called
Voronoi cells. The idea of Voronoi diagram-based partition-
ing can be formally described as follows. Given a dataset
D, Voronoi diagram-based partitioning selects k objects as
pivots (donated p1, p2, ..., pk). Then, all objects of D are split
into k disjoint partitions (donated C1, C2, ..., Ck), where
each object is assigned to the partition with its closest pivot.
In this way, the entire data space is split into k cells.

Incorporating the characteristic of FIM, we adopt the
similarity as the distance metric between transaction and
pivot (or between two transactions) in Voronoi diagram (see
Section 4.1 for details). In addition, Voronoi diagram-based
partitioning relies on a way of selecting a set of pivots.
Thus, in what follows, we investigate distance measure and
pivot-selection strategies, followed by partitioning strate-
gies.

4.1 Distance Metric
Recall that to optimize FIM, a good partitioning strategy
should cluster similar data objects to the same partition.
Similarity is a metric to quantitatively measure the corre-
lation strength between two objects. To capture the charac-
teristics of transactions, we adopt the Jaccard similarity as
a distance metric. Jaccard similarity is a statistic commonly

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

6

used for comparing the similarity and diversity of sample
data objects. A high Jaccard similarity value indicates that
two data sets are very close to each other in terms of
distance.

In order to quantify the distance among transactions, we
model each transaction in a database as a set. Then, the
distance among transactions is measured using the Jaccard
similarity among these sets. The Jaccard similarity of two
sets A and B is defined as

J(A,B) =
|A∩B|
|A∪B| (3)

Obviously, J(A,B) is a number ranging between 0 and
1; it is 0 when the two sets are disjoint, 1 when they are
identical, and strictly between 0 and 1 otherwise. That is,
the distance between two sets is close when their Jaccard
index is closer to 1; if there is a large distance between the
two sets, their Jaccard index is closer to 0.

4.2 K-means Selection of Pivots
Intuitively, selecting pivots directly affects the uniformity
coefficient of the remaining objects for voronoi diagram-
based partitioning. In particular, we employ the K-means-
based selection strategy (see [19]) to choose pivots. And the
pivot selecting process is conducted as a data preprocessing
phase.

K-means is a popular algorithm for clustering analysis
in data mining. K-means clustering aims to partition n
objects into k clusters [20][21]. That is, given a set of
objects (x1, x2, , xn), where each object is a d-dimensional
real vector, k-means clustering partitions the n objects into
k (k ≤ n) sets C = C1, C2, , Ck, in which each object belongs
to a cluster with the nearest mean. The clustering results
can be applied to partition the data space into Voronoi cells.
To reduce the computational cost of k-means, we perform
sampling on the transaction database before running the k-
means algorithm. It is worth mentioning that the selection
of initial pivots (a.k.a., seeds) plays a critical role in clus-
tering performance. Thus, k-means++ [22]- an extension of
k-means, is adopted to conduct pivots selection. After the
k data clusters are generated, we choose the center point of
each cluster as a pivot for the Voronoi diagram-based data
partitioning.

4.3 Partitioning Strategies
Upon the selection of pivots, we calculate the distances
from the rest of the objects to these pivots to determine
a partition to which each object belongs. We develop the
LSH-based strategy to implement a novel grouping and
partitioning process, prior to which MinHash is employed
as a foundation for LSH.

4.3.1 MinHash
MinHash offers a quick solution to estimate how similar
two sets are [23]. MinHash is increasingly becoming a pop-
ular solution for large-scale clustering problems. MinHash

replaces large sets by much smaller representations called
“signatures” composed of “minhash” of the characteristic
matrix (i.e., a matrix representation of data sets). Then,
MinHash computes an expected similarity of two data sets
based on the signatures. Thus, these two phases are detailed
below.

First, a characteristic matrix is created from transactions
and items in a database. Given a transaction database
D = {t1, t2, ..., tn}, which contains m items. We create an
m-by-n characteristic matrix M , where columns represent
transactions; rows denote items of the universal item set.
Given item r (i.e., a row in the matrix) and transaction c
(i.e., a column in the matrix), we set the value in position
(r, c) to 1 if item r is a member in transaction c; otherwise,
the value of (r, c) is set to 0.

Second, a signature matrix is constructed using the char-
acteristic matrix obtained in the above step. Let h be a hash
function mapping members of any set to distinct integers.
Given a set T = {x1, ..., xn}, we define hmin(T) to be T ’s
member x, whose hash value (i.e., h(x)) is the minimal one
among all the hash values of the members in T . Thus, we
have

hmin(T) = x,where h(x) = Minn
i=1(h(xi)) (4)

We randomly permute, for the first time, the rows of the
characteristic matrix. For each column (e.g., ci represent-
ing a transaction), we compute the column’s hash value
hmin(ci) using (4). Then, the value in position (1, i) of
the signature matrix is set to hmin(ci). Next, we permute
the rows of the characteristic matrix, for a second time,
to determine the value in position (2, i) (1 ≤ i ≤ n). We
repeatedly perform the above steps to obtain the value in
position (j, i), where j denotes the jth permutation as well
as the jth row in the signature matrix; i indicates the ith
column in the signature matrix.

Finally, it is necessary to collect multiple (e.g., l) indepen-
dent MinHash values for each column in M to form an l×n
signatures matrix M

′
. We make use of the signature matrix

to calculate the similarity of any pair of two transactions.
Though MinHash is widely applied to estimate the simi-

larity of any pair of two sets, the number of pairs in a large
database D is likely to be very big. If we decide to conduct
thorough pair-wise comparisons, the computing cost would
be unsustainable.

4.3.2 LSH-based Partitioning

Locality sensitive hashing, or LSH, boosts the performance
of MinHash by avoiding the comparisons of a large num-
ber of element pairs [24][25]. Unlike MinHash repeatedly
evaluating an excessive number of pairs, LSH scans all the
transactions once to identify all the pairs that are likely
to be similar. We adopt LSH to map transactions in the
feature space to a number of buckets in a way that similar
transactions are likely to be mapped into the same buckets.
More formally, the locality sensitive Hash function family
is defined as follows.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

7

For Hash family H , if any two points p and q satisfy
the following conditions, then H is called (R, c, P1, P2)-
sensitive:

1) If ‖ p−q ‖≤ R, then PrH(h(p) = h(q)) ≥ P1.
2) If ‖ p−q ‖≤ cR, then PrH(h(p) = h(q)) ≤ P2.

A family is interesting when P1 > P2.
The above condition 1) ensures two similar points are

mapped into the same buckets with a high probability;
condition 2) guarantees two dissimilar points are less likely
to be mapped into the same buckets.

LSH has to make use of the MinHash signature matrix
obtained in 4.3.1 (i.e., M ′). Given the l×n signature matrix
M ′, we design an effective way of choosing the hash family
by dividing the signature matrix into b bands consisting of r
rows, where b×r = l. For each band, there is a hash function
that takes the r integers (the portion of one column within
that band) as a vector, which is placed into a hash bucket.

It relies on the use of a family of locality preserving hash
functions, creating several hash tables that similar items
with high probability are more likely to be hashed into the
same bucket than dissimilar items [26]. From the way of
establishing Hash Table, we obtain that the time complexity
of lookup is O(1).

5 IMPLEMENTATION DETAILS
In this section, we present the implementation details of
LSH-based FiDoop-DP running on Hadoop clusters. Please
refer to Fig.2 for FiDoop-DP’s processing flow, which con-
sists of four steps (i.e., one sequential-computing step and
three parallel MapReduce jobs) (see Section 2.3). Specifi-
cally, before launching the FiDoop-DP process, a prepro-
cessing phase is performed in a master node to select a
set of (k) pivots which serve as an input of the second
MapReduce job that is responsible for the Voronoi diagram-
based partitioning (see Section 4.2).

In the first MapReduce job, each mapper sequentially
reads each transaction from its local input split on a data
node to generate local 1-itemsets. Next, global 1-itemsets
are produced by a specific reducer, which merges local 1-
itemsets sharing the same key (i.e., item name). The output
of these reducers include the global frequent 1-itemsets
along with their counts. The second step sorts these global
frequent 1-itemsets in a decreasing order of frequency; the
sorted frequent 1-itemsets are saved in a cache named
FList, which becomes an input of the second MapReduce
job in FiDoop-DP.

The second MapReduce job applies a second-round scan-
ning on the database to repartition database to form a
complete dataset for item groups in the map phase. Each
reducer conducts local FP-Growth based on the partitions
to generate all frequent patterns.

The last MapReduce job aggregates the second MapRe-
duce job’s output (i.e., all the frequent patterns) to generate
the final frequent patterns for each item. For example, the
output of the second MapReduce job includes three fre-
quent patterns, namely, ‘abc’, ‘adc’, and ‘bdc’. Using these
three frequent patterns as an input, the third MapReduce

job creates the final results for each item as ‘a: abc,adc’, ‘b:
abc,bdc’, ‘c: abc,adc,bdc’, and ‘d: adc,bdc’.

We pay attention to the second MapReduce job and the
reason is three-fold. First, at the heart of FiDoop-DP is the
construction of all frequent patterns, which is implemented
in the second MapReduce job. Second, this MapReduce
job is more complicated and comprehensive than the first
and the third ones. Third, this job plays a vital role in
achieving high performance of FiDoop-DP. To optimize the
performance of Pfp, we make an improvement in the sec-
ond MapReduce job by incorporating the Voronoi diagram-
based partitioning idea. In what follows, we elaborate the
algorithm for the second MapReduce job.

Algorithm 1 LSH-Fpgrowth
Input: FList, k pivots, DBi;
Output: transactions corresponding to each Gid;
1: function MAP(key offset, values DBi)
2: load FList, k pivots;
3: Glists ← GenerateGlists(FList, kpivots);/* based on the corre-

lation of each item in FList and k pivots */
4: for all (T in DBi) do
5: items[]← Split(eachT);
6: for all (item in items[]) do
7: if item is in FList then
8: a[]← item
9: end if

10: end for
11: Add Generate-signature-matrix(a[]) into Arrarylist sigMatrix;
12: end for
13: for all (ci in sigMatrix) do
14: divide ci into b bands with r rows;
15: Hashbucket← HashMap(each band of ci());
16: end for
17: if at least one band of ci and pivot pj is hashed into the same

bucket then
18: Gid← j;
19: Output(Gid, new TransactionTree(a[i]));
20: end if
21: for all each GListt(t 6= i) do
22: if ci contains an item in GListt then
23: Gid← t
24: Output(Gid, new TransactionTree(a[i])); /* guarantee the

data completeness for each GList */
25: end if
26: end for
27: end function

Input: transactions corresponding to each Gid;
Output: frequent k-itemsets;
28: function REDUCE(key Gid, values DBGid)
29: Load GLists;
30: nowGroup← GListGid

31: localFptree.clear;
32: for all (Ti in DBGid) do
33: insert-build-fp-tree(localFptree, Ti);
34: end for
35: for all (ai in nowGroup) do
36: Define a max heap HP with size K;
37: Call TopKFPGrowth(localFptree,ai,HP);
38: for all (vi in HP) do
39: Output(vi, support(vi));
40: end for
41: end for
42: end function

Given a set of k pivots (p1, p2, ..., pk) selected in the
preprocessing step, we perform item grouping and data
partitioning using statistical data collected for each parti-
tion. Algorithm 1 is an LSH-based approach that integrates

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

8

the item grouping (see Step 3) and partitioning processes
(see Steps 4-20).

In Algorithm 1, each mapper takes transactions as an in-
put in the format of Pair〈LongWritableoffset, Textrecord〉
(see Step 1). The mappers concurrently load FList to
filter infrequent items of each transaction (see Step 2).
Meanwhile, FList is divided into Q groups (i.e., GLists) by
determining similarity among items and the given pivots
(P1, P2, ..., Pk); each GList consists of Gid and the collection
of items in the group (see Step 3). Then, each “record”,
including the pivots (P1, P2, ..., Pk), Ti is transformed into
a set, followed by applying the minhash function to gen-
erate a column ci of signatures matrix (see Steps 4-12 and
algorithm 2). LSH is carried out using the above signature
matrix M ′ (l×n) (see Steps 13-16). M ′ is divided into b
bands, each of which contains r rows (where b×r = l). Then,
these bands are hashed to a number of hash buckets; each
hash bucket contains similar transactions (see Step 15).

Below we show the rationale behind applying LSH to
determine similarity among transactions. Given two trans-
actions (e.g., T1 and T2), if there exists at least a pair of
bands (e.g., b1 ∈ T1 and b2 ∈ T2) such that bands b1 and
b2 are hashed into the same bucket, then transactions T1

and T2 are considered similar (see Step 17). Assume the
similarity between two columns (denoted as c1, c2) of a
signature matrix is p, then the probability that c1 and c2
are exactly the same in a band is pr; the probability that
c1 and c2 are completely different with respect to all the b
bands is 1−sr. We show that if selecting appropriate values
of b and r, transactions with a great similarity are mapped
into one bucket with a very high probability.

If a band of Ti shares the same bucket with a band of Pj ,
we assign Ti to the partition labelled as Pj . We donate such
an assignment in form of a pair Pair〈Pj , Ti〉) (see Steps 18-
19). At the end of the map tasks, GLists are checked to
guarantee the data completeness (Steps 21-24).

Finally, the mappers emit Pair〈Pi, Ti〉 to be shuffled
and combined for the second job’s reducers, and reducers
conduct local FP-Growth to generate the final frequent
patterns of each item (see Steps 28-42).

During the process of generating the signature matrix, it
is infeasible to permute a large characteristic matrix due
to high time complexity. This problem is addressed by
employing the Minwise Independent permutation [27] to
speed up the process (see algorithm 2). Let h(x) be a permu-
tation function on a set X , for an element x ⊆ X , the value
permuted is h(x) = min(h(x1), h(x2), ..., h(xn)) . When we
obtain the signature matrix, the original high-dimensional
data are mapped to a low-dimensional space. And the time
complexity of subsequent operations is greatly reduced
thanks to the above dimensions reduction.

6 EXPERIMENTAL EVALUATION
We implement and evaluate the performance of FiDoop-
DP on our in-house Hadoop cluster equipped with 24
data nodes. Each node has an Intel E5-1620 v2 series
3.7gHZ 4 core processor, 16G main memory, and runs

Algorithm 2 Generate-signature-matrix
Input: a[];
Output: signature matrix of a[];
1: function GENERATE-SIGNATURE-MATRIX(a[])
2: for (i=0;i < numHashFunctions;i++) do
3: minHashV alues[i] = Integer.MAX V ALUE;
4: end for
5: for (i=0;i < numHashFunctions;i++) do
6: for all ele: a[] do
7: value← Integer(ele);
8: bytesToHash[0]=(byte)(value >> 24);
9: bytesToHash[1]=(byte)(value >> 16);

10: bytesToHash[2]=(byte)(value >> 8);
11: bytesToHash[3]=(byte)value);
12: hashIndex← hashFunction[i].hash(bytesToHash);
13: if (minHashV alues[i]) > hashIndex then
14: minHashValues[i]=hashIndex;
15: end if
16: end for
17: end for
18: end function

on the Centos 6.4 operating system, on which Java JDK
1.8.0 20 and Hadoop 1.1.2 are installed. The hard disk of
NameNode is configured to 500GB; and the capacity of
disks in each DataNode is 2TB. All the data nodes of the
cluster have Gigabit Ethernet NICs connected to Gigabit
ports on the switch; the nodes can communicate with one
another using the SSH protocol. We use the default Hadoop
parameter configurations to set up the replication factor
(i.e., three) and the numbers of Map and Reduce tasks. Our
experimental results show that over 90% of the processing
time is spent running the second MapReduce job; therefore,
we focus on performance evaluation of this job in our
experiments.

To evaluate the performance of the proposed FiDoop-
DP, We generate synthetic datasets using the IBM Quest
Market-Basket Synthetic Data Generator [28], which can be
flexibly configured to create a wide range of data sets to
meet the needs of various test requirements. The parame-
ters’ characteristics of our dataset are summarized in Table
I.

TABLE I. Dataset

Parameters Avg.length #Items Avg.Size/Transaction

T10I4D 10 4000 17.5B

T40I10D 40 10000 31.5B

T60I10D 60 10000 43.6B

T85I10D 85 10000 63.7B

6.1 The Number of Pivots
We compare the performance of FiDoop-DP and Pfp [11]
when the number k of pivots varies from 20 to 180. Please
note that k in FiDoop-DP corresponds to the number of
groups in Pfp. Fig. 3 reveals the running time, shuffling
cost, and mining cost of FiDoop-DP and Pfp processing the
4G 61-block T40I10D dataset on the 8-node cluster. Fig. 3
shows that FiDoop-DP improves the overall performance
of Pfp. Such performance improvements are contributed
by good data locality achieved by Fidoop-DP’s analysis
of correlation among the data. FiDoop-DP optimizes data

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

9

0

4

8

12

16

20 60 100 140 180

Pivot Number

R
un

ni
ng

 ti
m

e
(1

00
s)

Pfp
FiDoop-DP

(a) Running Time (b) Mining Cost

30.1 28.5
31.8

36.2
38.3

27.8
22.9

27.6
32.1

35

0

10

20

30

40

20 60 100 140 180

Pivot Number

Sh
uf

fli
ng

 C
os

t (
10

0G
B

) Pfp
FiDoop-DP

t

(c) Shuffling Cost
Fig. 3. Impacts of the number of pivots on FiDoop-DP and Pfp.

locality to reduce network and computing loads by elim-
inating of redundant transactions on multiple nodes. As
a result, FiDoop-DP is capable of cutting mining cost (see
Fig. 3(b)) and data shuffling cost (see Fig. 3(c)).

Fig. 3(a) illustrates that the performance improvement
of FiDoop-DP over Pfp becomes pronounced when the
number k of pivots is large (e.g., 180). A large k in Pfp gives
rise to a large number of groups, which in turn leads to
an excessive number of redundant transactions processed
and transfers among data nodes. As such, the large k
offers a great opportunity for FiDoop-DP to alleviate Pfp’s
heavy CPU and network loads induced by the redundant
transactions.

Interestingly, we observe from Fig. 3(a) that the overall
running times of the two algorithms are minimized when
number k is set to 60. Such minimized running times
are attributed to (1) the FP-Growth mining cost plotted
in Fig. 3(b) and (2) the shuffling cost shown in Fig. 3(c).
Figs. 3(b) and 3(c) illustrate that the mining cost and
shuffling cost are minimized when parameter k becomes
60 in a range from 20 to 180.

The running times, mining cost, and shuffling cost exhibit
a U-shape in Fig. 3 because of the following reasons. To
conduct the local FP-Growth algorithm, we need to group
frequent 1-itemsets followed by partitioning transactions
based on items contained in each item group. When the
number of pivots increases, the entire database is split into
a finer granularity and the number of partitions increase
correspondingly. Such a fine granularity leads to a reduc-
tion in distance computation among transactions. On the
other hand, when the pivot number k continues growing,
the number of transactions mapped into one hash bucket
significantly increases, thereby leading to a large candidate-
object set and high shuffling cost (see Figs. 3(b) and 3(c)).
Consequently, the overall execution time is optimized when
k is 60 for both algorithms (see Fig. 3(a)).

6.2 Minimum Support

Recall that minimum support plays an important role in
mining frequent itemsets. We increase minimum support
thresholds from 0.0005% to 0.0025% with an increment of
0.0005% to evaluate the impact of minimum support on
FiDoop-DP. The other parameters are the same as those for
the previous experiments.

(a) Running Time

(b) Shuffling Cost
Fig. 4. Impact of minimum support on FiDoop-DP and Pfp.

Fig. 4(a) shows that the execution times of FiDoop-DP
and Pfp decrease when the minimum support is increasing.
Intuitively, a small minimum support leads to an increasing
number of frequent 1-itemsets and transactions, which have
to be scanned and transmitted. Table II illustrates the size of
frequent 1-itemsets stored in FList and the number of final
output records of the two parallel solutions under various
minimum-support values.

TABLE II. The size of FList and the number of final output records under various
minimum-support values.

minsupport 0.0005% 0.001% 0.0015% 0.002% 0.0025%

FList 14.69k 11.6k 9.71k 6.89k 5.51k

OutRecords 745 588 465 348 278

Fig. 4(a) reveals that regardless of the minimum-support
value, FiDoop-DP is superior to Pfp in terms of running
time. Two reasons make this performance trend expected.
First, FiDoop-DP optimizes the partitioning process by
placing transactions with a high similarity into one group
rather than randomly and evenly grouping the transaction.
Fig. 4(b) confirms that FiDoop-DP’s shuffling cost is signif-
icantly lower than that of Pfp thanks to optimal data parti-
tions offered by FiDoop-DP. Second, this grouping strategy

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

10

in FiDoop-DP minimizes the number of transactions for
each GList under the premise of data completeness, which
leads to reducing mining load for each Reducer. The group-
ing strategy of FiDoop-DP introduces computing overhead
including signature-matrix calculation and hashing each
band into a bucket. Nevertheless, such small overhead is
offset by the performance gains in the shuffling and reduce
phases.

Fig. 4(a) also shows that the performance improvement
of FiDoop-DP over Pfp is widened when the minimum
support increases. This performance gap between FiDoop-
DP and Pfp is reasonable, because pushing minimum sup-
port up in FiDoop-DP filters out an increased number of
frequent 1-itemsets, which in turn shortens the transaction
partitioning cost. Small transactions simplify the correlation
analysis among the transactions; thus, small transactions
are less likely to have a large number of duplications
in their partitions. As a result, the number of duplicated
transactions to be transmitted among the partitions is
significantly reduced, which allows FiDoop-DP to deliver
better performance than Pfp.

6.3 Data Characteristic
In this group of experiments, we respectively evaluate the
impact of dimensionality and data correlation on the perfor-
mance of FiDoop-DP and Pfp by changing the parameters
in the process of generating the datasets using the IBM
Quest Market-Basket Synthetic Data Generator.

6.3.1 Dimensionality
The average transaction length directly determines the
dimensions of a test data. We configure the average trans-
action length to 10, 40, 60, and 85 to generate T10I4D
(130 blocks), T40I10D (128 blocks), T60I10D (135 blocks),
T85I10D (133 blocks) datasets, respectively. In this experi-
ment, we measure the impacts of dimensions on the per-
formance of FiDoop-DP and Pfp on the 8-node Hadoop
cluster.

The experimental results plotted in Fig. 5(a) clearly indi-
cate that an increasing number of dimensions significantly
raises the running times of FiDoop-DP and Pfp. This is
because increasing the number of dimensions increases the
number of groups; thus, the amount of data transmission
sharply goes up as seen in Fig. 5(b).

The performance improvements of FiDoop-DP over Pfp
is diminishing when the dimensionality increases from 10
to 85. For example, FiDoop-DP offers an improvement
of 29.4% when the dimensionality is set to 10; the im-
provement drops to 5.2% when the number of dimensions
becomes 85.

In what follows, we argue that FiDoop-DP is inherently
losing the power of reducing the number of redundant
transactions in high-dimensional data. When a dataset has
a low dimensionality, FiDoop-DP tends to build partitions,
each of which has distinct characteristics compared with
the other partitions. Such distinct features among the par-
titions allow FiDoop-DP to efficiently reduce the num-
ber of redundant transactions. In contrast, a dataset with

high dimensionality has a long average transaction length;
therefore, data partitions produced by FiDoop-DP have no
distinct discrepancy. Redundant transactions are likely to
be formed for partitions that lack distinct characteristics.
Consequently, the benefit offered by FiDoop-DP for high-
dimensional datasets becomes insignificant.

6.3.2 Data correlation

We set the correlation among transactions (i.e., -corr) to
0.15, 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 to measure the
impacts of data correlation on the performance of the two
algorithms on the 8-node Hadoop cluster. The Number of
Pivots is set to 60 (see also Section 6.1).

The experimental results plotted in Fig. 5(c) clearly indi-
cate that FiDoop-DP is more sensitive to data correlation
than Pfp. This performance trend motivates us to inves-
tigate the correlation-related data partition strategy. Pfp
conducts default data partition based on equal-size item
group without taking into account the characteristics of
the datasets. However, FiDoop-DP judiciously groups items
with high correlation into one group and clustering similar
transactions together. In this way, the number of redun-
dant transactions kept on multiple nodes is substantially
reduced. Consequently, FiDoop-DP is conducive to cutting
back both data transmission traffic and computing load.

As can be seen from Fig. 5(c), there is an optimum
balance point for data correlation degree to tune FiDoop-
DP performance (e.g., 0.35 in Fig. 5(c)). If data correlation is
too small, Fidoop-DP will degenerate into random partition
schema. On the contrary, it is difficult to divide items
into relatively independent groups when data correlation
is high, meaning that an excessive number of duplicated
transactions have to be transferred to multiple nodes. Thus,
a high data correlation leads to redundant transactions
formed for partitions, thereby increasing network and com-
puting loads.

6.4 Speedup

Now we are positioned to evaluate the speedup perfor-
mance of FiDoop-DP and Pfp by increasing the number of
data nodes in our Hadoop cluster from 4 to 24. The T40I10D
(128 blocks) dataset is applied to drive the speedup analysis
of the these algorithms. Fig. 6 reveals the speedups of
FiDoop-DP and Pfp as a function of the number of data
nodes.

The experimental results illustrated in Fig. 6(a) show that
the speedups of FiDoop-DP and Pfp linearly scale up with
the increasing number of data nodes. Such a speedup trend
can be attributed to the fact that increasing the number
of data nodes under a fixed input data size inevitably (1)
reduces the amount of itemsets being handled by each node
and (2) increases communication overhead among mappers
and reducers.

Fig. 6(a) shows that FiDoop-DP is better than Pfp in
terms of the speedup efficiency. For instance, the FiDoop-
DP improves the speedup efficiency of Pfp by up to 11.2%

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

11

(a) Running Time (b) Shuffling Cost (c) Running Time

Fig. 5. Impacts of data characteristics on FiDoop-DP and Pfp.

(a) Speedup

(b) Shuffling Cost
Fig. 6. The speedup performance and shuffling cost of FiDoop-DP and Pfp.

with an average of 6.1%. This trend suggests FiDoop-DP
improves the speedup efficiency of Pfp in large-scale

The speedup efficiencies drop when the Hadoop cluster
scales up. For example, the speedup efficiencies of FiDoop-
DP and Pfp on the 4-node cluster are 0.970 and 0.995,
respectively. These two speedup efficiencies become 0.746
and 0.800 on the 24-node cluster. Such a speedup-efficiency
trend is driven by the cost of shuffling intermediate re-
sults, which sharply goes up when the number of data
nodes scales up. Although the overall computing capacity
is improved by increasing the number of nodes, the cost
of synchronization and communication among data nodes
tends to offset the gain in computing capacity. For example,
the results plotted in Fig. 6(b) confirm that the shuffling
cost is linearly increasing when computing nodes are scaled
from 4 to 24. Furthermore, the shuffling cost of Pfp is larger
than that of FiDoop-DP.

6.5 Scalability

In this group of experiments, we evaluate the scalability
of FiDoop-DP and Pfp when the size of input dataset
dramatically grows. Fig. 7 shows the running times of the
algorithms when we scale up the size of the T40I10D data

series. Figs. 7(a) and 7(b) demonstrate the performance of
FiDoop-DP processing various datasets on 8-node and 24-
node clusters, respectively.

(a) On 8 nodes

(b) On 24 nodes
Fig. 7. The scalability of FiDoop-DP and Pfp when the size of input dataset
increases.

Fig. 7 clearly reveals that the overall execution times of
FiDoop-DP and Pfp go up when the input data size is
sharply enlarged. The parallel mining process is slowed
down by the excessive data amount that has to be scanned
twice. The increased dataset size leads to long scanning
time. Interestingly, FiDoop-DP exhibits a better scalability
than Pfp.

Recall that (see also from Algorithm 1) the second
MapReduce job compresses an initial transaction database
into a signature matrix, which is dealt by the subsequent
process. The compress ratio is high when the input data size
is large, thereby shortening the subsequent processing time.
Furthermore, Fidoop-DP lowers the network traffic induced
by the random grouping strategy in Pfp. In summary, the
scalability of FiDoop-DP is higher than that of Pfp when it
comes to parallel mining of an enormous amount of data.

7 RELATED WORK
7.1 Data Partitioning in MapReduce
Partitioning in databases has been widely studied, for both
single system servers (e.g. [29]) and distributed storage

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

12

systems (e.g., BigTable [30], PNUTS[31]). The existing ap-
proaches typically produce possible ranges or hash parti-
tions, which are then evaluated using heuristics and cost
models. These schemes offer limited support for OLTP
workloads or query analysis in the context of the popular
MapReduce programming model. In this study, we focus
on the data partitioning issue in MapReduce.

High scalability is one of the most important design
goals for MapReduce applications. Unfortunately, the par-
titioning techniques in existing MapReduce platforms (e.g.,
Hadoop) are in their infancy, leading to serious perfor-
mance problems.

Recently, a handful of data partitioning schemes have
been proposed in the MapReduce platforms. Xie et al. devel-
oped a data placement management mechanism for hetero-
geneous Hadoop clusters. Their mechanism partitions data
fragments to nodes in accordance to the nodes’ processing
speed measured by computing ratios [32]. In addition, Xie
et al. designed a data redistribution algorithm in HDFS
to address the data-skew issue imposed by dynamic data
insertions and deletions. CoHadoop [33] is a Hadoop’s
lightweight extension, which is designed to identify related
data files followed by a modified data placement policy to
co-locate copies of those related files in the same server.
CoHadoop considers the relevance among files; that is,
CoHadoop is an optimization of HaDoop for multiple
files. A key assumption of the MapReduce programming
model is that mappers are completely independent of one
another. Vernica et al. broke such an assumption by intro-
ducing an asynchronous communication channel among
mappers [34]. This channel enables the mappers to see
global states managed in metadata. Such situation-aware
mappers (SAMs) can enable MapReduce to flexibly parti-
tion the inputs. Apart from this, adaptive sampling and
partitioning were proposed to produce balanced partitions
for the reducers by sampling mapper outputs and making
use of obtained statistics.

Graph and hypergraph partitioning have been used to
guide data partitioning in parallel computing. Graph-based
partitioning schemes capture data relationships. For exam-
ple, Ke et al. applied a graphic-execution-plan graph (EPG)
to perform cost estimation and optimization by analyzing
various properties of both data and computation [35]. Their
estimation module coupled with the cost model estimate
the runtime cost of each vertex in an EPG, which represents
the overall runtime cost; a data partitioning plan is deter-
mined by a cost optimization module. Liroz-Gistau et al.
proposed the MR-Part technique, which partitions all input
tuples producing the same intermediate key co-located in
the same chunk. Such a partitioning approach minimizes
data transmission among mappers and reducers in the
shuffle phase [36]. The approach captures the relationships
between input tuples and intermediate keys by monitoring
the execution of representative workload. Then, based on
these relationships, their approach applies a min-cut k-
way graph partitioning algorithm, thereby partitioning and
assigning the tuples to appropriate fragments by modeling
the workload with a hyper graph. In doing so, subsequent

MapReduce jobs take full advantage of data locality in
the reduce phase. Their partitioning strategy suffers from
adverse initialization overhead.

7.2 Application-Aware Data Partitioning
Various efficient data partitioning strategies have been pro-
posed to improve the performance of parallel computing
systems. For example, Kirsten et al. developed two general
partitioning strategies for generating entity match tasks to
avoid memory bottlenecks and load imbalances [37]. Taking
into account the characteristics of input data, Aridhi et al.
proposed a novel density-based data partitioning technique
for approximate large-scale frequent subgraph mining to
balance computational load among a collection of ma-
chines. Kotoulas et al. built a data distribution mechanism
based on clustering in elastic regions [38].

Traditional term-based partitioning has limited scalabil-
ity due to the existence of very skewed frequency distri-
butions among terms. Load-balanced distributed cluster-
ing across networks and local clustering are introduced
to improve the chance that triples with a same key are
collocated. These self-organizing approaches need no data
analysis or upfront parameter adjustments in a priori. Lu
et al. studied k nearest neighbor join using MapReduce, in
which a data partitioning approach was designed to reduce
both shuffling and computational costs [19]. In Lu’s study,
objects are divided into partitions using a Voronoi diagram
with carefully selected pivots. Then, data partitions (i.e.,
Voronoi cells) are clustered into groups only if distances
between them are restricted by a specific bound. In this
way, their approach can answer the k-nearest-neighbour
join queries by simply checking object pairs within each
group.

FIM for data-intensive applications over computing clus-
ters has received a growing attention; efficient data par-
titioning strategies have been proposed to improve the
performance of parallel FIM algorithms. A MapReduce-
based Apriori algorithm is designed to incorporate a new
dynamic partitioning and distributing data method to im-
prove mining performance [39]. This method divides input
data into relatively small splits to provide flexibility for
improved load-balance performance. Moreover, the mas-
ter node doesn’t distribute all the data once; rather, the
rest data are distributed based on dynamically changing
workload and computing capability weight of each node.
Similarly, Jumbo [40] adopted a dynamic partition assign-
ment technology, enabling each task to process more than
one partition. Thus, these partitions can be dynamically
reassigned to different tasks to improve the load balancing
performance of Pfp [11]. Uthayopas et al. investigated I/O
and execution scheduling strategies to balance data pro-
cessing load, thereby enhancing the utilization of a multi-
core cluster system supporting association-rule mining. In
order to pick a winning strategy in terms of data-blocks
assignment, Uthayopas et al. incorporated three basic place-
ment policies, namely, the round robin, range, and random
placement. Their approach ignores data characteristics dur-
ing the course of mining association rules.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

13

8 FURTHER DISCUSSIONS
In this study, we investigated the data partitioning issues
in parallel FIM. We focused on MapReduce-based parallel
FP-tree algorithms; in particular, we studied how to parti-
tion and distribute a large dataset across data nodes of a
Hadoop cluster to reduce network and computing loads.

We argue that the general idea of FiDoop-DP proposed
in this study can be extended to other FIM algorithms like
Apriori running on Hadoop clusters. Apriori-based parallel
FIM algorithms can be classified into two camps, namely,
count distribution and data distribution [41]. For the count
distribution camp, each node in a cluster calculates local
support counts of all candidate itemsets. Then, the global
support counts of the candidates are computed by ex-
changing the local support counts. For the data distribution
camp, each node only keeps the support counts of a subset
of all candidates. Each node is responsible for delivering
its local database partition to all the other processors to
compute support counts. In general, the data distribution
schemes have higher communication overhead than the
count distribution ones; whereas the data distribution schemes
have lower synchronization overhead than its competitor.

Regardless of the count distribution or data distribution
approaches, the communication and synchronization cost
induce adverse impacts on the performance of parallel
mining algorithms. The basic idea of Fidoop-DP - grouping
highly relevant transactions into a partition - allows the par-
allel algorithms to exploit correlations among transactions
in database to cut communication and synchronization
overhead among Hadoop nodes.

9 CONCLUSIONS AND FUTURE WORK
To mitigate high communication and reduce computing
cost in MapReduce-based FIM algorithms, we developed
FiDoop-DP, which exploits correlation among transactions
to partition a large dataset across data nodes in a Hadoop
cluster. FiDoop-DP is able to (1) partition transactions with
high similarity together and (2) group highly correlated
frequent items into a list. One of the salient features
of FiDoop-DP lies in its capability of lowering network
traffic and computing load through reducing the number
of redundant transactions, which are transmitted among
Hadoop nodes. FiDoop-DP applies the Voronoi diagram-
based data partitioning technique to accomplish data par-
tition, in which LSH is incorporated to offer an analysis
of correlation among transactions. At the heart of FiDoop-
DP is the second MapReduce job, which (1) partitions a
large database to form a complete dataset for item groups
and (2) conducts FP-Growth processing in parallel on local
partitions to generate all frequent patterns. Our experimen-
tal results reveal that FiDoop-DP significantly improves the
FIM performance of the existing Pfp solution by up to 31%
with an average of 18%.

We introduced in this study a similarity metric to facili-
tate data-aware partitioning. As a future research direction,
we will apply this metric to investigate advanced load-
balancing strategies on a heterogeneous Hadoop cluster.

In one of our earlier studies (see [32] for details), we ad-
dressed the data-placement issue in heterogeneous Hadoop
clusters, where data are placed across nodes in a way that
each node has a balanced data processing load. Our data
placement scheme [32] can balance the amount of data
stored in heterogeneous nodes to achieve improved data-
processing performance. Such a scheme implemented at the
level of Hadoop distributed file system (HDFS) is unaware
of correlations among application data. To further improve
load balancing mechanisms implemented in HDFS, we plan
to integrate FiDoop-DP with a data-placement mechanism
in HDFS on heterogeneous clusters. In addition to perfor-
mance issues, energy efficiency of parallel FIM systems will
be an intriguing research direction.

ACKNOWLEDGMENT

The work in this paper was in part supported by
the National Natural Science Foundation of P.R. China
(No.61272263, No.61572343). Xiao Qin’s work was sup-
ported by the U.S. National Science Foundation under
Grants CCF-0845257 (CAREER). The authors would also
like to thank Mojen Lau for proof-reading.

REFERENCES

[1] M. J. Zaki, “Parallel and distributed association mining: A survey,”
Concurrency, IEEE, vol. 7, no. 4, pp. 14–25, 1999.

[2] I. Pramudiono and M. Kitsuregawa, “Fp-tax: Tree structure based
generalized association rule mining,” in Proceedings of the 9th ACM
SIGMOD workshop on Research issues in data mining and knowledge
discovery. ACM, 2004, pp. 60–63.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[4] S. Sakr, A. Liu, and A. G. Fayoumi, “The family of mapreduce
and large-scale data processing systems,” ACM Computing Surveys
(CSUR), vol. 46, no. 1, p. 11, 2013.

[5] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based frequent itemset
mining algorithms on mapreduce,” in Proceedings of the 6th Interna-
tional Conference on Ubiquitous Information Management and Commu-
nication, ser. ICUIMC ’12. New York, NY, USA: ACM, 2012, pp.
76:1–76:8.

[6] X. Lin, “Mr-apriori: Association rules algorithm based on mapre-
duce,” in Software Engineering and Service Science (ICSESS), 2014 5th
IEEE International Conference on. IEEE, 2014, pp. 141–144.

[7] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng, “Balanced
parallel fp-growth with mapreduce,” in Information Computing and
Telecommunications (YC-ICT), 2010 IEEE Youth Conference on. IEEE,
2010, pp. 243–246.

[8] S. Hong, Z. Huaxuan, C. Shiping, and H. Chunyan, “The study of
improved fp-growth algorithm in mapreduce,” in 1st International
Workshop on Cloud Computing and Information Security. Atlantis Press,
2013.

[9] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal, “Parma:
a parallel randomized algorithm for approximate association rules
mining in mapreduce,” in Proceedings of the 21st ACM international
conference on Information and knowledge management. ACM, 2012, pp.
85–94.

[10] C. Lam, Hadoop in action. Manning Publications Co., 2010.
[11] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: parallel

fp-growth for query recommendation,” in Proceedings of the 2008 ACM
conference on Recommender systems. ACM, 2008, pp. 107–114.

[12] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” Proceed-
ings of the VLDB Endowment, vol. 3, no. 1-2, pp. 48–57, 2010.

[13] P. Uthayopas and N. Benjamas, “Impact of i/o and execution schedul-
ing strategies on large scale parallel data mining,” Journal of Next
Generation Information Technology (JNIT), vol. 5, no. 1, p. 78, 2014.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2016.2560176, IEEE
Transactions on Parallel and Distributed Systems

14

[14] I. Pramudiono and M. Kitsuregawa, “Parallel fp-growth on pc clus-
ter,” in Advances in Knowledge Discovery and Data Mining. Springer,
2003, pp. 467–473.

[15] Y. Xun, J. Zhang, and X. Qin, “Fidoop: Parallel mining of frequent
itemsets using mapreduce,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, doi: 10.1109/TSMC.2015.2437327, 2015.

[16] S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action.
Manning, 2011.

[17] D. Borthakur, “Hdfs architecture guide,” HADOOP APACHE
PROJECT http://hadoop. apache. org/common/docs/current/hdfs design. pdf,
2008.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, vol. 10, 2010,
p. 10.

[19] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k
nearest neighbor joins using mapreduce,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1016–1027, 2012.

[20] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 24, no. 7, pp. 881–892, 2002.

[21] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[22] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathemat-
ics, 2007, pp. 1027–1035.

[23] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive
datasets. Cambridge University Press, 2014.

[24] A. Stupar, S. Michel, and R. Schenkel, “Rankreduce–processing k-
nearest neighbor queries on top of mapreduce,” in Proceedings of
the 8th Workshop on Large-Scale Distributed Systems for Information
Retrieval. Citeseer, 2010, pp. 13–18.

[25] B. Bahmani, A. Goel, and R. Shinde, “Efficient distributed locality
sensitive hashing,” in Proceedings of the 21st ACM international con-
ference on Information and knowledge management. ACM, 2012, pp.
2174–2178.

[26] R. Panigrahy, “Entropy based nearest neighbor search in high dimen-
sions,” in Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm. ACM, 2006, pp. 1186–1195.

[27] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” Journal of Computer and System
Sciences, vol. 60, no. 3, pp. 630–659, 2000.

[28] L. Cristofor, “Artool,” 2006.
[29] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and

horizontal partitioning into automated physical database design,”
in Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. ACM, 2004, pp. 359–370.

[30] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed struc-
tured data storage system,” in 7th OSDI, 2006, pp. 305–314.

[31] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1277–1288, 2008.

[32] J. Xie and X. Qin, “The 19th heterogeneity in computing workshop
(hcw 2010),” in Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, april 2010,
pp. 1 –5.

[33] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson, “Cohadoop: flexible data placement and its exploita-
tion in hadoop,” Proceedings of the VLDB Endowment, vol. 4, no. 9, pp.
575–585, 2011.

[34] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac, “Adaptive
mapreduce using situation-aware mappers,” in Proceedings of the 15th
International Conference on Extending Database Technology. ACM, 2012,
pp. 420–431.

[35] Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang, “Optimizing
data partitioning for data-parallel computing,” Dec. 13 2011, uS
Patent App. 13/325,049.

[36] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, E. Pacitti, and P. Val-
duriez, “Data partitioning for minimizing transferred data in mapre-
duce,” in Data Management in Cloud, Grid and P2P Systems. Springer,
2013, pp. 1–12.

[37] T. Kirsten, L. Kolb, M. Hartung, A. Groß, H. Köpcke, and E. Rahm,
“Data partitioning for parallel entity matching,” Proceedings of the
VLDB Endowment, vol. 3, no. 2, 2010.

[38] S. Kotoulas, E. Oren, and F. Van Harmelen, “Mind the data skew: dis-
tributed inferencing by speeddating in elastic regions,” in Proceedings
of the 19th international conference on World wide web. ACM, 2010, pp.
531–540.

[39] L. Li and M. Zhang, “The strategy of mining association rule based
on cloud computing,” in Business Computing and Global Informatization
(BCGIN), 2011 International Conference on. IEEE, 2011, pp. 475–478.

[40] S. Groot, K. Goda, and M. Kitsuregawa, “Towards improved load
balancing for data intensive distributed computing,” in Proceedings
of the 2011 ACM Symposium on Applied Computing. ACM, 2011, pp.
139–146.

[41] M. Z. Ashrafi, D. Taniar, and K. Smith, “Odam: An optimized dis-
tributed association rule mining algorithm,” IEEE distributed systems
online, no. 3, p. 1, 2004.

Yaling Xun is currently a doctoral student at
Taiyuan University of Science and Technology
(TYUST). She is currently a lecturer in the School of
Computer Science and Technology at TYUST. Her
research interests include data mining and parallel
computing.

Jifu Zhang received the BS and MS in Computer
Science and Technology from Hefei University of
Tchnology, China, and the Ph.D. degree in Pattern
Recognition and Intelligence Systems from Beijing
Institute of Technology in 1983, 1989, and 2005. He
is currently a Professor in the School of Computer
Science and Technology at TYUST. His research in-
terests include data mining, parallel and distributed
computing and artificial intelligence.

Xiao Qin received the Ph.D. degree in Computer
Science from the University of Nebraska-Lincoln
in 2004. He is a professor in the Department
of Computer Science and Software Engineering,
Auburn University. His research interests include
parallel and distributed systems, storage systems,
fault tolerance, real-time systems, and performance
evaluation. He received the U.S. NSF Computing
Processes and Artifacts Award and the NSF Com-
puter System Research Award in 2007 and the NSF
CAREER Award in 2009.

Xujun Zhao received the MS in Computer Science
and Technology in 2005 from Taiyuan University of
Technology(TYUT), China. He is currently a Ph.D.
student at Taiyuan University of Science and Tech-
nology(TYUST). His research interests include data
mining and parallel computing.

