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Abstract—With big data growth in biomedical and healthcare
communities, accurate analysis of medical data benefits early
disease detection, patient care and community services. However,
the analysis accuracy is reduced when the quality of medical
data is incomplete. Moreover, different regions exhibit unique
characteristics of certain regional diseases, which may weaken
the prediction of disease outbreaks. In this paper, we streamline
machine learning algorithms for effective prediction of chronic
disease outbreak in disease-frequent communities. We experiment
the modified prediction models over real-life hospital data collect-
ed from central China in 2013-2015. To overcome the difficulty
of incomplete data, we use a latent factor model to reconstruct
the missing data. We experiment on a regional chronic disease
of cerebral infarction. We propose a new convolutional neural
network based multimodal disease risk prediction (CNN-MDRP)
algorithm using structured and unstructured data from hospital.
To the best of our knowledge, none of the existing work focused
on both data types in the area of medical big data analytics.
Compared to several typical prediction algorithms, the prediction
accuracy of our proposed algorithm reaches 94.8% with a
convergence speed which is faster than that of the CNN-based
unimodal disease risk prediction (CNN-UDRP) algorithm.

Index Terms—Big data analytics; Machine Learning; Health-
care

I. INTRODUCTION

According to a report by McKinsey [1], 50% of Americans
have one or more chronic diseases, and 80% of American
medical care fee is spent on chronic disease treatment. With
the improvement of living standards, the incidence of chronic
disease is increasing. The United States has spent an average
of 2.7 trillion USD annually on chronic disease treatment. This
amount comprises 18% of the entire annual GDP of the United
States. The healthcare problem of chronic diseases is also very
important in many other countries. In China, chronic diseases
are the main cause of death, according to a Chinese report on
nutrition and chronic diseases in 2015, 86.6% of deaths are
caused by chronic diseases. Therefore, it is essential to perform
risk assessments for chronic diseases. With the growth in
medical data [2], collecting electronic health records (EHR) is
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increasingly convenient [3]. Besides, [4] first presented a bio-
inspired high-performance heterogeneous vehicular telematics
paradigm, such that the collection of mobile users’ health-
related real-time big data can be achieved with the deployment
of advanced heterogeneous vehicular networks. Chen et.al [5]–
[7] proposed a healthcare system using smart clothing for
sustainable health monitoring. Qiu et al. [8] had thoroughly
studied the heterogeneous systems and achieved the best
results for cost minimization on tree and simple path cases
for heterogeneous systems. Patients’ statistical information,
test results and disease history are recorded in the EHR,
enabling us to identify potential data-centric solutions to
reduce the costs of medical case studies. Qiu et al. [9] pro-
posed an efficient flow estimating algorithm for the telehealth
cloud system and designed a data coherence protocol for
the PHR(Personal Health Record)-based distributed system.
Bates et al. [10] proposed six applications of big data in the
field of healthcare. Qiu et al. [11] proposed an optimal big
data sharing algorithm to handle the complicate data set in
telehealth with cloud techniques. One of the applications is
to identify high-risk patients which can be utilized to reduce
medical cost since high-risk patients often require expensive
healthcare. Moreover, in the first paper proposing healthcare
cyber-physical system [12], it innovatively brought forward the
concept of prediction-based healthcare applications, including
health risk assessment. Prediction using traditional disease risk
models usually involves a machine learning algorithm (e.g.,
logistic regression and regression analysis, etc.), and especially
a supervised learning algorithm by the use of training data with
labels to train the model [13], [14]. In the test set, patients
can be classified into groups of either high-risk or low-risk.
These models are valuable in clinical situations and are widely
studied [15], [16]. However, these schemes have the following
characteristics and defects. The data set is typically small,
for patients and diseases with specific conditions [17], the
characteristics are selected through experience. However, these
pre-selected characteristics maybe not satisfy the changes in
the disease and its influencing factors.

With the development of big data analytics technology, more
attention has been paid to disease prediction from the perspec-
tive of big data analysis, various researches have been conduct-
ed by selecting the characteristics automatically from a large
number of data to improve the accuracy of risk classification
[18], [19], rather than the previously selected characteristics.
However, those existing work mostly considered structured
data. For unstructured data, for example, using convolutional
neural network (CNN) to extract text characteristics automat-
ically has already attracted wide attention and also achieved
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very good results [20], [21] . However, to the best of our
knowledge, none of previous work handle Chinese medical
text data by CNN. Furthermore, there is a large difference
between diseases in different regions, primarily because of
the diverse climate and living habits in the region. Thus,
risk classification based on big data analysis, the following
challenges remain: How should the missing data be addressed?
How should the main chronic diseases in a certain region
and the main characteristics of the disease in the region be
determined? How can big data analysis technology be used to
analyze the disease and create a better model?

To solve these problems, we combine the structured and
unstructured data in healthcare field to assess the risk of
disease. First, we used latent factor model to reconstruct the
missing data from the medical records collected from a hos-
pital in central China. Second, by using statistical knowledge,
we could determine the major chronic diseases in the region.
Third, to handle structured data, we consult with hospital
experts to extract useful features. For unstructured text data,
we select the features automatically using CNN algorithm.
Finally, we propose a novel CNN-based multimodal disease
risk prediction (CNN-MDRP) algorithm for structured and
unstructured data. The disease risk model is obtained by the
combination of structured and unstructured features. Through
the experiment, we draw a conclusion that the performance of
CNN-MDPR is better than other existing methods.

The remainder of this article is organized as follows. We
describe the dataset and model in Section II. The methods used
in this paper are described in Section III. The performance
of CNN-UDRP and CNN-MDRP algorithms is discussed in
Section IV. We provide the overall results in Section V.
Finally, Section VI concludes this paper.

II. DATASET AND MODEL DESCRIPTION

In this section, we describe the hospital datasets we use
in this study. Furthermore, we provide disease risk prediction
model and evaluation methods.

A. Hospital Data

The hospital dataset used in this study contains real-life
hospital data, and the data are stored in the data center. To
protect the patient’s privacy and security, we created a security
access mechanism. The data provided by the hospital include
EHR, medical image data and gene data. We use a three
year data set from 2013 to 2015. Our data focus on inpatient
department data which included 31919 hospitalized patients
with 20320848 records in total. The inpatient department data
is mainly composed of structured and unstructured text data.
The structured data includes laboratory data and the patient’s
basic information such as the patient’s age, gender and life
habits, etc. While the unstructured text data includes the
patient’s narration of his/her illness, the doctor’s interrogation
records and diagnosis, etc. As shown in Table I, the real-life
hospital data collected from central China are classified into
two categories, i.e., structured data and unstructured text data.

In order to give out the main disease which affect this
region, we have made a statistics on the number of patients,

the sex ratio of patients and the major disease in this region
every year from the structured and unstructured text data, the
statistical results are as shown in Table II. From Table II, we
can obtain that the proportion of male and female patients
hospitalized each year have little difference and more patients
admitted to the hospital in 2014. Moreover, the hospitalization
resulted by chronic diseases has always been occupying a large
proportion in this area through the statistics of the data. For
example, the number of patients hospitalized with the chronic
diseases of cerebral infarction, hypertension, and diabetes
accounted for 5.63% of the total number of patients admitted
to the hospital in 2015, while the other diseases occupied a
small proportion. In this paper, we mainly focus on the risk
prediction of cerebral infarction since cerebral infarction is a
fatal disease.

B. Disease Risk Prediction

From Table II, we obtain the main chronic disease in this
region. The goal of this study is to predict whether a patient is
amongst the cerebral infarction high-risk population according
to their medical history. More formally, we regard the risk
prediction model for cerebral infarction as the supervised
learning methods of machine learning, i.e., the input value is
the attribute value of the patient, X = (x1, x2, · · · , xn) which
includes the patient’s personal information such as age, gender,
the prevalence of symptoms, and living habits (smoking or not)
and other structured data and unstructured data.

The output value is C, which indicates whether the pa-
tient is amongst the cerebral infarction high-risk population.
C = {C0, C1}, where, C0 indicates the patient is at high-
risk of cerebral infarction, C1 indicates the patient is at low-
risk of cerebral infarction. The following will introduce the
dataset, experiment setting, dataset characteristics and learning
algorithms briefly.

For dataset, according to the different characteristics of the
patient and the discussion with doctors, we will focus on the
following three datasets to reach a conclusion.

• Structured data (S-data): use the patient’s structured data
to predict whether the patient is at high-risk of cerebral
infarction.

• Text data (T-data): use the patient’s unstructured text data
to predict whether the patient is at high-risk of cerebral
infarction.

• Structured and text data (S&T-data): use the S-data and
T-data above to multi-dimensionally fuse the structured
data and unstructured text data to predict whether the
patient is at high-risk of cerebral infarction.

In the experiment setting and dataset characteristics, we se-
lect 706 patients in total as the experiment data and randomly
divided the data into training data and test data. The ratio of the
training set and the test set is 6:1 [22], [23] , i.e., 606 patients
as the training data set while 100 patients as the test data set.
We use the C++ language to realize the machine learning and
deep learning algorithms and run it in a parallel fashion by the
use of data center. In this paper, for S-data, according to the
discussion with doctors and Pearson’s correlation analysis, we
extract the patient’s demographics characteristics and some
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TABLE I
ITEM TAXONOMY IN CHINA HOSPITAL DATA

Data category Item Description

Structured data

Demographics of the patient Patient’s gender, age, height, weight, etc.
Living habits Whether the patient smokes, has a genetic history, etc.

Examination items and results Includes 682 items, such as blood, etc.
Diseases Patient’s disease, such as cerebral infarction, etc.

Unstructured text data
Patient’s readme illness Patient’s readme illness and medical history

Doctor’s records Doctor’s interrogation records

TABLE II
INITIAL STATISTICS FROM HOSPITAL DATA IN WUHAN,CHINA

Statistics 2013 2014 2015

Number of inpatients 7265 24756 10552

Males 42.88% 50.36% 57.60%

Females 57.12% 49.64% 42.40%

Proportion of patients with cerebral infarction 1.47% 1.01% 1.66%

Proportion of hypertensive patients 1.06% 1.04% 1.98%

Proportion of diabetics 1.17% 0.99% 1.99%

of the characteristics associated with cerebral infarction and
living habits (such as smoking). Then, we obtain a total of
patient’s 79 features. For T-data, we first extract 815073 words
in the text to learn Word Embedding. Then we utilize the
independent feature extraction by CNN.

We will introduce machine learning and deep learning
algorithms used in this work briefly. For S-data, we use three
conventional machine learning algorithms, i.e., Naive Bayesian
(NB), K-nearest Neighbour (KNN), and Decision Tree (DT)
algorithm [24], [25] to predict the risk of cerebral infarction
disease. This is because these three machine learning methods
are widely used [26]. For T-data, we propose CNN-based
unimodal disease risk prediction (CNN-UDRP) algorithm to
predict the risk of cerebral infarction disease. In the remaining
of the paper, let CNN-UDRP(T-data) denote the CNN-UDRP
algorithm used for T-data. For S&T data, we predict the
risk of cerebral infarction disease by the use of CNN-MDRP
algorithm, which is denoted by CNN-MDRP(S&T-data) for
the sake of simplicity. In the following section, the details
about CNN-UDRP(T-data) and CNN-MDRP(S&T data) will
be given.

C. Evaluation Methods

For the performance evaluation in the experiment. First, we
denote TP , FP , TN and FN as true positive (the number
of instances correctly predicted as required), false positive
(the number of instances incorrectly predicted as required),
true negative (the number of instances correctly predicted
as not required) and false negative (the number of instances
incorrectly predicted as not required), respectively. Then, we
can obtain four measurements: accuracy, precision, recall and

F1-measure as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

F1-Measure =
2× Precision× Recall

Precision + Recall
,

where the F1-Measure is the weighted harmonic mean of the
precision and recall and represents the overall performance.

In addition to the aforementioned evaluation criteria, we
use receiver operating characteristic (ROC) curve and the area
under curve (AUC) to evaluate the pros and cons of the
classifier. The ROC curve shows the trade-off between the
true positive rate (TPR) and the false positive rate (FPR),
where the TPR and FPR are defined as follows:

TPR =
TP

TP + FN
, TFR =

FP

FP + TN

If the ROC curve is closer to the upper left corner of the
graph, the model is better. The AUC is the area under the
curve. When the area is closer to 1, the model is better. In
medical data, we pay more attention to the recall rather than
accuracy. The higher the recall rate, the lower the probability
that a patient who will have the risk of disease is predicted to
have no disease risk.

III. METHODS

In this section, we introduce the data imputation, CNN-
based unimodal disease risk prediction (CNN-UDRP) algo-
rithm and CNN-based unimodal disease risk prediction (CNN-
MDRP) algorithm.

A. Data Imputation

For patient’s examination data, there is a large number
of missing data due to human error. Thus, we need to fill
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Algorithm 1 Stochastic Gradient Descent Algorithm
Input:

γ learning rate;
λi, i = 1, 2 regularization constant;
N the maximum number of iterations;
p0u the initialization of Pu;
q0v the initialization of qv;

Output:
r̂uv real data;

1: t := 0, n := 0, r̂0uv = p0u
′

q0v , euv0 = ruv − r̂0uv .
2: t := t+ 1, n := n+ 1.
3: Given the error euvt−1 = ruv − r̂t−1

uv in the previous iteration.
4: Replace ptu = pt−1

u + γ(et−1
uv qt−1

v − λ1p
t−1
u ), qtv = qt−1

v + γ(et−1
uv pt−1

u − γ2q
t−1
v ), r̂tuv = ptu

′
qtv and etuv = ruv − r̂tuv .

5: If etuv approximately equals 0 or n > N , return r̂uv = r̂tuv for all possible (u, v); else, go to Step 2.

the structured data. Before data imputation, we first iden-
tify uncertain or incomplete medical data and then modify
or delete them to improve the data quality. Then, we use
data integration for data pre-processing. We can integrate the
medical data to guarantee data atomicity: i.e., we integrated
the height and weight to obtain body mass index (BMI). For
data imputation, we use the latent factor model [27] which
is presented to explain the observable variables in terms of
the latent variables. Accordingly, assume that Rm×n is the
data matrix in our healthcare model. The row designation, m
represents the total number of the patients, and the column
designation, n represents each patient’s number of feature
attributes. Assuming that there are k latent factors, the original
matrix R can be approximated as

R(m×n) ≈ Pm×kQ
T
n×k (1)

Thus, each element value can be written as r̂uv = pTu qv, where
pu is the vector of the user factor, which indicates the patient’s
preference to these potential factors, and qv is the vector of
the feature attribute factor. The pu and qv values in the above
formula are unknown.

To solve the problem, we can transform this problem into
an optimization problem:

min
{p,q}

∑
(u,v)

(ruv − pTu qv)
2
+ λ1||pu||2 + λ2||qv||2

 (2)

where ruv is real data, pu, qv are the parameters to be solved,
and λi, i = 1, 2 is a regularization constant, which can prevent
overfitting in the operation process. We can solve it by the use
of the stochastic gradient descent method. Define euv = r̂uv−
ruv. Through the derivation above the optimization problem,
we can get the specific solution as shown in Algorithm 1,
which can fill missing data.

B. CNN-based Unimodal Disease Risk Prediction (CNN-
UDRP) Algorithm

For the processing of medical text data, we utilize CNN-
based unimodal disease risk prediction (CNN-UDRP) algorith-
m which can be divided into the following five steps.

1) Representation of text data: As for each word in the
medical text, we use the distributed representation of Word
Embedding in natural language processing, i.e. the text is
represented in the form of vector. In this experiment, each
word will be represented as a Rd-dimensional vector, where
d = 50. Thus, a text including n words can be represented as
T = (t1, t2, · · · , tn), T ∈ Rd×n.

2) Convolution layer of text CNN: Every time we choose
s words, where s = 5 in Fig. 1(b). In other words, we choose
two words from the front and back of each word vector t

′

i in
the text, i.e. use the row vector as the representation, to consist
a 50×5 = 250 row vector, i.e. si = (t

′

i−2, t
′

i−1, t
′

i, t
′

i+1, t
′

i+2).
As shown in Fig. 1(b), for s1, s2, sn−1 and sn, we adopt an
zero vector to fill. The selected weight matrix W 1 ∈ R100×250

is as shown in Fig. 1(a), i.e., weight matrix W 1 includes 100
convolution filters and the size of each filter regions is 250.
Perform convolution operation on W 1 and si(i = 1, 2, · · · , n),
as shown in Fig.1(c). Specific calculation progress is that:

h1
i,j = f(W 1[i] · sj + b1) (3)

where i = 1, 2, · · · , 100, j = 1, 2, · · · , n. W 1[i] is the i-th row
of weight matrix. · is the dot product (a sum over element-
wise multiplications), b1 ∈ R100 is a bias term, and f(·) is an
activation function (in this experiment, we use tanh-function
as activation function). Thus we can get a 100 × n feature
graph

h1 = (h1
i,j)100×n (4)

3) Pool layer of text CNN: Taking the output of convolution
layer as the input of pooling layer, we use the max pooling
(1-max pooling) operation as shown in Fig. 1(d), i.e., select
the max value of the n elements of each row in feature graph
matrix

h1 : h2
j = max

1≤i≤n
h1
i,j , j = 1, 2, · · · , 100 (5)

After max pooling, we obtain 100×1 features h2. The reason
of choosing max pooling operation is that the role of every
word in the text is not completely equal, by maximum pooling
we can choose the elements which play key role in the text. In
spite of different length of the input training set samples, the
text is converted into a fixed length vector after convolution
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Fig. 1. CNN-based multimodal disease risk prediction (CNN-MDRP) algorithm.

layer and pooling layer, for example, in this experiment, after
convolution and pooling, we get 100 features of the text.

4) Full connection layer of text CNN: Pooling layer is
connected with a fully connected neural network as shown
in Fig. 1(E), the specific calculation process is that:

h3 = W 3h2 + b3 (6)

where h3 is the value of the full connection layer, W 3 and b3

is the corresponding weights and deviation.
5) CNN classifier: The full connection layer links to a

classifier, for the classifier, we choose a softmax classifier,
as shown in Fig. 1(f).

C. CNN-based Multimodal Disease Risk Prediction (CNN-
MDRP) Algorithm

From what has been discussed above, we can get the
information that CNN-UDRP only uses the text data to predict
whether the patient is at high risk of cerebral infarction. As
for structured and unstructured text data, we design a CNN-
MDRP algorithm based on CNN-UDRP as shown in Fig. 1.
The processing of text data is similar with CNN-UDRP, as
shown in Fig. 1(a-d), which can extract 100 features about text
data set. For structure data, we extract 79 features. Then, we
conduct the feature level fusion by using 79 features in the S-
data and 100 features in T-data, as shown in Fig. 1(g). For full
connection layer, computation methods are similar with CNN-
UDRP algorithm Since the variation of features number, the
corresponding weight matrix and bias change to W 3

new, b
3
new,

respectively. We also utilize softmax classifier. In the following
we will introduce how to train the CNN-MDRP algorithm, the
specific training process is divided into two parts.

1) Training word Embedding: Word vector training re-
quires pure corpus, the purer the better, that is, it is better
to use a professional corpus. In this paper, we extracted the
text data of all patients in the hospital from the medical large
data center. After cleaning these data, we set them as corpus
set. Using ICTACLAS [28] word segmentation tool, word2vec
[29] tool n-skip gram algorithm trains the word vector, word
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Fig. 2. Running time comparison of CNN-UDRP (T-data) and CNN-MDRP
(S&T-data) algorithms in personal computer (PC) and data center.

vector dimension is set to 50, after training we get about 52100
words in the word vector.

2) Training parameters of CNN-MDRP: In CNN-
MDRP algorithm, the specific training parameters are
W 1,W 3

new, b
1, b3new. we use stochastic gradient method to

train parameters, and finally reach the risk assessment of
whether the patient suffers from cerebral infarction. Some
advanced features shall be tested in future study, such as
fractal dimension [30], biorthogonal wavelet transform [31],
[32] etc.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the performance of CNN-UDRP
and CNN-MDRP algorithms from several aspects, i.e.,the run
time, sliding window, iterations and text feature.

A. Run Time Comparison

We compare the running time of CNN-UDRP (T-data)
and CNN-MDRP (S&T-data) algorithms in personal computer
(2core CPU, 8.00G RAM) and data center (6core*2*7=84core
CPU, 48*7=336G RAM). Here, we set the same CNN itera-
tions which are 100 and extract the same 100 text features.
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 (a)  (b)

Fig. 3. Effect of sliding window (word number) in the algorithm. (a) The corresponding accuracy of the CNN-UDRP (T-data) and CNN-MDRP (S&T-data)
algorithms when the number of words for sliding window are 1, 3, 5, 7 and 9. (b) The corresponding recall of the CNN-UDRP (T-data) and CNN-MDRP
(S&T-data) algorithms when the number of words for sliding window are 1, 3, 5, 7 and 9.

As shown in Fig. 2, for CNN-UDRP (T-data) algorithm, the
running time in data center is 178.5s while the time in personal
computer is 1646.4s. For CNN-MDRP (S&T-data) algorithm,
its running time in data center is 178.2s while the time in
personal computer is 1637.2s. That is, the running speed
of the data center is 9.18 times on the personal computer.
Moreover, we can see the running time of CNN-UDRP (T-
data) and CNN-MDRP (S&T-data) are basically the same from
the figure, i.e. although the number of CNN-MDRP (S&T-
data) features increase after adding structured data, it does not
make a significant change in time. The later experiments are
based on the running results of the data center.

B. Effect of Sliding Window (Word Number)

When taking convolution of CNN, we need to confirm the
number of words for sliding window first. In this experiment,
the selected number of words for the sliding window are 1,
3, 5, 7 and 9. The iterations of CNN are 200 and the size
of convolution kernel is 100. As shown in Fig. 3, when the
number of words for the sliding window are 7, the accuracy
and recall of CNN-UDRP (T-data) algorithm are 0.95 and
0.98, respectively. And the accuracy and recall of CNN-MDRP
(S&T-data) algorithm are 0.95 and 1.00. These results are
all higher than we choose other number of words for sliding
window. Thus, in this paper, we choose the number of words
for sliding window are 7.

C. Effect of Iterations

We give out the change of the training error rate and test
accuracy along with the number of iterations. As shown in
Fig. 4, with the increase of the number of iterations, the train-
ing error rate of the CNN-UDRP (T-data) algorithm decreases
gradually, while test accuracy of this method increases. The
CNN-MDRP (S&T-data) algorithm have the similar trend in
terms of the training error rate and test accuracy. In Fig. 4,
we can also obtain when the number of iterations are 70,
the training process of CNN-MDRP (S&T-data) algorithm is

already stable while the CNN-UDRP (T-data) algorithm is still
not stable. In other words, the training time of MDRP(S&T
data) algorithm is shorter, i.e. the convergence speed of CNN-
MDRP (S&T-data) algorithm is faster.

D. Effect of Text Features

The number of features extracted from structured data is
certain, i.e. 79 features. However, the feature number of
unstructured text data extracted by CNN is uncertain. Thus,
we research the effect of text feature number on accuracy and
recall of CNN-UDRP (T-data) and CNN-MDRP (S&T-data)
algorithms. We extract 10, 20, · · · , 120 features from text by
using CNN. Fig. 5 shows the accuracy and recall of each
feature after it go through 200 times of iteration. From the
Fig. 5(a) and Fig. 5(b), when the feature number of text is
smaller than 30, the accuracy and recall of CNN-UDRP (T-
data) and CNN-MDRP (S&T-data) algorithms are smaller than
the feature number of text is bigger than 30 obviously. This
is because it is not able to describe a large number of useful
information contained in the text when the text feature number
is relatively small. Moreover, in the Fig. 5(a), the accuracy of
CNN-MDRP (S&T-data) algorithm is more stable than CNN-
UDRP (T-data) algorithm, i.e. the CNN-MDRP (S&T-data)
algorithm is reduced fluctuation after adding structured data.
As shown in Fig. 5(b), after adding structured data, the recall
of CNN-MDRP (S&T-data) algorithm is higher than CNN-
UDRP (T-data) algorithm obviously. This shows that the recall
of algorithm is improved after adding structured data.

V. ANALYSIS OF OVERALL RESULTS

In this section, we describe the overall results about S-data
and S&T-data.

A. Structured Data (S-data)

For S-data, we use traditional machine learning algorithms,
i.e., NB, KNN and DT algorithm to predict the risk of cerebral
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Fig. 4. Effect of iterations on the algorithm. (a) The trend of training error rate with the iterations for CNN-UDRP (T-data) and CNN-MDRP (S&T-data)
algorithms. (b) The trend of test accuracy with the iterations for CNN-UDRP (T-data) and CNN-MDRP (S&T-data) algorithms.
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Fig. 5. Effect of text features on the algorithm. (a) The accuracy trend of the CNN-UDRP (T-data) and CNN-MDRP (S&T-data) algorithms along with the
increased number of text features. (b) The recall trend of the CNN-UDRP (T-data) and CNN-MDRP (S&T-data) algorithms along with the increased number
of features.

infarction disease. NB classification is a simple probabilistic
classifier. It requires to calculate the probability of feature
attributes. In this experiment, we use conditional probability
formula to estimate discrete feature attributes and Gaussian
distribution to estimate continuous feature attributes. The KNN
classification is given a training data set, and the closest k
instance in the training data set is found. For KNN, it is
required to determine the measurement of distance and the
selection of k value. In the experiment, the data is normalized
at first. Then we use the Euclidean distance to measure the
distance. As for the selection of parameters k, we find that
the model is the best when k = 10. Thus, we choose k = 10.
We choose classification and regression tree (CART) algorithm
among several decision tree (DT) algorithms.

To determine the best classifier and improve the accuracy
of the model, the 10-fold cross-validation method is used for
the training set, and data from the test set are not used in
the training phase. The model’s basic framework is shown in
Fig. 6. The results are shown in Fig. 7(a) and Fig. 7(b). From

Fig. 7(a), we can see that the accuracy of the three machine
learning algorithms are roughly around 50%. Among them,
the accuracy of DT which is 63% is highest, followed by NB
and KNN. The recall of NB is 0.80 which is the highest,
followed by DT and KNN. We can also draw from Fig. 7(b)
that the corresponding AUC of NB, KNN and DB are 0.4950,
0.4536 and 0.6463, respectively. In summary, for S-data, the
NB classification is the best in experiment. However, it is
also observed that we cannot accurately predict whether the
patient is in a high risk of cerebral infarction according to the
patient’s age, gender, clinical laboratory and other structured
data. In other word, because cerebral infarction is a disease
with complex symptom, we cannot predict whether the patient
is in a high risk group of cerebral infarction only in the light
of these simple features.

B. Structured and Text Data (S&T-data)
According to the discussion in Section IV, we give out the

accuracy, precision, recall, F1-measure and ROC curve under
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Fig. 7. Overall results of S-data. (a) Comparison of accuracy, precision, recall and F1-Measure under S-data for NB, KNN and DT, in which NB = naive
Bayesian, KNN = k-nearest neighbour, and DT = decision tree. (b) ROC curves under S-data for NB, KNN and DT.
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Fig. 8. Overall results of S&T-data. (a) Comparison of accuracy, precision, recall and F1-measure under CNN-UDRP (T-data) and CNN-MDRP (S&T-data)
algorithms. (b) ROC curves under CNN-UDRP (T-data) and CNN-MDRP (S&T-data) algorithms.
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CNN-UDRP (T-data) and CNN-MDRP (S&T-data) algorithm-
s. In this experiment, the selected number of words is 7 and
the text feature is 100. As for CNN-UDRP (T-data) and CNN-
MDRP (S&T-data) algorithms, we both run 5 times and seek
the average of their evaluation indexes. From the Fig. 8, the
accuracy is 0.9420 and the recall is 0.9808 under CNN-UDRP
(T-data) algorithm while the accuracy is 0.9480 and the recall
is 0.99923 under CNN-MDRP (S&T-data) algorithm. Thus,
we can draw the conclusion that the accuracy of CNN-UDRP
(T-data) and CNN-MDRP (S&T-data) algorithms have little
difference but the recall of CNN-MDRP (S&T-data) algorithm
is higher and its convergence speed is faster. In summary, the
performance of CNN-MDRP (S&T-data) is better than CNN-
UDRP (T-data).

In conclusion, for disease risk modelling, the accuracy of
risk prediction depends on the diversity feature of the hospital
data, i.e., the better is the feature description of the disease,
the higher the accuracy will be. For some simple disease,
e.g., hyperlipidemia, only a few features of structured data
can get a good description of the disease, resulting in fairly
good effect of disease risk prediction [33]. But for a complex
disease, such as cerebral infarction mentioned in the paper,
only using features of structured data is not a good way to
describe the disease. As seen from Fig. 7(a) and Fig. 7(b), the
corresponding accuracy is low, which is roughly around 50%.
Therefore, in this paper, we leverage not only the structured
data but also the text data of patients based on the proposed
CNN-MDPR algorithm. We find that by combining these two
data, the accuracy rate can reach 94.80%, so as to better
evaluate the risk of cerebral infarction disease.

VI. CONCLUSION

In this paper, we propose a new convolutional neural net-
work based multimodal disease risk prediction (CNN-MDRP)
algorithm using structured and unstructured data from hospital.
To the best of our knowledge, none of the existing work
focused on both data types in the area of medical big data
analytics. Compared to several typical prediction algorithms,
the prediction accuracy of our proposed algorithm reaches
94.8% with a convergence speed which is faster than that
of the CNN-based unimodal disease risk prediction (CNN-
UDRP) algorithm.
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