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Abstract—With the globalization of service, organizations continuously produce large volumes of data that need to be analysed over
geo-dispersed locations. Traditionally central approach that moving all data to a single cluster is inefficient or infeasible due to the
limitations such as the scarcity of wide-area bandwidth and the low latency requirement of data processing. Processing big data across
geo-distributed datacenters continues to gain popularity in recent years. However, managing distributed MapReduce computations
across geo-distributed datacenters poses a number of technical challenges: how to allocate data among a selection of geo-distributed
datacenters to reduce the communication cost, how to determine the VM (Virtual Machine) provisioning strategy that offers high
performance and low cost, and what criteria should be used to select a datacenter as the final reducer for big data analytics jobs. In
this paper, these challenges is addressed by balancing bandwidth cost, storage cost, computing cost, migration cost, and latency cost,
between the two MapReduce phases across datacenters. We formulate this complex cost optimization problem for data movement,
resource provisioning and reducer selection into a joint stochastic integer nonlinear optimization problem by minimizing the five cost
factors simultaneously. The Lyapunov framework is integrated into our study and an efficient online algorithm that is able to minimize
the long-term time-averaged operation cost is further designed. Theoretical analysis shows that our online algorithm can provide a
near optimum solution with a provable gap and can guarantee that the data processing can be completed within pre-defined bounded
delays. Experiments on WorldCup98 web site trace validate the theoretical analysis results and demonstrate that our approach is close
to the offline-optimum performance and superior to some representative approaches.

Index Terms—Big Data Processing; Cloud Computing; Data Movement; Virtual Machine Scheduling; Online Algorithm.
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1 INTRODUCTION

We are entering a big data era with more data generated and
collected in a geographically distributed manner in many areas
such as finance, medicine, social web, astronomy etc. With the
increasing explosion of distributed data, the huge treasures hidden
in it are waiting for us to explore for providing valuable insights.
To illustrate, social web sites such as Facebook can uncover
usage patterns and hidden correlations by analyzing the web
site history records (e.g., click records, activity records et al.) to
detect social hot event and facilitate its marketing decision (e.g.,
advertisement recommendation), and the Square Kilometre Array
(SKA) [1], an international project to build the world’s largest
telescope distributed over several countries, need to fusion the
geographically dispersed data for scientific applications. However,
due to the properties such as large-scale volume, high complexity
and dispersiveness of big data coupled with the scarcity of Wide-
area bandwidth (e.g., trans-oceanic link ), it is inefficient and/or
infeasible to process the data with centralized solutions [2]. This
has fueled strong companies from industry to deploy multi-
datacenter cloud and hybrid cloud. These cloud technologies offer
a powerful and cost-effective solution to deal with increasingly
high velocity of big data generated from geo-distributed sources
(e.g., Facebook, Google and Microsoft etc). For majority of
the commmon organizations (e.g., SKA), it is economic to rent
resource from public cloud, with considering the advantages of
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cloud computing such as flexibility and pay-as-you-go business
model.

MapReduce is a distributed programming model for process-
ing large-scale dataset in parallel, which has shown its outstanding
effectiveness in many existing applications [3], [4], [5]. Since
original MapReduce model is not optimized for deployment across
datacenters [6], aggregating distributed data to a single datacenter
for centralized processing is a widely-used approach. However,
waiting for such centralized aggregation suffers from significantly
delays due to the heterogenous and limited bandwidth of user-
cloud link. Notice that the bandwidth of inter-datacenter link
is usually dedicated relatively high-bandwidth lines [7], moving
the data to multiple datacenters for map operation in parallel
and then aggregating the intermediate data to a single datacenter
for reduce operation using inter-datacenter link has potential to
reduce the latency. Furthermore, different kinds of cost (e.g.,
incurred by moving data or renting VM) also can be optimized
considering the heterogeneity of the link speed, the dynamism of
the data generation and the resource price. Therefore, distributing
data from multi-sources into multi-datacenters and processing
them using distributed MapReduce is an idea way to deal with
the large volume dispersed data. Hitherto, the most important
questions to be solved include: 1) how to optimize the placement
of large-scale datasets from various locations onto geo-distributed
datacenter cloud for processing and 2) how many resources
such as computing resources should be provisioned to guarantee
performance and availability while minimizing the cost. The fluc-
tuation and multiple sources of generated data combined with the
dynamic utility-driven pricing model of cloud resource make it a
very challenging problem. The inter-dependency between multiple
stages of distributed computation, such as the interplay between
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the Map phase and the Reduce phase of MapReduce programs,
further escalates the complexity of the data movement, resource
provisioning and final reduce selection problems in geo-distributed
datacenters.

In this paper, we address the problem of efficient scheduling
with the goal of high performance, high availability and cost
minimization by balancing five types of cost between the two
MapReduce phases across multiple geo-distributed datacenters:
bandwidth cost, storage cost, computing cost, migration cost, and
latency cost.

Contributions: The major contributions of this work are
summarized as follows:

• We propose a framework that can systematically handle
the issues of data movement, resource provisioning as well
as reducer selection under the context of running MapRe-
duce across multiple datacenters, and VMs of different
types and dynamic prices.

• We formulate the complex cost optimization problem as a
jointed stochastic integer nonlinear optimization problem
and solve it using Lyapunov optimization framework by
transforming the original problem into three independent
subproblems (data movement, resource provisioning and
reduce selection) that can be solved with some simple
solutions. We design an efficient and distributed online
algorithm-MiniBDP that is able to minimize the long-term
time-averaged operation cost.

• We formally analyze the performance of MiniBDP in
terms of cost optimality and worst case delay. We show
that the algorithm approximates the optimal solution with-
in provable bounds and guarantees that the data processing
can be completed within pre-defined delays.

• We conduct extensive experiments to evaluate the perfor-
mance of our online algorithm with real world datasets.
The experiments result demonstrate its effectiveness as
well its superiority in terms of cost, system stability and
decision-making time to existing representative approach-
es (e.g., the combinations of data allocation strategies
(proximity-aware, load balance-aware) and the resource
provisioning strategies(e.g., stable strategy, heuristic strat-
egy).

The remainder of this paper is organized as follows: The
next section reviews related work in the literature; Section 3
describes the system model and the problem formulation; Section
4 presents the online algorithm for solving the problem; The
proposed algorithm is theoretically analyzed in section 5; Section
presents the experiments and performance analysis using real-
world trace. Section 7 concludes the paper with a summary and
future work.

2 RELATED WORK

Computation models. MapReduce [3] is a popular and efficient
distributed computing model that abstracts the data processing into
two stages: Map and Reduce [6]. Extensions such as Twitter Storm
[8] was proposed to handle real-time streaming data, Spark [4]
was proposed as a solution that persistently keeps the distributed
partitions in memory to eliminate disk I/O latency. To support
data processing with evolving property, several efforts [9], [10]
have added iterative or incremental support for MapReduce tasks.
Recently, to deal with the issue that both data and compute
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Fig. 1: Architecture of Big Data Processing with MapReduce
Across Datacenters

resources are geo-distributed, the distributed MapReduce across
datacenters was proposed [11], [12], [13]. To improve the efficien-
cy of large-scale data processing, Sfrent et al. [14] proposed an
asymptotic scheduling mechanism for many computing tasks for
big data processing platforms. The common feature of these works
is considering a static scenario where the data are pre-stored in the
cloud and the amount of data are fixed.

Wide-Area Big-Data (WABD) analytics. Work on WABD has
been a hot topic recently. Considering geo-dispersed data pro-
cessing on clouds, Zhang et al. [7] proposed an online algorithm
to migrate dynamically generated data from various locations
to the clouds and studied how to minimize the bandwidth cost
of transferring data for delay-tolerant processing with multiple
Internet Service Providers (ISPs) [15]. Zhang et al. [16] studied
how to efficiently schedule and perform analysis over data that
is geographically distributed across multiple datacenters and de-
signed system-level optimizations including job localization, data
placement and data pre-fetching for improving performance of
Hadoop service provisioning in a geo-distributed cloud. Targeting
at query analytics over geo-distributed datacenters, studies focus
on different goals (e.g., either reducing bandwidth cost [2], [17],
[18] or execution response time [19]). Geode [2] is proposed to
solve the problem of querying wide-area distributed data with goal
of reducing bandwidth cost, but it makes no attempt to minimize
execution latency and does not support general computations task
that go beyond SQL query under MapReduce framework. WANa-
lytics [17] is designed for arbitrary computation with DAGs of task
and proposed a heuristic algorithm to optimize tasks execution as
well as an intermediate data caching strategy to reduce bandwidth
cost. PIXIDA [18] is proposed to minimize the traffic incurred
from data movement across resource constrained links. In contrast
to MiniBDP, it formulates the traffic minimization optimization
into a graph partitioning problem. Iridium [19] is the closest work
since it also optimizes the data and task placement to achieve the
goal of minimizing the response time of query analysis across
geo-distributed sites. However, its approach is rather different
from MiniBDP since it needs to estimate the query arrivals and
ignores the CPU and storage cost. In addition, MiniBDP shows
delay bounds while Iridium does not.

Management of multiple datacenters . Managing multiple ge-
ographically distributed datacenters has attracted companies such
as Facebook, Google, HP and Cisco. To support geo-distributed
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hadoop data storage, Facebook developed a project Prism [20] by
adding a logical abstraction layer to Hadoop cluster. Focusing on
fault tolerance and load balancing, Google deployed its database
system Spanner [21] in a distributed manner, which is able to
automatically migrating data across datacenters. HP [22] and
Cisco [23] have also made efforts to manage their geo-distributed
datacenters by optimizing the inter-datacenters network on the
layer of data link. However, current practical methods are limited
by their transport dependency, complexity and lack of resilience.
Further, these methods mainly focus on providing better service
quality for increasingly global user demands but not on data
computations.

Recently, Lyapunov optimization technique was [24] applied
to cloud computing contex to deal with job admission and resource
allocation problem [25], [26]. Yao et al. [27] extends it from the
single time scale to two-time-scale for achieving electricity cost
reduction in geographically distributed datacenters. Besides, this
approach is used for resource management in cloud-based video
service [28], [29]. In this paper, we apply this technique to address
the issue of data moving and resource provisioning for big data
processing in cloud with geo-distributed MapReduce.

To summarize, differs to aforementioned studies, our goal
is to minimize overall cost when processing geo-dispersed big
data across multiple datacenters, by balancing computation cost,
bandwidth cost, storage cost, migration cost and latency cost,
not only one or part of them. Further, we incorporate dynamic
resource provisioning into the framework and make decision on
the data movement, resource provisioning and reducer selection
simultaneously at a long run. In addition, we consider the problem
on the granularity of Map and Reduce as well as the data flow
between the two phases that support incremental style across
distributed datacenters .

3 MODELING AND FORMULATION

In this section, we first introduce the preliminary knowledge on
MapReduce and the execution path of data over geo-distributed
datacenters, and then we present the system model.

3.1 Preliminaries
In MapReduce model, Mapper process the input datasets and out
put a set of < key, value > intermediate pairs at Map phase, while
Reducer receive all the intermediate data from mappers and merge
the values according to a specific key to produce smaller sets of
values at Reduce phase. Both of them can be deployed in different
nodes.

Under the environment of distributed datacenters, the execu-
tion path of geo-distributed data is of particular importance. As
concluded by Chamikara et.al. [12], there are three execution
paths for data processing with MapReduce across datacenters:
COPY, MULTI and GEO. COPY is a strategy that copies all
the sub-datasets into a single datacenter before handing them
with MapReduce. However, it is inefficient when the output
data generated by MapReduce is much smaller than the inputs.
MULTI is a strategy that executes MapReduce job separately on
each sub-dataset and then aggregates the individual results. The
drawback of this strategy lies in that the expected outcome is
yielded only if the order of the MapReduce jobs does not have
an impact on the final result. GEO is a strategy that executes
the Map operation in different datacenters and then copy the
intermediate data to a single datacenter for Reduce operation. This

is suitable for those applications where the jobs are correlated in
the Reduce phase, e.g., determining the median size of the pages
in a Web cache, or those applications where the intermediate data
is smaller than the input. As reported in [13], by measuring the
Hadoop traces of about 16000 jobs from Facebook, there are about
70% of jobs whose input data is larger than the corresponding
intermediate data. Therefore, GEO conducts the map operation in
each datacenter and then aggregates the intermediate data into a
single datacenter will reduce cross-region bandwidth cost. Based
on above consideration, we consider the GEO execution path in
problem modelling.

3.2 System Model

Without loss of generality, we consider such a system scenario
where a DSP (Data Service Provider) manages multiple data
sources and transfers all the data into cloud for processing using
MapReduce. The DSP may either deploy its private datacenters
(e.g., Google deploys tens of datacenters over the world) or rent
the resource from public clouds (e.g., SKA may rent the resource
from public cloud such as Amazon EC2). Specially, for the DSP
that have its private cloud, datasources overlaps datacenters since
generated data are collected and stored in its own datacenters.
System architecture is presented in Fig. 1: Data sources from mul-
tiple geographical data locations continuously produce massive
data. Data analysis applications are deployed in the cloud and
the data sources is connected to datacenters located in multiple
places. In this model, data are moved to the datacenters once they
are generated and are processed in a incremental style in which
only the newly arrived data are computed and the intermediate
data from past can be reused. Specifically, both mappers and
reducers are running on every datacenter. As the GEO execution
path mentioned above is considered in this paper, there are two
corresponding phases for the data moving procedure. At the first
phase, data can be moved to any datacenter for Map operation. At
the second phase, the intermediate data of Mappers must be moved
into a single datacenter with consideration of data correlations. As
shown in Fig. 1, the bold line is an example of execution path,
which shows that the raw data from data source 1 and data source
2 are moved to multiple datacenters for Map operation and then
the output data of Mappers are aggregated into the Reducer in
datacenter 1 for Reduce operation.

Formally, let D be the set of geographically distributed data-
centers with size of D = |D| (indexed by d(1 ≤ d ≤ D) ) and K
be the set of VM types with size K = |K|, each of which has a
specific capacity vk with configurations such as CPU and memory.
All types of VMs can be provisioned in each datacenter. Data are
dynamically and continuous generated from R = |R| different
datasource locations (indexed by r, 1 ≤ r ≤ R), denoted as a
set R. Data from any location can be moved to any datacenter
for Map operation and then aggregate the intermediate data into
a single datacenter. To be realistic, we assume that the bandwidth
Brd from data location r to datacenter d is limited. Also note
that inter-datacenter links (e.g., trans-oceanic links) are expensive
to lay down, so the costs of using these links are considered as
a first-order entity when migrating the intermediate data among
datacenters. In addition, the data generation in each location is
independent and the prices of the resource (e.g., VM) in each
datacenter are varied in both spatial and temporal domain.

The system runs according to time slots, which is denoted
by t = 0, 1, ..., T . In each time slot, the DSP needs to make
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TABLE 1: IMPORTANT NOTATIONS

D set of datacenters (DC)
R set of data locations
K set of VM types

ar(t) amount of the data generated from datasource (DS) r at t
Ar

max max amount of data generated from DS r

λd
r(t) amount of the data allocated to d from DS r at t

Nk,max
d max number of VMs of type-k in DC d

mk
d(t) number of type-k VM provisioned for Map in DC d at t

nk
d(t) number of type-k VM provisioned for Reduce in DC d at t

pkd(t) price of type-k VM in DC d at t
sd price of storage in datacenter d
bdr price of bandwidth between DS r and DC d

Ud
r uplink bandwidth between DS r and DC d

Ld
r the latency between DS r and DC d

vk data processing rate of type-k VM
ϵd preset constant for controlling queueing delay in Md(t)
σd preset constant for controlling queueing delay in Rd(t)
l max delay of data process

Md(t) unprocessed data at Map phase in DC d at t
Rd(t) unprocessed data at Reduce phase in DC d at t
Yd(t) virtual queue associate with Md(t) to guarantee its delay
Zd(t) virtual queue associate with Rd(t) to guarantee its delay

the decision about moving how much data from data location r
to datacenter d, renting how many resources to support its data
processing from each datacenter, and selecting which datacenter
for Reduce operation. Our goal therefore is to minimize the overall
cost of big data analysis in clouds while guaranteeing the delay
in the long run. For ease of reference, important notations are
summarized in Table 1.

3.3 Problem Formulation
In this subsection, based on the system model aforementioned, we
formulate the problem mathematically as follows.

Decision variables. The three decisions to be made are:
(1) Data allocation variable: λd

r(t), denotes the amount of
the data allocated to d from data location r at t, which means
that the data generated from each location can be moved to any
datacenter for analysis. Let ar(t) , Ar

max, Ud
r be the amount of

data generated from the r-th region at time slot t, the max volume
of data generated in location r and the upload capacity between
region r and datacenter d, respectively. Hence, we have:

ar(t) ≤ Ar
max, ∀r ∈ R, t ∈ [1, T ], (1)

ar(t) =
∑
d∈D

λd
r(t), ∀r ∈ R, t ∈ [1, T ], (2)

0 ≤ λd
r(t) ≤ Ud

r , ∀r ∈ R, d ∈ D, t ∈ [1, T ], (3)

where Eq.(2) ensures that the sum of data allocated to each
datacenter at one time slot is equal to the total amount data
generated at that time slot. Eq.(3) ensures that the total amount
of data uploaded via link < r, d > should not exceed the
upload capacity of link < r, d >. The variable set is denoted
as λ(t) = {λd

r(t), ∀r ∈ R, ∀d ∈ D}.
(2) VM provisioning variable: mk

d(t), n
k
d(t), ∀d ∈ D, ∀k ∈

K, denote the number of type-k VM rented from datacenter d
at time slot t for Map and Reduce operation, respectively. They
can be scaled up and down over time slots. Since the computation
resource in a datacenter is limited, we let Nk,max

d be the max
number of type-k VM in datacenter d. Therefore, we have:

0 ≤ nk
d(t) +mk

d(t) ≤ Nk,max
d , ∀d, ∀k, t ∈ [1, T ], (4)

which means that the amount of resource employed by Map and
Reduce operation cannot surpass the available resources in a spe-
cific datacenter. We denote m(t) = {mk

d(t),∀d ∈ D,∀k ∈ K}.
n(t) is defined similarly.

(3) Reducer selection variable: xd(t),∀d ∈ D. Since all the
intermediate data from mappers will be aggregated into only one
datacenter for Reduce operation at time slot t, xd(t) needs to be
defined as a binary variable. It indicates whether datacenter d is
the target datacenter to execute Reduce operation at time slot t
(xd(t) = 1) or not (xd(t) = 0). Formally, we have:∑

d∈D
xd(t) = 1, xd(t) ∈ {0, 1},∀t ∈ [1, T ], (5)

where
∑
d∈D

xd(t) = 1 ensures that there is only one datacen-

ter running Reducer at time slot t. We difined set x(t) =
{xd(t),∀d ∈ D}.

Cost. The goal of the DSP is to minimize the overall cost in-
curred in the system by optimizing the amount of data allocated to
each datacenter, the number of resources needed, and the suitable
datacenter for Reduce operation. Specifically, the following cost
components are considered in this paper: bandwidth cost, storage
cost, latency cost, computing cost and migration cost.

(1) Bandwidth cost, storage cost and the latency cost. Usually,
the bandwidth price is varied over different VPN links because
they often belong to different Internet service providers. Let bdr be
the price of transferring 1 GB data between data location r ∈ R
and datacenter d ∈ D, then the bandwidth cost of moving data
into cloud at t is:

∑
d∈D

∑
r∈R

λd
r(t) · bdr . For storage cost, which is

an important factor to be considered in choosing the datacenter for
data analysis due to large amount of data for big data application.
Let sd, Wd(t) represent the price of data storing and the amount
of unprocessed data in datacenter d ∈ D respectively , then
the storage cost at t is:

∑
d∈D

∑
r∈R

λd
r(t) · sd +

∑
d∈D

Wd(t) · sd.

In particular, it can be obtained that Wd(t) = Md(t) + Rd(t)
from (17) and (19). The latency incurred by uploading data to
the datacenters is also an important performance measure, which
is to be minimized in the data moving process. Let Ld

r denote
the latency between the data location r ∈ R and the datacenter
d ∈ D. These delays are mainly determined by the respective
geographic distance and bandwidth of links. As suggested in [7],
we convert the latency into monetary cost. Therefore, we can
define the latency cost as:

∑
d∈D

∑
r∈R

α · λd
r(t) · Ld

r , where α is a

weight converting latency into a monetary cost. Therefore, the
total cost of this part can be defined as:

Csbl(λ(t)) =
∑
d∈D

∑
r∈R

λd
r(t) · (sd + bdr + αLd

r)+
∑
d∈D

Wd(t)·sd.

(6)
(2) Computing cost. Due to the variance of VM price over time

slots, the number of the VMs rented from datacenter has important
impact on the overall cost of the system as well as QoS of the big
data application. Let pkd(t) be the price of type-k VM in datacenter
d at time slot t, which is diverse in both spatial and time space.
Then the computing cost can be calculated as follows,

Cp (m(t),n(t))
∆
=

∑
d∈D

∑
k∈K

{
mk

d(t) + nk
d(t)

}
· pkd(t). (7)

(3) Migration cost. In many applications, analyzing data not
only uses the data at current time but also needs the historical
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data (e.g., incremental analytics re-use the previous computation
results rather than recompute them when new data arrives [9]).
Therefore, the intermediate data including the historical ones
generated by Map operations in other geo-distributed datacenters
will be transferred to the selected reducer, incurring a migration
cost. Without lost of generality, assuming the historical data from
µ previous time slots will be reused, we denote the amount
of historical data to be transferred from datacenter i at t is

hi(t) =
t−1∑

τ=t−µ
βτfi(τ), where fi(τ) represents the amount of

intermediate data generated in datacenter i at time τ . fi(τ) can
be estimated using the data processed at Map phase at time τ
since there is a ratio (e.g., γ) between the raw data size and the
intermediate data size for a specific application [30]. βτ ∈ [0, 1]
indicates the ratio of historical data to be transferred. In particular,
it satisfies βa < βb if a < b, which means the importance of
the historical data declines as time goes by. The weight can be
determined by the specific application. Furthermore, we denote
Φid(·) as a non-decreasing migration cost function (including
bandwidth cost and latency cost) for moving data from datacenter
i to datacenter d, which can be defined based on the bandwidth
prices and the geographic distances among datacenters. Also, it
satisfies Φid(·) = 0 when i = d because it is unnecessary to
transfer data within the same datacenter. Hence, the total migration
cost incurred in the system at time slot t is:

Cmgr(m(t),x(t))
∆
=

∑
d∈D

{
xd(t)

∑
i∈D

Φid(hi(t))

}
. (8)

Based on above cost formulations, the overall cost incurred in
the system at time slot t can be calculated as:

C(m(t),n(t), λ(t),x(t)) = Cp(m(t),n(t)) + Csbl(λ(t))
+Cmgr(m(t),x(t))

.

(9)
Objective. The problem of minimizing the time-average cost

of data moving and processing within a long-term period [0, T ]
can be formulated as:

P1. min : C (10)

s.t. : 0 ≤ λd
r(t) ≤ Ud

r , ∀r,∀d, t ∈ [1, T ]; (11)

ar(t) =
∑
d∈D

λd
r(t),∀r, t ∈ [1, T ]; (12)

0 ≤ nk
d(t) +mk

d(t) ≤ Nk,max
d , ∀d, ∀k, t ∈ [1, T ]; (13)

mk
d(t) ∈ Z+ ∪ 0, nk

d(t) ∈ Z+ ∪ 0, ∀d,∀k, t ∈ [1, T ];
(14)∑

d∈D
xd(t) = 1, xd(t) ∈ {0, 1},∀t ∈ [1, T ]; (15)

λd ≤ md, F d ≤ nd, ∀d; (16)

where C
∆
= lim

T→∞
1
T

T−1∑
t=1

C(m(t),n(t), λ(t),x(t)). λd is the

time-averaged data size allocated to datacenter d and md is time-
averaged VM resource provisioned for Map phase at datdacenter
d. F d represents the average intermediate data size input to
Reduce phase and nd is time-averaged VM resource provisioned
for Reduce phase at datdacenter d. Thus, the constraint (16)
guarantees the stability of Map workload queue Md and Reduce

workload queue Rd, by ensuring that the arrival data rate is no
higher than the average process rate.

As the data generation is stochastic, x is an integer constrained
variable and hi(t) is a nonlinear function, it can be easily verified
that the problem is a constrained stochastic integer nonlinear
optimization problem and our objective is to minimize the long-
term average cost by optimizing the amount of data allocated to
each datacenter, the number of VMs rented from the datacenters
as well as selecting the optimal reducer. However, it is often
infeasible to solve the problem efficiently in a centralized solution
when T is large. To deal with this complex problem, we employ
a recent developed optimization technique-Lyapnov optimization
[31] as shown in the section 4.

4 ONLINE ALGORITHM DESIGN

An outstanding feature of Lyapunov optimization is that it does not
need future information about workload. By greedily minimizing
the drift-plus-penalty at each time slot, it can solve the long-term
optimization problem efficiently with a solution that can be proved
to arbitrarily close to the optimum. Next, we first transform the
problem P1 to an optimization problem of minimizing the Lya-
punov drift-plus-penalty term and then design the corresponding
online algorithm.

4.1 Problem Transformation
Queues Design. As the incremental data processing style is
considered in the paper, we model the data processing evolution
as a queue model. In each datacenter, to describe the two data
processing procedures (Map and Reduce) running in the system,
we design the corresponding queues as follows.

(1) For the Map phase, let Md(t) be the amount of unpro-
cessed data in Map queue in datacenter d at time slot t. The queue
is initialized as Md(0) = 0, and then the update of the queue
Md(t) can be described as follows:

Md(t+ 1) = max[Md(t)−
∑
k∈K

mk
d(t) · vk, 0] +

∑
r∈R

λd
r(t).

(17)
The above queue evolution implies that the amount of processed
data and newly-arrived data at Map phase are

∑
k∈K

mk
d(t) · vk and∑

r∈R
λd
r(t), respectively.

To guarantee that the worst-case queuing delay in queue
Md(t) , ∀d ∈ D, is bounded by the max Map workload delay
lm, we design a related virtual queue Yd(t) according to the ϵ-
persistent service technique for delay bounding in [32]. Similarly,
the backlog of virtual queue Yd(t) is initialized as Yd(0) = 0,
then it is updated as follows:

Yd(t+ 1) = max[Yd(t) + 1Md(t)>0(ϵd −
∑
k∈K

mk
d(t) · vk)

−1Md(t)=0

∑
k∈K

Nk,max
d · vk, 0],

(18)
where the indicator function 1Md(t)>0 equals to 1 when Md(t) >
0, and 0 otherwise. Similarly, 1Md(t)=0 equals to 1 when Md(t) =
0, and 0 otherwise. ϵd is a preset constant that can be used to
control the bound of delay for Map queue. It can be proved that
we are able to guarantee all data being processed with delays at
most lm time slots if the the length of Md(t) and Yd(t) over
time slots can be guaranteed. It is also proved that l can be set
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as lm = [(Mmax
d + Y max

d )/ϵd], where Mmax
d and Y max

d are the
bound of queues Md(t) and Yd(t) respectively. Details can be
seen in Theorem 5.3.

(2) For the Reduce phase, similar to the Map phase, the
corresponding queue in datacenter d is denoted as Rd(t) with
Rd(0) = 0, and the updating of this queue can be calculated as
follows.

Rd(t+1) = max[Rd(t)−
∑
k∈K

nk
d(t)vk, 0]+xd(t)·Fd(t), (19)

where Fd(t)=
t−1∑

τ=t−µ
(βτ

∑
i∈D

fi(τ)) is the amount of intermedi-

ate data from other datacenters, including the historical data of
past µ time slots. From the above equations, we can know that it
admit only part of the data generated within the same time slot
is processed. So do moving its intermediate data to a reducer. In
reality, the system will wait for all the intermediate data to produce
the final result.

Accordingly, its virtual queue can be defined as:

Zd(t+ 1) = max[Zd(t) + 1Rd(t)>0(σd −
∑
k∈K

nk
d(t) · vk)

−1Rd(t)=0

∑
k∈K

Nk,max
d · vk, 0].

(20)
In theory, the worst case delay of queue Rd(t) can also be

guaranteed as shown in Theorem 5.3.
Problem Transformation. Let M(t) = [Md(t)], Y(t) =

[Yd(t)], R(t) = [Rd(t)] and Z(t) = [Zd(t)], ∀d ∈ D denote
the matrix of Map queues and Reduce queues respectively. Then,
to measure the congestion of data processing procedure, we use
Θ(t) = [M(t);Y(t);R(t);Z(t)] to denote the combined matrix
of Map queues and Reduce queues. Thus, the Lyapunov functions
can be defined as follows:

L(Θ(t)) =
1

2

∑
d∈D

{Md(t)
2
+ Yd(t)

2
+Rd(t)

2
+ Zd(t)

2},

(21)
where L(Θ(t)) measures the queue backlogs in the system.
Furthermore, to keep the stability of above queues by persistently
pushing the Lyapunov function to a low congestion state, the one-
slot Lyapunov drift is introduced as:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}. (22)

According to the Lyapunov optimization framework, the drift-
plus-penalty, which balances the queue stability and system cost,
can be obtained by adding the the cost incurred by the system to
the above Lyapunov drift, namely,

∆(Θ(t)) + V · E{C(m(t),n(t), λ(t),x(t))|Θ(t)}, (23)

where V is a non-negative weight that affects the balance between
the cost optimization and drift minimization. Intuitively, a larger V
will causes a smaller cost, and vice versa. Therefore, the problem
P1 can be transformed into problem P2 as following:

P2. min : (23) (24)

s.t. : (11)(12)(13)(14)(15). (25)

To solve problem P2, rather than directly minimizing the drift-
plus-penalty expression (23), we seek to minimize the upper bound
for it, without undermining the optimality and performance of
the algorithm according to [31]. The key point of the problem

is therefore to find an upper bound on the expression(23). It can
be proved that, under any decision strategy, the expression (23)
satisfies:

∆(Θ(t)) + V · E{C(m(t),n(t), λ(t),x(t))|Θ(t)}
≤ B

+E
{ ∑

d∈D

∑
k∈K

mk
d(t) ·

(
V pkd(t)−Md(t)vk − Yd(t)vk

)
|Θ(t)

}
+E

{ ∑
d∈D

∑
k∈K

nk
d(t) ·

(
V pkd(t)−Rd(t)vk − Zd(t)vk

)
|Θ(t)

}
+E

{ ∑
d∈D

∑
r∈R

λr
d(t) ·

(
V sd + V bdr + V αLd

r +Md(t)
)
|Θ(t)

}
+E

{ ∑
d∈D

xd(t)

{
V

∑
i∈D

Φid(hi(t))+Rd

∑
i∈D

hi(t)

}
|Θ(t)

}
,

(26)
where B = 2

∑
d∈D

(
∑
k∈K

Nk,max
d vk)

2
+ 1

2

∑
d∈D

∑
r∈R

λmax
r +

1
2

∑
d∈D

((ϵd)
2
+ (σd)

2
) + 1

2D(µβmax

∑
d∈D

∑
k∈K

Nk,max
d vk)

2. De-

tailed proof please refer to [31].

4.2 Online Control Algorithm Design
Fortunately, by investigating the R.H.S (Right Hand Side) of (26),
we can equivalently decouple the problem into three subproblems:
1) data allocation, 2) resource provisioning and (3) reducer selec-
tion. The details of the solution for the above three subproblems
are given as follows.

1) Data Allocation: On the R.H.S of (26), a carefully obser-
vation on the relationship among different variables reveals that
the data allocation problem can be written as follows:

E{
∑
d∈D

∑
r∈R

λd
r(t) ·(V sd+V bdr+V αLd

r+Md(t))|Θ(t)}. (27)

Furthermore, since the data generated at each datasource are
independent, the centralized optimization can be implemented
independently and distributedly at each datasource. Considering
the data allocation in datasource r at time t, we should solve the
following problem.

min
∑
d∈D

λd
r(t)[V sd + V bdr + V αLd

r +Md(t)]

s.t.(11)(12)
. (28)

In fact, problem (28) can be regarded as a generalized min-
weight problem in which the amount of data from datasource r
moved to datacenter d (λd

r(t)) is weighted by the queue backlog
Md(t) , bandwidth price bd, storage price sd and the latency
cost L(r, d). Intuitively, the data inclines to be allocated to the
datacenter with the minimal value of weight [V sd + V bdr +
V αLd

r+Md(t)]. Note the allocation variable λd
r(t) is constrained

by the uplink capacity (i.e., 0 ≤ λd
r(t) ≤ Ud

r ), we can allocate the
data to the datacenters within their uplink capacities according
to their weight order. The detailed algorithm for solving this
problem can be seen in Algorithm 1. Obviously, the complexity of
algorithm 1 is with O(D × R), thus the averaged complexity of
each element is with O(1). Obviously, the strategy exhibits that
all the left data can be allocated if the data to be moved (i.e.,
aleft) is less than the corresponding uplink capacity. Otherwise,
the amount of data equals to the uplink capacity (i.e.,Ud

r ) will
be allocated. Repeating the procedures above, all the data can be
allocated until there is no left data.
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Algorithm 1: The Algorithm of Solving λd
r(t)

1 Input: α, V, Ld
r ,Md(t), ar(t), sd, bdr , Ud

r (∀d ∈ D,∀r ∈ R)
2 Output: λd

r(t)
3 foreach r ∈ R do
4 Sort Qr with ascending order where

Qd
r = V sd + V bdr + V αLd

r +Md(t) ;
5 Initialize aleft = ar(t);
6 while Qr ̸= ∅ ∩ aleft > 0 do
7 d = head(Qr);
8 if Ud

r ≥ aleft then
9 λd

r(t) = aleft;

10 else
11 λd

r(t) = Ud
r ;

12 aleft = aleft − λd
r(t);

2) Resource Provisioning: The part related to variable mk
d(t)

and nk
d(t) in the R.H.S of (26) can be regarded as resource

provisioning problem if we remove the constant term. Therefore,
the optimal VM provisioning strategy can be obtained by solving
the following problem:

minE
{ ∑

d∈D

∑
k∈K

mk
d(t)

(
V pkd(t)−Md(t)vk − Yd(t)vk

)
|Θ(t)

}
+E

{ ∑
d∈D

∑
k∈K

nk
d(t)

(
V pkd(t)−Rd(t)vk − Zd(t)vk

)
|Θ(t)

}
s.t.(13)(14)

.

(29)
As the resource provisionings in each datacenter are inde-

pendent, similar to data allocation, problem (29) also can be
solved independently and distributedly within each datacenter.
Considering the resource problem within datacenter d, we can
rewrite it as (30).

minE
{ ∑

k∈K
mk

d(t)
(
V pkd(t)−Md(t)vk − Yd(t)vk

)
|Θ(t)

}
+E

{ ∑
k∈K

nk
d(t)

(
V pkd(t)−Rd(t)vk − Zd(t)vk

)
|Θ(t)

}
s.t.(13)(14)

.

(30)
Using the basic knowledge of linear programming, the so-

lution to the above linear problem can be derived as shown in
Eq.(31)(refer to next page), which indicates that a type-k VM is
preferred to be rented in t when its price pkd(t) is small, and the
VM whose capacity, vk, is large is more likely to be rented too.

3) Reducer Selection: The part related to variable xd(t) in
the R.H.S of (26) is therefore considered as the reducer selection
problem. It can be written as follows.

minE{
∑
d∈D

xd(t){V
∑
i∈D

Φid(hi(t))+Rd

∑
i∈D

hi(t)}|Θ(t)}

s.t.(15)
.

(32)

Note that hi(t) =
t−1∑

τ=t−µ
βτfi(τ) is known since fi(τ), τ ∈

[t−µ, t−1] is known at time slot t, it also becomes a min-weight
problem. Hence, it can be easily derived that:

xd(t) =

{
1, d =d∗

0, else
, (33)

Algorithm 2: Procedures of the Algorithm MiniBDP
1 Input:
2 Md(t), Yd(t), Rd(t), Zd(t), ar(t),vk, sd, b

d
r , L

d
r , µ, α, β, γ

Nk,max
d , Ar

max, p
k
d(t), V, α (∀d ∈ D, ∀r ∈ R, ∀k ∈ K)

3 Output:
4 mk

d(t), n
k
d(t), λ

d
r(t), xd(t) (∀d ∈ D,∀r ∈ R, ∀k ∈ K)

5 Resource provisioning:
6 foreach datacenter d ∈ D do
7 Get the VM provisioning strategies for Map (mk

d(t)) and
Reduce (nk

d(t)) by solving the problem (29) using (31);
8 Data Allocation:
9 foreach r ∈ R do

10 Get the data allocation strategy λd
r(t) by solving the

problem (28) using algorithm 1;

11 Reducer Selection:
12 Select the reducer to which aggregates the intermediate data

from Map phase by using (33) (i.e., xd(t) is obtained).
13 Update the queues Md(t), Yd(t), Rd(t), Zd(t) according to

queue dynamic equation (17),(18),(19) and (20) respectively.

where d∗ = argmind{V
∑
i∈D

Φid(hi(t))+Rd

∑
i∈D

hi(t)}.

So far, the three complex problems of data allocation, resource
provisioning and reducer selection at time slot t have been solved
independently and efficiently. The simple strategies facilitate the
online deployment of the algorithm in the real-world systems. Em-
ploying the queue updating manner (17),(18),(19) and (20) along
time slots, we can design an online algorithm called MiniBDP for
solving the problems in the long run. The details of the online
algorithm are presented in Algorithm 2.

5 PERFORMANCE ANALYSIS

Next, to show its superiority, the performance of the Algorithm ??
in terms of cost optimality, queueing delay bound, and the worst
delay of data processing is theoretically analyzed.

Theorem 5.1. (Cost Optimality) Suppose the data generation rate
ar(t), ∀r ∈ R is identical an independently distributed over
time slots, for any control parameter V > 0, the algorithm
can achieve a time average cost related with the optimal one
as follows.

lim sup
T→∞

1

T
·
T−1∑
t=0

E{C(t)} ≤ C∗ +
B

V
, (34)

where C∗ is the infimum of the time average cost when choos-
ing the optimal control action, representing the theoretically
optimal solution, B is the same as defined in (26).

Proof: Please see the Appendix A in the supplemental file.
This theorem exhibits that the gap between the time average

cost obtained by the algorithm proposed in this paper and the
optimal cost obtained offline is with O(1/V ). In particular, by
choosing the control variable V , the time-average cost C is
arbitrarily close to the optimal cost C∗.

Theorem 5.2. (Queues Bound) Assume ϵd satisfies ϵd + σd <∑
k∈K

Nk,max
d vk. Let Mmax

d , Y max
d , Rmax

d and Zmax
d be the

upper bound of queue Md(t), Yd(t), Rd(t) and Zd(t) respec-
tively, we have:

Y max
d = Zmax

d = 2
V pmax

d

vmin
+ ϵd + σd, (35)
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(
mk

d(t), n
k
d(t)

)
=


(0, 0) , ifMd(t) + Yd(t) ≤

V pk
d(t)
vk

∩Rd(t) + Zd(t) ≤
V pk

d(t)
vk(

Nk,max
d , 0

)
, ifRd(t) + Zd(t) ≤ Md(t) + Yd(t) ∩Md(t) + Yd(t) ≥

V pk
d(t)
vk(

0, Nk,max
d

)
, ifRd(t) + Zd(t) > Md(t) + Yd(t) ∩Rd(t) + Zd(t) ≥

V pk
d(t)
vk

(31)
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Fig. 2: The data size generation pattern of Worldcup98 web site
between June 21-June 27, 1998

and
Mmax

d = Rmax
d = 2

V pmax
d

vmin
+

∑
r∈R

Amax
r

+µβmax

∑
d∈D

∑
k∈K

Nk,max
d vk,

(36)

where pmax
d is the max price for each type of VM over time

slots, vmin is the minimal capacity among all kinds of VMs,
and βmax is the max value of βτ .

Proof: Please see the Appendix B in the supplemental file.
This theorem shows that the queue backlog is with O(V ). It

means that, to keep the queue backlog stable, we should choose
a small V . Notice that a small V will cause a larger cost as
shown in (34), the time-averaged cost and system stability has an
[O(1/V ),O(V )] trade-off. In reality, given the acceptable cost
we can choose a suitable V to maximize the system stability, and
vice versa.

Theorem 5.3. (Worst Case Delay) Assume that the system runs
in the First-in-First-Out manner, the worst delay of the data
processing in queue d is bounded by the l defined below:

l = [(Mmax
d + Y max

d )/ϵd + (Rmax
d + Zmax

d )/σd], (37)

where [x] denotes the minimal integer among those greater or
equal to x and Mmax

d , Y max
d , Rmax

d , Zmax
d are defined in (35)

and (36).

Proof: Please see the Appendix C in the supplemental file.
Theorem 5.3 implies that the data arriving at any time slot t

can be processed within l time slots using MapReduce framework,
which demonstrate our algorithm is able to guarantee the QoS
(Quality of Service) for DSP. In addition, given the system
parameters, by choosing suitable ϵd and σd, the QoS for the DSP
can be tuned. Also, with different setting of ϵd and σd for d ∈ D,
we can achieve heterogeneous QoS for different datacenters.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of MiniBDP using
a discrete-event simulator and the real-world traces dataset from
world cup 1998 website.

TABLE 2: Average Electricity Price in Different Datacenters

City Cities in USA Amsterdam Dublin Frankfurt London
Pirce ($) 11 28.36 27.81 21.99 28.89

6.1 Dataset Description
As analyzing the huge amount of record data of large-web site
(e.g., Youtube, Facebook etc.) is increasingly important for its
market decisions, we take user log analytics as an example in the
experiment. Unfortunately, the trace logs of the well-known large-
scale web sites (e.g., Facebook, Linkedin) are not open access, we
use the WorldCup98 web traces dataset [33] instead to evaluate our
algorithm. We believe it does not affect the evaluation result due
to its characteristics of dynamism and inscrutability. This dataset
records the information of all the requests in the 1998 World Cup
Web site between April 30, 1998 and July 26, 1998, which is
from 30 servers distributed across four locations used in the web
site system (i.e., servers in Paris, France; 10 servers in Herndon,
Virginia; 10 servers in Plano, Texas; and 6 servers in Santa Clara,
California). Each trace record includes detailed information such
as the request time, request client, request object and the server
that handled the request etc. We extract one week’s data between
June 21 to June 27, 1998 from it for experiment. In particular,
to simulate the large-scale web site, we augment the amount of
original request with 1000x. By aggregating the requests every 30
minutes and setting each record contents to 100bytes, we get the
corresponding data volume shown in Fig.2.

6.2 Experiment Setting
In the experiment, we simulate a DSP with 4 datasources which
correspond to the servers in four geographic locations (i.e., Santa
Clara, Plano, Herndon and Paris) that serves for the WorldCup
1998 web site and a cloud with 12 datacenters in 12 locations cor-
responding to those of Amazon EC2 in Europe and America (i.e.,
Ashburn, Dallas, Los Angeles, Miami, Newark, Palo Alto, Seattle,
Saint. Louis, Amsterdam, Dublin, Frankfurt and London) [34].
Five types of VM instances (i.e., c3.large, c3.xlarge, c3.2xlarge,
c3.4xlarge, c3.8xlarge ) provided by EC2 are considered in this
paper. Geographic distances between datacenters and datasources
are obtained by the online tool in [35], which can be seen in
Fig.4(b).

In this paragraph, some different settings are suggested to be
itemized one by one. Link delays are set based on Round Trip
Time (RTT) among the datasources and data centers, according to
their geographic distance (e.g., RTT (ms)=0.02×Distance(km)+5)
[36]. The prices of the VMs instance (pkd(t)) and storage (sd(t))
follow the prices of Amazon EC2 Spot Instance and S3 from
the web sites respectively [37], [38]. To stimulate consumption,
we assume that the more VMs a customer buys from the CSPs,
the cheaper the unit price is. To simulate the VM price change
over different datacenters, we set the average electricity price
of the city the datacenter located as the price factor. Table 1
shows the electricity price in each city, where ‘cities in USA’
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Fig. 4: Statistic metric of decision λ and x

include Ashburn, Dallas, Los Angeles, Miami, Newark, Palo Alto,
Seattle, Saint. Louis. As suggested by [7], the unit charge of
uploading data to datacenters via link < r, d > is within [0.10,
0.25]$/GB and the migration cost function is set as a linear
function on the amount of data migrated, with a price of inter-
datacenter bandwidth in the range of [0.10, 0.25]$/GB. We set
the uplink bandwidth capacity Ud

r is with uniform distribution
within [30, 50]M/s. For the involvement of historical data, we
reuse the past 2 time slots’ intermediate data at current time
slot (i.e., βt−1 > βt−2 > βt−3 = ... = 0). Unless indicated
otherwise, the default experiment setting is adopted as follows:
V = 60, γ = 0.5, α = 0.01, ϵd = 1, σd = γ × ϵd.

Performance Metrics: In the experiments, two metrics cost
and queue size are mainly considered. Cost measures the economic
aspects of the system while queue size describes the stability of
the system. To facilitate the comparison, Cost Ratio (CR), which
measures the cost proportion of a single case among the total
cost obtained by all cases, is used in the experiments. It can be

calculated by using CRcur = Ccur/
N∑
i=1

Ci, where Ci denotes

the cost incurred by the i-th case and N is the case count..

6.3 Performance under Fixed Setting

In this section, we conducted a group of experiments under fixed
parameters (the values set for these parameters can be seen in
subsection 6.2) to evaluate the effectiveness of MiniBDP. Fig.3(a)
presents the total cost of the system incurred over time slots.
It can be observed that the cost fluctuates synchronously with
the data generation pattern as shown in Fig.2, which means that
MiniBDP is able to adaptively lease and adjust VMs resources to
meet dynamic data processing demands even in a flash-crowded
style without forecasting the future workload information. This

is substantially different from those existing methods that need
prediction phase in algorithm design. Fig.3(b) illustrates the CR
comparisons among different VM types, from which we find that
the larger the VM capacity is, the more the number of VM with
the corresponding type will be rented. This is probably because
we design the pricing strategy with the principle that the more
capacity of the VM is, the lower the unit price of the VM is. Thus,
the algorithm prefers to rent the VM instance with large capacity
(e.g.,c3.8xlarge ) to process the data. The cost components (i.e.,
processing cost, storage cost, bandwidth cost, latency cost, and
migration cost) at each time slot are also compared in Fig.3(c),
which shows that processing cost occupies the major part of the
total cost and the other types of cost are relatively low. This reveals
that the algorithm is able to select the suitable datacenter for data
processing while reducing the extra cost.

Furthermore, to exploit the inner property of the algorithm,
details of decision on data allocation and reducer selection are
presented. Fig.4(a) shows the data allocation matrix map from
datasources to datacenters and Fig.4(b) illustrates the correspond-
ing geographic distance map. As can be observed, the algorithm
shows data locality property since data are preferred to be moved
to the near datacenter for processing. The remoter the datacenter
is, the less the data are moved to. In particular, there is hardly
any data should be moved from Paris to the datacenters in North
America (i.e., Ashburn, Dallas, Los Angeles, Miami, Newark,
Palo Alto, Seattle, Saint. Louis) even the price in the Europe is
significantly higher than that in the North America. This means
that our algorithm is capable of avoiding long latency cost to
guarantee the data processing delay. Fig.4(c) depicts the times
of reducer selection of each datacenter, which also shows that
majority of the Reduce operations are done within the datacenters
located in the North America. With this strategy, the migration
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Fig. 5: Impact of important parameters on cost and queue size
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Fig. 6: Comparison with other strategies

cost is reduced since migrating the data from 4 datacenters located
in the Europe to 8 datacenters in the North America is more
economic than in the opposite route.

6.4 Impact of Parameters

In this section, we investigate the impact of important parameters
(i.e., V, γ, ϵ, α) on the algorithm.

(1) As presented previously, V is a very important parameter
to the model, which controls the trade-off between cost and queue
size. Fig.5(a) depicts the cost and workload queue size (i.e.,
Md(t) + Rd(t)) curve with the variation of V , from which we
can observe that the time-averaged cost incurred by the system
declines with the increase of V and converges to a minimum
value with the increase of V . This provides a guidance for us
to reduce the total cost when implementing a real-world system.
However, the workload queue size increases with the increase of
V . It may lead to the increase of data processing latency since the
longer the queue is, the more time it needs to wait for processing.
Furthermore, this experimental result is also consistent with the
theoretical analysis result of the algorithm in Theorem 5.1 and
Theorem 5.2. With this property, given a cost budget, we can
choose a suitable V for the system.

(2) The ratio between intermediate data size produced at Map
phase and the raw data size imported into Map (i.e., γ) is studied.
As can be seen from Fig. 5(b), both cost and queue size grow
with the increase of γ. Intuitively, the larger the γ is, the more
the intermediate data will be produced. Hence, more resources are
needed to process the intermediate data as well more cost will
incur in data transportation and storage. When γ increases to a
large degree, the cost improves slightly. This may due to the fact
that finite amount of VM resources in each datacenter are set, thus
all of the VMs will be rented when the γ increases to a specific
degree, resulting in a slight change of cost.

(3) To validate the Theorem 5.3, we conduct experiments with
the variation of ϵ and σ that can be used to control the worst case
queue delay. For simplicity, we set the same ϵ and σ for all the
datacenters (i.e., ϵ1 = ... = ϵD = ϵ, σ1 = ... = σD = σ)
and σ = γ × ϵ. Fig.5(c) illustrates the experimental results, in
which we can observe that the cost increases while the queue size
decreases with the increase of ϵ. This can be explained by the fact
that, with the growth of ϵ and σ, the worst delay l declines (refer
to (37)). Therefore, it needs more VMs to process the data within
a short delay, and thus resulting in a cost increase. Similarly,
the queue length needs to be shortened to guarantee the data
processing delay when ϵ and σ increase. Hence, from this point of
view, the theoretical result of Theorem 5.3 is also validated.

(4) The impact of α is also studied by comparing the cost com-
ponents fluctuation with the change of α. As exhibited in Fig.6(a),
the cost of bandwidth and migration cost keep a low level, which
means MiniBDP is able to avoid unnecessary data moving across
datacenters. The graph also shows the costs of storage, bandwidth
and migration vary slightly, while the processing cost decreases
and the latency cost increases obviously with the increase of α.
This may because the costs of storage, bandwidth and migration
are mainly determined by the amount of data, and processing cost
decreases since latency cost increases with α under a fixed V .
Therefore, for a larger latency factor α, we should set a smaller V
to guarantee the processing delay.

6.5 Comparisons

In this section, we compare MiniBDP with other alternatives, each
of which is the combination of a data allocation strategy, VM
provisioning strategy and reducer selection strategy.

For the data allocation policies, three representative strate-
gies are considered. 1) Proximity-aware Data Allocation (PDA),
in which dynamically generated data from each datasource are
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always allocated to the geographically nearest datacenter. It
produces minimal latency and is suitable for the scenario that
latency delay is prior to other factors. 2) Load-balancing Data
Allocation (LBDA), in which the data from each datasource are
always dispatched to the datacenter with the lowest Map workload.
Obviously, this strategy is capable of keeping workload balanced
among datacenters. 3) Minimal Price Data Allocation (MPDA),
in which the data from each datasource are allocated to the most
economic datacenter, so as to achieve the lowest cost.

For the VM provisioning policies, two typical strategies are
considered. 1) Heuristic VM Provisioning (HVP), in which the
VMs needed at current time are estimated based on the workload
at previous time. To cope with the fluctuation of workload, extra
50 percent VMs are added to those need at previous time to form
the final decision. 2) Stable VM Provisioning (SVP), in which
the VM count of each type in each datacenter is set to a fixed
value. For ease of comparison, we configure the fixed value as the
average VM of each type achieved by MiniBDP. Thus, the amount
of VMs consumed by SVP is equal to that of MiniBDP within time
period T .

For the reducer selection strategies, we consider two approach-
es as follows. 1) Minimal Migration Cost Reducer Selection
(MCRS), this takes the migration cost priority to select the reducer.
2) Load Balance Reducer Selection (LBRS), which selects the
datacenter with the smallest workload of Reduce as the reducer.

Therefore, combining with the aforementioned strategies,
we have following approaches: MiniBDP, SVP+PDA+MCRS,
SVP+PDA+LBRS, SVP+LBDA+MCRS, SVP+LBDA+LBRS,
SVP+MPDA+MCRS, SVP+MPDA+LBRS, HVP+PDA+MCRS,
HVP+PDA+LBRS, HVP+LBDA+MCRS, HVP+LBDA+LBRS,
HVP+MPDA+MCRS, HVP+MPDA+LBRS.

Fig.6(b) presents comparison of the time-averaged cost in-
curred by different strategies. From this graph, we have following
observations: (1) Our algorithm MiniBDP outperforms the major-
ity of others except SVP+PDA+MCRS and SVP+PDA+LBRS in
terms of cost. This is because these two strategies only move the
data to the geographically nearest datacenter, resulting in lowest
bandwidth cost and latency cost. Notwithstanding, this strategy is
not really effective since their corresponding queue size increases
with the increase of time slots (as shown in Fig.6(c)), which means
that the system can not keep stable in the long run. As analyzed
in section 6.3, MiniBDP also has the property of data locality.
Hence, compared with these two strategies, MiniBDP makes an
better trade-off between data locality and system stability. (2)
HVP+LBDA+MCRS and HVP+LBDA+LBRS incur the highest
cost. We believe it may due to their load-balanced data allocation
strategy in which moving large amount of data from USA to Paris
without considering the high bandwidth cost and latency cost on
cross-ocean links. From Fig.6(c), it can be seen that only MiniBDP
is stable in queue size even after running a long time. Whereas,
the queue size of other strategies exhibit to be increasing with the
time axis, which will certainly lead to the fail of system. Note
that SVP provisions the same number of VM with MiniBDP while
causing higher cost and system instability, it can be concluded that
MiniBDP is capable of optimizing the three decisions to reduce the
total cost. As mentioned previously, the VM of HVP is provisioned
by adding extra 50 percent VMs to those needed at previous time
slots. However, those using this VM provisioning strategy in fact
do not work well since the queue size of the system is not stable.

Combining Fig.6(b) and Fig.6(c), it seems some sim-
ple strategies (e.g., SVP+LBDA+LBRS, SVP+MPDA+LBRS,
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HVP+PDA+LBRS) are close to MiniBDP. In fact, these strategies
do not perform very well for a long period since the queue sizes
show increasing trends. Furthermore, since the number of VMs in
strategy SVP is obtained based on the result of MiniBDP, SVP is
actually unreachable in reality.

In addition, we also compare MiniBDP with the offline optimal
ones. Since the original problem contains 60480 variables (at one
time slot, m, n are with 60 variables, x is with 12 variables, λ is
with 48 variables, thus for 336 time slots, there are 180 × 336
variables), existing optimization toolboxes (e.g., GLPK ,CPLEX,
LPSOLVE, etc.) show failed to solve such an extreme large-scale
integer nonlinear optimization on a Spur server with Intel(R) X-
eon(R) CPU (1.90GHz), 128GB RAM, 64bits Windows operation
system. Thus, we divide the long time slots into several parts
with an interval and solve each of them instead using BMIBNB
with lower solver CPLEX, upper solver FMINCON in Matlab. In
fact, these alternatives are with known data arrival and achieve
suboptimal offline solutions. Furthermore, the tolerable delays are
also fixedly set as interval time slots since the data must be
processed within interval time slot. In this experiment, different
intervals are set to study its performance. Fig.8 depicts the
cumulative cost comparison along time slots (Optimal-xslot means
that the interval is x), which shows that MiniBDP performs better
than the cases interval = 1, interval = 2 and interval = 4
and the larger the interval is, the lower the cost is incurred. We
believe this is because: 1) data processing must be completed
within 1, 2, 4 time slots for Optimal-1slot, Optimal-2slot and
Optimal-4slot, respectively and, 2) a smaller interval needs more
VM resource to complete data processing due to its short delay.
Whereas, MiniBDP has a soft delay control mechanism by setting
the ϵ and σ, the cost will be reduced by setting a long tolerable
delay. The time used for solving the problem is compared in
Fig.7, which shows that it requires only about 0.15 seconds for
MiniBDP to make decision since it is based on some simple
strategies, thus it can run in an online fashion. However, the
CPU time consumed by Optimal-2slot (average 83.9 seconds),
Optimal-4slot (average 523.8 seconds) is significantly higher than
that of MiniBDP because it needs extensive searching time to
find the global optimal. Note that Optimal-1slot runs relatively
fast (only needs 0.4 seconds), this may attribute to the fact that
the problem comes into a mixed integer linear optimization that
can be efficiently solved by existing tools (e.g., LPSOLVE) when
interval = 1 since the migration data produced at former time
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slot is known (i.e., hi(t) is known, no xd(t) ∗mk
d(t) term exists).

We also find that the solving time increases exponentially with
the interval, e.g., we run Optimal-2slot for nearly 8.5 hours and
Optimal-4slot for more than two days, thus to optimize the original
problem in an online manner is almost infeasible. Finally, as can
be seen in Fig.9, the solution of Optimal-1slot is not able to keep
the load balancing among datacenters since it mainly allocates data
to only five datacenters and runs reducer in only 1 datacenters. So
do the the solutions of Optimal-2slot and Optimal-2slot, we omit
them here due to page limit. Therefore, MiniBDP with simple
strategies shows many advantages over offline optimal solution
and a real-world implementation prospect.

7 CONCLUSION AND FUTURE WORK

With high velocity and high volume of big data generated from
geographically dispersed sources, big data processing across ge-
ographically distributed datacenters is becoming an attractive and
cost effective strategy for many big data companies and organi-
zations. In this paper, a methodical framework for effective data
movement, resource provisioning and reducer selection with the
goal of cost minimization is developed. We balance five types
of cost: bandwidth cost, storage cost, computing cost, migration
cost, and latency cost, between the two MapReduce phases across
datacenters. This complex cost optimization problem is formulated
into a joint stochastic integer nonlinear optimization problem by
minimizing the five cost factors simultaneously. By employing
Lyapunov technique, we transform the original problem into three
independent subproblems that can be solved by designing an
efficient online algorithm MiniBDP to minimize the long-term
time-average operation cost. We conduct theoretical analysis to
demonstrate the effectiveness of MiniBDP in terms of cost opti-
mum and worst case delay. We perform experimental evaluation
using real-world trace dataset to validate the theoretical result and
the superiority of MiniBDP by compared it with existing typical
approaches and offline methods.

The proposed approach is predicted to be with widespread
application prospects in those globally-serving companies since
analyzing the geographically dispersed datasets is an efficient way
to support their marketing decision. As the subproblems in the
algorithm MiniBDP are with analytical or efficient solutions that
guarantee the algorithm running in an online manner, the proposed
approach can be easily implemented in the real system to reduce
the operation cost. In the future work, we will focus on following
aspects: 1) Extending the original model to support other types
of jobs. Note the approach is designed mainly for data warehouse

type of job such as statistic analysis and SQL query and some
other kinds data processing (e.g., astronomic image processing),
the graph type of jobs and the jobs with iteration property are not
originally supported in the paper due to the streaming property
of the queue designs. However, the proposed approach can be
extended to adapt to these cases with minor extensions. E.g., if we
change the original model by adding a self-circulation data flow
at the data allocation stage and designing a coordinator to transfer
the reduce result to mappers, the iterative jobs can be supported.
2) Taking into consideration the factor of data replication in the
model. Data replication is well-known as an effective solution for
high availability and high fault tolerance. Given that our goal is
cost minimization, introducing data replication will add additional
cost of replicating data across datacenters. Thus, this factor is not
considered in our current cost minimization algorithm and we left
it to be one of our ongoing research efforts. 3) In addition, we
will concentrate on deploying the proposed algorithm in the real
systems such as Amazon EC2 to further validate its effectiveness.
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