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Abstract—Microblog platforms have been extremely popular in the big data era due to its real-time diffusion of information. It’s
important to know what anomalous events are trending on the social network and be able to monitor their evolution and find related
anomalies. In this paper we demonstrate RING, a real-time emerging anomaly monitoring system over microblog text streams. RING

integrates our efforts on both emerging anomaly monitoring research and system research. From the anomaly monitoring perspective,
RING proposes a graph analytic approach such that (1) RING is able to detect emerging anomalies at an earlier stage compared to the
existing methods, (2) RING is among the first to discover emerging anomalies correlations in a streaming fashion, (3) RING is able to
monitor anomaly evolutions in real-time at different time scales from minutes to months. From the system research perspective, RING

(1) optimizes time-ranged keyword query performance of a full-text search engine to improve the efficiency of monitoring anomaly
evolution, (2) improves the dynamic graph processing performance of Spark and implements our graph stream model on it, As a result,
RING is able to process big data to the entire Weibo or Twitter text stream with linear horizontal scalability. The system clearly presents
its advantages over existing systems and methods from both the event monitoring perspective and the system perspective for the
emerging event monitoring task.

Index Terms—Anomaly Detection, Real-time Anomaly Evolution Monitoring, Graph Model, Stream Processing
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1 INTRODUCTION

M ICROBLOG platforms have been extremely popular
in the big data era due to the real-time nature and

viral diffusion of information. A wide variety of anomalous
events would emerge from such platforms, ranging from
political or daily affairs to natural disasters or public se-
curity menace. These platforms have many times been the
first reporter of significant events, such as earthquakes and
accidents, or even the major hosting venue of significant
events, such as a presidential election campaign. The value
and application of a real-time emerging anomaly monitor-
ing system over such platforms are many-fold. For instance,
it can detect and respond to emergency events in a timely
manner [1], [2], [3], [4], [5], track event evolution [6], [7],
and summarize trending events [8], [9], [10].

The short and noisy nature of microblog text stream
makes traditional topic detection methods and their deriva-
tives inappropriate for the task [11], [12], [13], [14]. Latent
space topic models is unsuitable for the fast changing online
event monitoring scenario. The model takes a long time
to train and the topics are fixed. While the online event
monitoring scenario demonstrate fast changing set of topics
and require high throughput of data processing. Nor are
they able to perform early detection of emerging anomalous
events in real-time. A topic model for short texts [15] has

Manuscript received xxxx, 2016; revised xx, 2016; accepted xxx, 2016.
Date of publication xxx, 2016; date of current version xxxx, 2016.
W. Yu, J. Li, R. Zhang and J. Huai are with the School of Computer Science and
Engineering, Beihang University, Beijing, China. (e-mail: yuwr, lijx, zhangrc,
huaijp@act.buaa.edu.cn).
M. Bhuiyan is with the Department of Computer and Information Sciences,
Fordham University, New York, USA. (e-mail: mbhuiyan3@fordham.edu)
J. Li is corresponding author. W. Yu and J.Li contributed equally to this work
and should be considered equal first authors.

been developed, which has good performance on short
texts. However, it is slower than LDA [13], hence cannot
be applied in a real-time scenario. And later we will see
that RING performs better than the method [15] in the event
monitoring task. Systems scalable to full Twitter stream [2],
[5], [16], [17] have also been proposed to detect trends,
but they could not provide further correlation analysis into
detected events. TwitterMonitor [16] provides online detec-
tion for general emerging anomalous events but could not
reveal multiple aspects of the events nor track the evolution
of them. CLEar [17] provides real-time anomalous event
detection and tracking but could not provide correlation
analysis of them. Neither of them could identify potential
anomalous events before they are popular and spreading at
scale. Signitrend [5] could detect potential anomalous events
at small scale but is confined to only detection, and could
not provide tracking and correlation analysis. The method
would also tend to generate anomalous events that only
contain a single keyword as description, which is hard to
comprehend for users. None of the above methods provide
the horizontal scalability with distributed implementations
of their algorithms, nor do they investigate system opti-
mizations for their applications. Cai et al. [18] has indexing
system optimization combined with evolution tracking, but
does not provide much of the detailed monitoring analysis
RING provides, such as correlation analysis.

Despite the challenges, there are many desired features
when building an emerging anomaly monitoring system
over short text stream. From an emerging anomaly monitor-
ing perspective, we require (1) early detection of emerg-
ing anomaly before they go viral, (2) hierarchical view of
correlated sub-events as different aspects of an event, (3)
monitoring and reveal the evolution of anomaly events,
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(3) generating highly correlated keyword summarization
for better interpretation, (4) retrieving related representative
tweets, (5) differentiating meanings of keywords under the
effect of polysemy, (6) ranking events according to their
importance and popularity, and (7) resilient to noise. Also
from a system perspective, we need (1) stream processing
to produce low latency outputs, (2) distributed processing
to handle high throughput of data, and (3) scalability to
manage peak data throughput.

Also we want to lift the two efficiency bottlenecks in our
system, namely the full text indexing engine and the graph
processing system, as they carry out heavy computation
workload during anomaly detection and monitoring. Exist-
ing full-text indexing engines like TI [19] and Earlybird [20]
do not take microblog’s time feature into consideration, so
they do not support the query with specific time range effi-
ciently. There are several challenges for processing dynamic
graphs in such scenario. Namely that existing systems [21],
[22] take a lot of time during update of graph structure. They
also cannot rebalance workload when some nodes in the
graph are more frequently updated than others, which is a
common case when processing popular words in microblog
texts.

In this paper, we present RING, a real-time emerging
anomaly monitoring system over microblog text streams.
Emerging anomaly monitoring has attracted much atten-
tion from the research domain. Here we aim to monitor
emerging anomalous events on microblog platforms. Our
emerging anomaly monitoring methods are based on graph
mining techniques, which provides unique opportunities to
integrate our emerging anomaly monitoring research and sys-
tem optimizations. In the RING system, emerging anomaly
monitoring includes early detection, correlation analysis and
temporal evolution tracking of anomalous events. Early detec-
tion would capture emerging events before they go viral.
Correlation analysis would automatically reveal multiple as-
pects of the anomalous event, or the causality of anomalous
events, or categorical structure of related anomalies. For
example, the history and current development of a political
event reveal multiple facades of the event. The capture of a
criminal and the crime he had committed form a causal rela-
tionship. Different genres of news from an agency detected
at the same time would reveal categorical information. Ac-
cording to its popularity, anomalous events would emerge
from different time granularities, e.g., a publicly concerned
long trial or an overnight pop concert. The temporal evolution
tracking of events could recover the evolution process of
an anomalous event, to trace its origin and get the big
picture. Such monitoring happens in real-time and provides
valuable intelligence for government agencies, news groups
and marketing agencies, etc.

To process big data, the design of RING graph model pro-
vides the following efficiency optimization opportunities.
RING has a distributed graph processing engine specifically
optimized for our anomaly detection method. Algorithms
are implemented to have linear horizontal scalability to
handle big data, i.e., full stream of Weibo or Twitter data.
The full-text indexing engine is optimized for efficient time
range queries, which benefits our evolution tracking algo-
rithms and queries over events and tweets. A user friendly
interface is also provided to facilitate the analysis of emerg-

ing events with visualization.
Our major contributions in this paper include:

• We adopt anomaly detection method to monitor each
keyword for early detection of trends. The proposed
graph stream model is fully distributed with an
efficient context statistics maintenance strategy and
linear scalability.

• We provide a scalable anomaly monitoring approach
meeting all the listed requirements. Especially, we
are among the first to provide detailed correlation
analysis of anomalies under the real-time emerging
anomaly monitoring scenario.

• RING is among the first system to enjoy such rich
set of anomaly monitoring features with dedicated
system optimization efforts. The system optimiza-
tions of RING greatly improves the performance of
emerging event monitoring.

We provide experimental evaluation to demonstrate the
efficiency and effectiveness of our solution. The system is
online for demonstration [23].

The paper is organized as follows: Section 2 intro-
duces the graph stream model that combines our emerging
anomaly monitoring research and system research. Section 3
introduces our methods for emerging anomaly monitoring.
Section 4 gives the design and implementation of the under-
lying system and its optimizations. Section 5 evaluates our
system in terms of anomaly monitoring efficiency and effec-
tiveness and provides a comprehensive case study. Section
6 reviews related work. Section 7 concludes the paper.

2 GRAPH STREAM MODEL

We designed a graph stream model for anomalous event
detection over the short and noisy text in microblog services.
To represent texts with a graph stream model, we consider
keywords as nodes and their co-occurrence relationships in
each tweet as edges. For each incoming tweet, we generate
a binary clique graph over its keywords and retrieve the
edge set. That is to retrieve the edge of each keyword
pair. The sequence of edges from the continuously arriving
tweets generate the graph stream data. A table of symbols are
summarized as in Table 1.

Table 1: List of Important Symbols in RING Graph Model

Symbol Description
G(t) Undirected temporal graph of keywords.
λ Decay rate of the weight of an edge arrival

F (i, j, t) The weight of an edge accumulated till current time t.
S(i, t) The set of neighboring nodes in node i’s locality
α(i, t) The sum of the edge frequencies in locality set S(i, t).

HA(i, t, λ) Half-life activity change of a node i.
GE(t) Denoised keyword graph with rich information
GT (t) Trending keyword graph which is binary

An undirected temporal graph G(t) = (N(t), A(t)) is
defined, whose nodes, edges and weight of edges change
over time. We use N(t) to denote the set of all distinct nodes
in G(t) at time t, and A(t) as the sequence of edges received
so far, respectively. The weight of an edge is defined as an
accumulated frequency over all arrivals of the edges. To
detect emerging events, greater importance is assigned to
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more recent arrivals of edges. Similar to [24], we apply a
decay factor λ to model the temporal effect, which regulates
the decay rate of weight of an edge arrival, and to define the
decay weight:

Definition 1 (Decay Weight). At current time t, the weight
of an edge arrival at time ts is defined as 2−λ·(t−ts), with
half-life of decay being 1/λ.

Such smooth decay will avoid accidentally splitting a
trend or peak. The sequence A(t) would contain repetitions
since we might receive an edge multiple times. We assume
A(t) contains edge (i, j) in time T (i, j, 1) . . . T (i, j, ntij),
with a total of ntij times. In each timestamp t, edge (i, j)
is received N(i, j, t) times. We define the weight of an edge
at time t:

Definition 2 (Weighted Frequency). The weight of edge (i, j)
at time t is defined as the accumulated decay weights
over all instances of its arrivals till time t.

F (i, j, t) =

nt
ij∑

k=1

N(i, j, T (i, j, k)) · 2−λ·(t−T (i,j,k)) (1)

Since the network is undirected, the value of F (i, j, t)
is the same as F (j, i, t). We can see that the value of the
frequency is often dominated by the relative recent arrivals
of edges. We define the activity frequency of a node, the
sudden change of which can be very useful to determine a
trending keyword. At time t, we note the set of neighboring
nodes of node i as the locality set S(i, t) and the index of
the nodes in S(i, t) as {ji1(t) . . . ji|S(i,t)|(t)}.

Definition 3 (Node Activity Frequency). The node activity
frequency α(i, t) of node i at time t is defined as the sum
of the edge frequencies in its locality S(i, t)

α(i, t) =

ji|S(i,t)|(t)∑
k=ji1(t)

F (i, k, t) (2)

Let us now inspect the maintenance of these statistics
under a streaming edge weight update scenario. We make
the following observations with the definition of F (i, j, t):

Observation 1. As long as there are no new arrivals of the
edge (i, j) in time (t′, t), we have F (i, j, t) = F (i, j, t′) ·
2−λ·(t−t

′).

Observation 2. When edge (i, j) arrives, only the statistics
of nodes i and j need to be updated.

We can see that updates to F (·) and α(·) need to be
explicitly performed only when new edges arrive. What’s
more, statistics of node i and j do not need to be explicitly
updated when no edge is received of them. The update
for each node i could be independently processed in a
distributed fashion as long as the node receives its own
update data. During update, we first use Observation 1 to
make statistics current till time t from a decay perspective.
The effect of new edge arrival is incorporated into F (·)
by simply adding 1s. The computational complexity of this

statistics maintenance is O(|A(t)|), which is proportional to
the edge update received.

We now have a temporal keyword co-occurrence graph.
The weighted frequency of edges measure the temporal
association between two keywords and the activity frequency
of nodes measure the activity level of a keyword. The context
of a keyword is well preserved in its locality S(i, t). For
each node i, three pieces of information are maintained.
Specifically, they are (i) the last time stamp L(i) at which
an edge was received of node i (ii) the set of nodes in
S(i, t) (iii) an array of frequency values F (i, j, L(i)) for
each node j ∈ S(i, t). Note that the space requirement of
this maintenance is proportional to the sum of the degrees
of the nodes in the graph. A keyword graph is relatively
sparse hence the value of |S(i, t)| is typically much smaller
than the number of nodes in the network, which makes
the maintenance compact and efficient in the streaming
scenario.

3 EMERGING ANOMALOUS EVENT MONITORING

In this section, we introduce RING’s approach to the emerg-
ing anomalous event monitoring. The process is as illus-
trated in Figure 1. Emerging anomalous event monitor-
ing is defined as event detection, correlation analysis and
temporal evolution tracking of events. Early detection could
detect currently popular events. And it also aims to discover
potential viral events at an early stage. Correlation analysis
reveals the relationship among events and provides insight
for better analysis of these events. Temporal evolution tracking
traces the evolution pattern for events of different lifecycles
and popularity, e.g., from hours to months. An event refine-
ment process performs spam filtering before and after texts
are distilled into events. It also performs context enrichment
for events to facilitate the tracking of them, such as entity
recognition, geo-location identification etc.

3.1 Early Detection
The anomaly detection method consists of two steps: trend-
ing keyword detection and community detection over key-
words. Our intuition is that the essential keywords about
an event would have similar trends and show a burst in
usage compared to their own history. Trending keywords
are detected as an anomaly with abrupt usage increase. An
event is represented as a “bag” of keywords that co-occur
and correlate with each other, with its detection time and
representative tweet extracted for better comprehension. We
shall see that trending keywords and their co-occurrence
relationship is a strong combination to distill emerging
anomalous events. These signals would also reveal hierar-
chical event correlation, which will be introduced in the next
section (Section 3.2). Valuable intelligence, such as different
aspects of events, causality of events or categorical structure
of events, could be revealed through the correlation analysis.

3.1.1 Trending Keyword Detection.
We consider trending keyword detection task as an outlier
detection for bursty usage. We define the activity level
change for a node. Typically, such change is most informa-
tive when the time period is 1/λ, i.e. the half-life of edge
weight decay.
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Figure 1: RING Emerging Event Monitoring Procedure

Definition 4 (Half-life Activity Change). The half-life activ-
ity change HA(i, t, λ) of node i at time t is defined as
α(i, t)− α(i, t− 1/λ).

By measuring HA(i, t, λ) over each half-life period, we
would get a series of HA(i, t, λ) values, from which a
good estimate of the magnitude of activity change could
be obtained. It essentially measures the acceleration of each
keyword’s usage hence unusual bursty activity of keywords
could be detected before it would go viral, regardless of its
traffic. We then apply the standard score method to deter-
mine the unusual deviations in activity change. According
to quantification from Gao et al. [25], this could serve as
a good estimate for our purpose. The standard score, or
outlierness score, can be computed as follows:

ZV alue =
HA(i, t, λ)− µA(i, t, λ)

σA(i, t, λ)
(3)

where µA(i, t, λ) and σA(i, t, λ) are the mean and stan-
dard deviation of the series. When the value of this devia-
tion is larger than a threshold ZThresh, the node would be
flagged as a trending keyword. Empirically we set the value
of ZThresh to 3, which corresponds to 99.7% of normal
data. Increase of ZThreshwill yield less trending keywords
but stronger burstiness. The cost of the detection operation
on each half-life period is linear to the sum of degrees of
the updated nodes. The number, sum and square sum of
HA(i, t, λ) values are maintained for each node in the graph
for incremental update in a streaming fashion.

Multi-granularity Analysis. Keywords of an emerging
event would demonstrate similar trends within the same
time granularity. But the period over which trends would
emerge is often unknown in advance. Over longer periods
of time edge frequencies will stabilize while over shorter
periods it will be sensitive to changes. Parameter λ controls
the level of temporal granularity for analysis. For trend-
ing keyword detection, we can choose a few approximate
ranges and monitor each λ independently. Empirical trend
periods would vary from 10 minutes to a few hours in
microblog services. For larger values of 1/λ, the monitor-
ing for HA(i, t, λ) series is less frequent due to extended
monitoring periods and requires less computation.

Keyword Denoising. We now have a keyword graph con-
sisting of the trending keywords, their co-occurred key-
words and their statistics. At each detection period, we
perform noise filtering over both kinds of keywords. We
first try to remove unrelated co-occurred keywords that

have not appeared with a trending keyword recently. To do
this, we delete edges in a trending keyword’s locality with
less weighted frequency than a threshold edge freq min. By
default, we set it to 1. We further recursively remove nodes
with unweighed degree not larger than 1. Irrelevant co-
occurred keywords that only co-occur with one trending
keyword are hence effectively removed. Such keywords
would belong to some other contexts of the trending key-
words. A “standalone” or “single-handed” trending key-
word is considered insignificant or it would have necessarily
co-occurred with other trending keywords. Such trending
keywords are often revealed after the irrelevant co-occurred
keywords are removed. Results show that the above proce-
dures would usually remove at least half of the nodes in the
keyword co-occurrence graph.

Our method is naturally resilient to noisy keywords
absent of bursty features, such as words about trivial things
of mood, food etc., since these usage are relatively stable in
the big picture. We note that the more the data, the better
the chance to acquire accurate keywords with similar trends,
the more meaningful the results would be.

3.1.2 Event Extraction.

Keywords of the same event would co-occur and be more
densely linked internally than with keywords from a dif-
ferent event. It would be intuitive to follow modularity-
based [26] or betweenness centrality based [27] commu-
nity detection methods for event detection. However, such
methods would lead to 4 major drawbacks: (1) non-local:
density changes in parts of the graph would affect the
overall result for community detection. (2) mixed contexts: a
keyword cannot appear in different events (3) co-occurrence
by chance: keywords in different contexts would likely to be
assigned to the same event due to lack of explicit definition
of keyword community (4) no hierarchy: hierarchical corre-
lation analysis is absent for such methods. Events would
naturally consist of different aspects which formulate a
hierarchical structure. Next we would introduce our method
for event detection and hierarchical sub-event correlation
analysis.

We now have a denoised weighted keyword graph
GE(t) which maintains statistics of trending keywords,
namely the detected period, outlierness score, co-occurred
keywords and co-occurrence frequency.

Definition 5 (Denoised Keyword Graph). Denoised key-
word graph is a directed weighted graph GE(t) =
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(VE(t), EE(t)), VE(t) contains all keywords after de-
noising, while EE(t) contain edges among all keywords
with their weighted frequency. The direction of an edge
starts from a trending keyword and points to an arbitrary
node.

We also define a binary graph of only trending key-
words:

Definition 6 (Trending Keyword Graph). Trending keyword
graph is a binary graph GT (t) = (VT (t), ET (t)), where
VT (t) contains only trending keywords and ET (t) are
edges between trending keywords.

GT (t) extracts the co-occurrence pattern between trending
keywords from GE(t) as edge structures. Event detection
is performed on GT (t) while GE(t) provides additional
information for event denoising, ranking and extension with
co-occurred keywords. By definition, two keywords would
not have appeared in the same text if there were no edge
between them. In other words, keywords form the finest
granularity of event aspects in their 1-hop neighborhood.
Then the maximal cliques in the graph correspond to explicit
definition for aspects of events with strong correlation,
where all keywords co-occur with each other.

To distill events from these aspects and get the big-
ger picture, we use k-clique percolation to find overlapping
communities as events [28]. A k-clique-community is defined
as a union of all k-cliques that can be reached from each
other through a series of adjacent k-cliques, where adjacency
means sharing k-1 nodes. Such definition of community
enjoys several advantages versus existing methods: (1) local
definition of community that would not be affected by
change in parts of the graph (2) natural overlap to decode
polysemy and diverse contexts (3) reduce co-occurrence by
chance through parameter k (4) hierarchical view of sub-
events is encoded in the maximal cliques of the communi-
ties.

The k-clique percolation method finds all maximal cliques
and test maximal clique overlaps to extract percolated com-
munities. Parameter k directly controls the minimal num-
ber of trending keywords a clique should have. As such,
any event with less than k trending keywords would be
discarded. A larger k value would implement a stronger
correlation constraint on forming a community, as it gets
harder to form a k-clique by chance. We set k to 3 by default
in order to get more events. Empirical evaluation show that
such setting would yield relatively high quality results while
preserving more aspects of events than larger k.

For a weighted graph, there would be another parameter
for the method, namely edge frequency threshold w∗. We
note that w∗ is equivalent to edge freq min. We do not
set larger values of edge freq min at this stage to preserve
details, i.e., event aspects that’s represented by low weight
edges. We define the event and its aspects over GT (t) as
follows:

Definition 7 (Trending Event). A trending event is defined
as a k-clique-community of binary graph GT (t), where
k is 3 by default. The maximal cliques under each com-
munity constitutes aspects of events.

Algorithm 1 Sub-event Hierarchy Construction

Require: G
′

T (t) and its maximal cliques, parameter k
Ensure: Branches of FP-tree as hierarchical sub-events

1: Put nodes in each maximal clique in descending order
according to their degree in GT (t).

2: Build a frequent pattern tree with each maximal clique
3: Check under depth of k.
4: if the number of nodes two sub-trees share > k−1 then
5: sub-trees belong to the same sub-event
6: else
7: sub-trees are different sub-events.
8: end if

Scalability. The size of GT (t) is guaranteed by the three
sigma rules to be approximately 0.3% of the graph size,
which is a modest scale. We apply an optimized method [29]
of k-clique percolation which minimizes clique overlap test
for efficiency. Further, by first computing the disconnected
subgraphs of GT (t), which is a linear operation, paral-
lelization could then be achieved. As would be shown in
experiment, these methods are efficient to achieve real-time
performance.

Event Denoising. For each event we retrieve its maxi-
mal edge frequency from GE(t). To filter out noisy trend-
ing events with low frequency, we pick out communities
with maximal edge frequency less than event freq min, The
threshold is set to 2 considering the volume of data we have
and to preserve hints of trends. After event denoising, we
note k-clique-communities in GT (t) as G

′

T (t).

3.2 Correlation Analysis

We can detect emerging events of strong keyword correla-
tion with the above method. However, at a finer granularity,
we observe that different aspects of an event would emerge
in a single event. Since the events are extracted from clique
adjacency relationship, there would exist maximal cliques
in a community that are not directly adjacent to each other.
This indicates potential different aspects of an event. These
aspects may entail categorical information, causality rela-
tionships or different opinions on the same event. Some-
times these aspects could just co-occur by chance.

To reduce co-occurrence by chance, summarize event
aspects into sub-events and build a hierarchical view of
the event, we devise Algorithm 1, an algorithm based on
frequent pattern tree (FP-Tree) [30], which assigns cliques
sharing k or more nodes as the same sub-event and sepa-
rates maximal cliques sharing k-1 nodes or less. Cliques that
are not directly adjacent to each other but belong to the same
k-clique-community are assigned to different sub-events, dif-
ferentiating different aspects of the event. A modularity
based or betweenness centrality based clustering method
would likely to mix different sub-events together. Valuable
intelligence, such as different aspects of events, causality of
events or categorical structure of events, could be revealed.
We are the first to provide a hierarchical view of correlated
events for the emerging event detection scenario. Event
related tweets are retrieved as representation texts through
querying the search engine with keywords of events.



2332-7790 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2017.2672672, IEEE
Transactions on Big Data

6

100 detected real world events are manually inspected
and its most related tweet in our dataset. We find that the
method can detect 47% of the emerging events within 5
minutes and 79% of events within 10 minutes after the first
tweet appeared in the event. The method can outperform
state-of-the-art topic and event detection methods based on
keyword co-occurrence [15], [26], [27] in terms of keyword
coherence (NPMI) and summarization quality (ROUGE-1).
The method is implemented on Spark and share a cluster of
8 machines with other algorithms and system components,
where it can handle 16k tweets per second with linear
horizontal scalability.

3.3 Temporal evolution tracking

Event tracking aims to trace temporal evolution of events
along the timeline. Given a latest event E0, the evolution
chain of E0 is defined as follows:

E1 → E2 → . . .→ En → E0 (4)

where Ei is a precedent event of E0 and Ei → Ej means
event Ej developed from Ei. Under the assumption that
related events share at least one noun in their keyword sets,
a candidate set CS of potential precedent events is retrieved
using nouns in the keyword set of E0. An inverted index
is built to map nouns to events. In practice the full-text
search engine is utilized to provide query results. The event
chain of E0 is built through a set of similarity metrics of the
location loci, participant set psi, and event related post set
wsi of event ei in CS. The similarity of two events ei and
ej are defined as follows:

Sim(ei,ej) = α · Simws(wsi, wsj)+

β · Simloc(loci, locj) + γ · Simps(psi, psj)
(5)

Simws(wsi, wsj) is based on average cosine similarity of
related posts. Simloc(loci, locj) equals 1 if ei and ej share
the same location and 0 otherwise. Simps(psi, psj) is based
on Jaccard similarity of participant sets psi and psj . α +
β + γ = 1 and can be adjusted empirically. Sim(ei, E0) is
calculated for each event in CS and note set Chain for E0:
Chain = {ei ∈ CS|Sim(ei, E0) > ε}. Threshold ε is used
to filter out potential unrelated event candidates. It is worth
mentioning that to merge near duplicate events in Chain
a separate threshold ε′ is devised. ε′ is larger than ε and
smaller than 1.

Our method [31] leverages locality sensitive hashing to
find similar events efficiently. What’s more, time ranged
query in the underlying search engine system is specifically
optimized to improve its efficiency. The time range controls
how far back we would like to trace. And with system
and algorithmic optimization, our method is effective in
revealing the evolution of both the long-term and short-term
events, rather than only recent events [32], [33].

3.4 Event Refinement.

The refinement procedures are responsible for spam filtering
and context enrichment. Based on [34], the spam accounts
are first removed from our data crawler, who are either
constantly publishing ads content or actually manipulated
by intelligent software for propaganda purposes. A 3-class
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Figure 2: The Architecture of RING System

Naive Bayes is applied to differentiate news, ads and wid-
som words among detected trending events, where the latter
two classes are major types of spams on Weibo. The classifier
is trained with manually labeled data based on features
of content, users and temporal information. Further the
location of the detected events are extracted using a location
vocabulary and the nouns and candidates of events with
ICTCLAS1.

For keywords and events, importance and popularity
comes naturally from the burstiness score and edge fre-
quency. A larger burstiness score would indicate the key-
words and events are becoming popular quickly. A larger
edge frequency would indicate keywords and events have
significant amount of traffic and may already be popular. In
practice, it is comprehensive to rank keywords according to
weighted degree and events with highest edge frequency.

We use trending keywords in each maximal clique of the
event as query and retrieve perfect matching tweets from
their detected period as summarization. The co-occurrence
relationship in a clique indicates a high probability that a
matching tweet exists. There are cases of mismatch for a
very large k (e.g., 15). Only subsets of the k keywords would
appear in a single tweet as a result of synonyms. Hence it
gets harder to find a tweet containing all k keywords. It is
also possible that the mismatch comes from accumulated
decay effects of edge occurrence in previous time periods.

4 THE RING SYSTEM

As shown in Figure 3, RING system mainly consists of three
modules, namely data collection, data indexing & storage, and
data processing. For data collection, a distributed crawler is
developed to continuously fetch microblogs through Weibo
API2. The collected data is forwarded to indexing and
processing modules through Kafka3 to decouple their de-
pendency. For indexing and storage, RING utilizes HBase4

1. http://ictclas.nlpir.org/
2. http://open.weibo.com/wiki/Api
3. http://kafka.apache.org
4. http://hbase.apache.org/
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and elasticsearch5 for data storage and full-text indexing,
which are able to process large volumes of real-time mi-
croblog streams. Time range query of elasticsearch is further
optimized for event tracking and keyword queries. For
data processing, our models and algorithms are implemented
on Spark6. An optimization strategy for incremental graph
statistics update is also devised to improve distributed
processing efficiency.

4.1 Data Collection
A distributed crawler is built to collect data from Weibo, the
largest microblog platform in China. The crawler continu-
ously collects the latest microblogs published by users pre-
ferrably with a large number of followers, i.e., opinion lead-
ers. The crawler has a master/slave architecture. The master
node utilizes key/value store to perform task scheduling.
Slave nodes get the assignments from the master and crawl
data. A task would monitor the reposts and comments of
an original tweet and retrieve the repost and comment list,
from which we can construct the forward graph of each
tweet. The tasks are scheduled according to posts’ priority,
which is weighed by the number of reposts and comments.
Each task has a life cycle so that the monitoring for each
post can be effectively maintained or terminated. The data
is crawled using Weibo API. Up to the time of writing we
are able to collect 3 - 10 million microblogs daily.

4.2 Indexing Engine
For microblog platforms, real-time search is frequent. It’s
for the reason that most users are interested in microblogs
posted in recent time. More importantly, history search is
vital to event evolution tracking application. The application
issues extensive amount of keyword queries to retrieve
related tweets in the text archive for similarity computation.
Each query is issued for a specific time interval as defined
in the event detection algorithm. Both real-time search and
history search can be treated as the search with a specific
time range, with various time range for query.

Up to now, there have been several studies to solve
realtime search problem on microblog system. Earlybird [20]
, a real-time search engine for twitter, builds efficient in-
memory indices and can execute a query with an average
latency of 50 ms and make new tweets searchable within
10 seconds. TI [19] classifies the tweets by query logs and
only index the distinguished tweets in real-time in order to
decrease index update cost. However these works do not
take microblogs time feature into consideration, so they do
not support the query with specific time range well.

To overcome the limitation of existing methods, we
propose RINGINDEX, a distributed online index system for
temporal microblog data. The whole index is divided into
fine-grained time range partitions to provide locality for
data access according to temporal approximity. For better
concurrent access, each time range partition is divided into
sub-partitions by hash functions. Each term’s inverted tweet
list is only mapped to corresponding sub-partitions. With
these structures, given a query with a specific time range,

5. https://github.com/elastic/elasticsearch
6. http://spark.apache.org

Figure 3: RING Graph Processing System

the time range information can be used to navigate to
corresponding time range partitions and then utilize query
to quickly navigate to corresponding sub-partitions.

In addition, an index chain is also adopted to merge
terms with the same post list to reduce the size of index.
The optimization technique is distributed, each node hav-
ing the same index structure. Whether updating index or
searching can be carried out on each node at the same
time, which can help provide better concurrent processing
ability and further reduce the index and query cost. The
optimization technique is universal and implemented in
elasticsearch. Time range structure is implemented as Time
Range Partition Index Set (abbrv. TRPIS) in the multi-layer
index of elasticsearch to directly optimize time range query
performance [35]. Such structure for time ranged queries
avoids traversing each layer and allows efficient navigation
to records within a specified time interval.

4.3 Graph Processing Optimization

As discussed in Section 3.1, a continuously changing graph
of keywords and their co-occurrence relationship is built
from the text stream. To improve the efficiency of graph
update and computation process, an optimized system,
RINGGRAPH is developed based on Spark and GraphX and
implemented our event monitoring system on it.

There are several challenges for processing dynamic
graph in such a scenario. The first is that modifications of
the graph structure tend to be time-consuming in exist-
ing systems, especially for inserting new nodes and new
edges [36]. Since for the RING event monitoring algorithm,
nodes in the keyword graph will continue to increase as
time passes, we need an efficient graph structure update
mechanism. The second is that real-time processing is not
easy to be achieved, because most of the existing graph-
parallel systems [37], [38], [39], [40], [41], [42], [43], [44],
[45] process graph in a global and batch mode, rather than
incremental mode. Along with the huge scale of social
graphs, the time cost of each iteration is unacceptable [46].
The third is that the time-sensitive feature of dynamic graph
may lead to workload imbalance, because some of the graph
nodes are much more frequently updated than others in a
particular period of time.

In the RING event monitoring, the updates of trending
keywords, whose usage would have a spike in a short
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period of time, will show uneven update behavior. To
efficiently update graph structure, we introduced a hash-
based graph partitioning method to support find-grained
and rapid update. To support incremental computation on
evolving graphs, we designed an application scheduler to
coordinate applications with different computing request
frequency and control the use of compute resources. Specif-
ically, the scheduler is in charge of merging the graph
update data into the main graph, triggering computing
task for applications and releasing resources of the cached
graph update information. In order to support incremental
algorithms, we introduce a vertex-based graph computation
model, which is highly fit to most of the scenarios.

To address the workload imbalance issue, a workload
hotspot detection and balancer is designed to deploy com-
puting tasks according to data locality and compute re-
sources while minimizing the migration cost. What’s more,
a hash-based graph partitioning method [47] is adopted to
distribute computation. To make our system support ap-
plications that simultaneously execute computing requests
on the graph with different frequencies, an application
scheduler is implemented to efficiently exploit the resources.
The application scheduler consists of two components: the
hotspot detector, which adopts a standard score based graph
stream anomaly detection algirithm [24] to identify compute
nodes and partitions with heavy workloads in real time, and
the hotspot rebalancer, which uses different task distribution
algorithms to migrate compute tasks. The distribution algo-
rithms optimize data localization or minimize data transfer
during migration.

5 EXPERIMENTS

In this section, the RING system is evaluated in terms of
system efficiency and event monitoring quality.

5.1 Overall Settings

For RING system evaluation, we use the following dataset
and testbed for all experiments.

Dataset: A total of 152,964,368 tweets are used crawled
from Sep.11.2014 to Oct.27.2014 on Weibo. IKAnalyser is
used for tokenization and WebDict as vocabulary. The vo-
cabulary contains 201,197 words. Stop words are removed
and tweets that contains less than 5 words are filtered out.
We analyzed cases from the production RING system to
demonstrate event evolution monitoring in Section 5.3. We
also used social graph data in Section 5.6.

Testbed: We used a shared cluster of 8 machines, each
with 2 Xeon E5-2650 CPUs (16 physical cores) and 256GB
RAM connected through Infiniband @40Gb/s. The ma-
chines run Debian7 and JDK 1.7, both in 64-bit.

Tunable Parameters: We list tunable parameters in Table
2.We would evaluate the effects of 1/λ and k, which are
the most semantically effective parameters, and leave other
parameters fixed to their default values.

5.2 Effectiveness of Anomaly Detection

We evaluate the effectiveness of our approach through var-
ious metrics and inspect the effects of 1/λ and k . Unless

Table 2: Tunable Parameters

Parameter Default Description
1/λ 10’ half-life of decay
k 3 k-clique percolation

ZThresh 3 burstiness thresh
edge freq min 1 minimum edge freq
event freq min 2 event frequency thresh

specified, we use default values of 1/λ and k as shown in
Table 2. Chinese words are translated to English.

Methods For Comparison. We note our approach as
RING and include 3 other methods for comparison. Using
modularity based method [48] for event detection was in-
troduced by Weng et al. [26]. We implemented the clus-
tering method [48] and replaced RING’s event detection
method for comparison, i.e., perform modularity based clus-
tering [48] on GE(t). We note this approach as RING-M. We
set resolution of this method to 1.0 by default. We included
two topic models based on co-occurrence relationship for
comparison, namely graphical model Biterm [15] and graph
model KeyGraph [27]. We used published codes of the au-
thors to run the experiment. For KeyGraph we used its de-
fault short text parameter setting. For Biterm we set number
of topics K to 20 for each time slice. Data was partitioned
into slices of each half-life period. Biterm and KeyGraph
methods were run on each data slice to get comparative
results. Since the method for comparison perform similar
tasks, the default parameters also correspond to their best
reported performance in the original paper. We verified that
this is also true on our dataset, by running our quantative
evaluation methods and by manual evaluation where the
results do not contain many duplications and confusing
results.

5.2.1 Early Detection Analysis

In general, RING would detect more than 200 events in a
day, and most of them would be picked up by news media.
To demonstrate the sensitivity of our method to potential
trends, we manually picked 100 events out of the detected
trending events with half-life being 10 minutes. The 100
events are real world events picked on 8 random days from
Sep.11.2014 to Oct.10.2014. These events were all viral real
world events on the Weibo platform that made to the top
popular event charts, and were covered by multiple news
media, include blogs, news websites etc. We calculate the
response time of our method as T1-T2, where T1 is the
detection time and T2 is the time of its first tweet. The first
tweets are identified manually using ElasticSearch7 .

Result Analysis. From Table 3 we can see that 79% of the
events can be detected within 10 minutes, with 47% detected
within 5 minutes. The average response time over these 100
events is 18 minutes. The detected events do not always
have a large traffic. Accelerated spreading would be verified
if it is followed by immediate subsequent detections. This
would mean that the anomaly event had successive expo-
nential growth and was detected in consecutive periods. We
can see that our method is sensitive to trending events and
can detect them at an early stage. We discover that events

7. http://elaticsearch.org
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Table 3: Response Time in Minutes

Response Time Count Sum of Percentage
0-5 47 47%
6-10 32 79%
11-15 5 84%
16-20 2 86%
21-65 7 93%
>65 7 100%

with over 30 minutes of response time lack burstiness in the
pre-detection period.

5.2.2 Effects of Multi-Scale Anomaly Detection
We used half-life period of 10, 30 and 60 minutes for
trending keyword detection.

Result Analysis. There are on average 2188, 1730 and
938 trending keywords respectively for half-life period of
10, 30 and 60 minutes. As the half-life extends, there are
less detected trending keywords and less detected events.
We observe that detected trends over 10-minute periods
reveal subtle changes in the main point of the event. Trends
observed under longer half-life period usually correspond
to significant events that have a consecutive exponential
growth in volume. The system should “ring” the alarm
when such trends are detected.

5.2.3 Keywords Coherence
Pointwise mutual information (PMI) [49] is a good eval-
uation metric for keywords coherence evaluation, which
has been proven to have near inter-annotator correlation
performance and preferred by researchers [50]. We used a
normalized version of the metric to assign its value range to
[-1,+1]. This avoids negative infinity values and neutralizes
its preference for low frequency events [51]. The definition
is as follows:

NPMI(x, y) = −1 · 1

log[p(x, y)]
· log p(x, y)

p(x)p(y)
(6)

where x is a random variable and p(x) is defined as
the frequency of x in the document collection. The final
NPMI score of an event E is defined as the mean of all
NPMI(wi, wj) values of its K keywords:

NPMI(E) =
2

K(K − 1)
·

∑
1<i<j<K

NPMI(wi, wj) (7)

We calculate the NPMI score for an event against data in
the corresponding time slice. Out of the 100 emerging events
discovered by RING, we manually selected 17 events that are
also detected by all other methods. The result of mean and
standard deviation of the scores are shown in Table 4. An
intuitive and detailed comparison of the scores is presented
in a case study.

Ring Analysis. We can see that RING outperforms other
methods significantly. The coherence score advantages come
from 4 factors: (1) trending keywords found by anomaly
detection method have similar trends hence coherent with
each other. (2) co-occurrence by chance is minimized by
coherence constraint of maximal clique structures. (3) clique
percolation tends to find more aspects of the event with

Table 4: Normalized PMI Results

Method Median Mean σ
KeyGraph 0.3841 0.4690 0.2336

Biterm 0.6458 0.5964 0.1943
RING-M 0.6528 0.6249 0.1529

k=3 0.7546 0.7458 0.1468RING
k=4 0.7609 0.7780 0.1470

strong correlation. (4) keywords are allowed to overlap
between events, yielding a more natural result.

Comparison Analysis. KeyGraph applies betweenness
centrality based clustering which tends to include co-
occurred keywords by chance. Such unrelated words would
hurt coherence. So does modularity based method since
they both lack a precise definition for community. Result for
Biterm is consistent with its own reported performance [15].
Biterm directly models the generation process of word
co-occurrence patterns, which yields a good performance.
But it could miss events with small magnitude absent of
trending keyword detection phase and lacks a mechanism
to explicitly filter out unrelated co-occurrence patterns.

Parameter Sensitivity. In Definition 7, we define event
of trending keywords as a k-clique community where k = 3.
Increasing k would implement a stronger semantic coher-
ence constraint on keywords of the detected event. We see
that increasing k would improve NPMI scores as expected.
Note that increasing k would unlikely lead to discarding the
detected events, only a re-selection of the keywords.

Case Study. In Table 5 we demonstrate an event detected
by four methods. RING is able to distill 4 sub-events of
this game, which are different aspects of the event. This
shows that RING can detect and differentiate events at a
resolution other methods cannot. The case is about the
semifinal game at ATP Masters 1000 Shanghai where Roger
Federer beat Djokovic and got into the final. Djokovic has
had 28 straight wins in China and Federer will face Gilles
Simon in the final. We see that the first two sub-events
seem to be the same. This shows that Algorithm 1 could
sometimes produce duplicate information. The third sub-
event is about the straight win of Djokovic and the fourth is
about the result of the semifinal game. Again we note that
in RING system a representation tweet is provided to help
users understand what is happening.

Let us look at the NPMI scores in Table 5. Keywords
of each sub-event in RING are highly coherent. KeyGraph
got the highest score but only detected 3 keywords for the
event. Biterm got the lowest score since it mixed unrelated
words, namely JinHai, Love You, One. RING-M got a slightly
lower score than RING. In RING-M keywords “Serve the
Ball” is about the progress of the game while “Revenge
Humiliation” and “Superior To” is about the result of the
game. We can see RING-M, i.e., modularity based method,
mixed keywords of two sub-events.

5.2.4 Keywords Summarization Quality

Here we evaluate the precision and recall of the keyword
summarization of events. For the 17 events detected by
all methods, we manually label them with a representative
tweet from authoritative publishers as human labeled refer-
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Table 5: Case Study: Tennis Game Progress and Result, Roger Federer vs. Djokovic

Method Keywords NPMI Rouge-P Rouge-R Rouge-F

RING
Roger

Federer

Service
Break

Win, Tennis, Not Sure,
Serve the Ball, Save,

Tight Game 0.7836

0.8482

0.5

0.75

0.3704

0.5

0.4255

0.6

Djokovic, Win, Tennis,
Not Sure, Serve the

Ball, Save
0.8336 0.625 0.4167 0.5

Finals Straight Win 0.7456 1 0.1777 0.2857
ATP Masters 1000, Gilles Simon,

Djokovic, Win, Superior To,
Tennis, Triple Champion

0.8806 0.6667 0.3704 0.4761

RING-M
Serve the Ball, ATP Masters 1000,

Revenge Humiliation, Roger Federer,
Superior To

0.7409 0.2272 0.1852 0.2401

KeyGraph Semi-Finals, Djokovic, ATP Masters 1000 0.9237 1 0.1111 0.2

Bitrem Shanghai, Finals, ATP Masters 1000, JinHai,
Love You, China, One, Game,Gilles Simon 0.3873 0.5 0.1852 0.2703

ence summarization. Sub-event summarizations are gener-
ated in the same manner.

We choose ROUGE-N as our evaluation metric, which is
defined below:∑

S∈{Ref Summaries}
∑
gramn∈S Countmatch(gramn)∑

S∈{Ref Summaries}
∑
gramn∈S Count(gramn)

(8)

n stands for the length of n-gram. gramn and Countmatch
(gramn) is the maximum number of n-grams co-occurring
in a candidate summary and a set of reference sum-
maries [52]. In our scenario, we choose N = 1 since it
is proven to perform great in evaluating very short sum-
maries [49]. The results are shown in Table 6.

Ring Analysis. We can see that RING has the best overall
performance. This shows that the trending keywords se-
lected by our method are more representative and complete
than results of comparing methods. The advantage of RING
as analyzed in NPMI evaluation also applies to ROUGE-1
score. For sub-event summarization quality, the score has a
higher precision and a slightly lower recall. This indicates
that for sub-events (1) the keywords tend to be more precise
(2) the keywords show limited aspects of the event. This
result is consistent with our design and shows effectiveness
of sub-event detection method.

Table 6: ROUGE-1 Results

ROUGE-1Method Precision Recall F-Score
RING-M 0.550 0.373 0.444

Event(k=3) 0.553 0.396 0.462
Event(k=4) 0.626 0.390 0.481RING
Sub-Event 0.627 0.360 0.457

KeyGraph 0.317 0.124 0.179
Biterm 0.635 0.210 0.315

Comparison Analysis. Compared to RING-M, keyword
summarization of RING has a better precision and recall
score. This is because RING tends to include more precise
keywords and many aspects of the event. Though RING-
M has a similar performance to RING, since it can not
differentiate sub-events of events, it leads to difficulty in
human comprehension as shown in Table 5.

KeyGraph tends to miss the trending keywords detected
by RING and include unrelated keywords, leading to poor
performance. Biterm has a better precision and a lower recall
than RING. This, at first sight, seems that RING finds many

related keywords but brought in more unrelated words.
This is because keywords from other aspects of event re-
sults of RING are considered as unrelated to the reference
summarization, leading to drop in precision in ROUGE-
1 scores. From the NPMI results based on the original
document collection data, we can see that RING produces
a more coherent result, proving that the keywords found
by RING are representative and correlated to the detected
event. While in ROUGE-1 experiment, we use a single tweet
as reference summarization. This might fall short as partial
since events might include many aspects, which will be
proved in the following case study and Section 4.3.6. Biterm
would not include as many aspects of the event, leading to
a lower recall score.

Parameter Sensitivity. Here we evaluate the effects of
parameter k. We can see that precision is improved due to
stronger coherence. It may also come from reduced aspects
of events against the partial reference summarization. Recall
is reduced since some aspects of the event might be filtered
out due to a more strict community definition.

Case Study. Here we study the ROUGE scores in Table
5. RING’s precision score on the event proves that a single
tweet might fall short as a partial summary for a whole
event. RING’s high recall score proves that the method can
effectively select representative keywords. RING-M mixed
events together and did not find sufficient keywords for
the events, hence the poor performance. KeyGraph only se-
lected 3 keywords for the whole event, which are all correct
but clearly not enough. Biterm mixed unrelated keywords
and did not find sufficient keywords for the event.

Sub-event results evaluate summary performance spe-
cific to one aspect of the event. We see results for the first two
“same” sub-events, they actually could represent different
opinions. In the second sub-event people may be talking
more about if Djokovic would save the game while the first
sub-event may be more about the “tight game”. We used
the same reference summarization for them. For the third
sub-event with only 3 keywords, the precision is high but
it does not get sufficient keywords. Words “superior to”,
“Triple Champion” and “Win” of the fourth event did not
appear in the summarization hence the performance.

The duplicated keywords of different sub-events in the
case study shows that allowing keywords overlap would
yield a more natural result from a sub-event perspective,
the lack of which would bring down the performance.
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Table 7: A Case of Event Evolution Chain

Time Event description

2014-12-01
18:40:00

The suspect of Fudan poisoning case writes
an apology letter to the victim’s parents. |

The 2nd trial will be held.

2014-12-08
08:10:00

Fudan poisoning case’s second trial will be
held in 10am today, victim’s parents will be

in court.
2014-12-08

12:50:00
LIVE: Defendant of Fudan poisoning case

cries in court.

2015-01-08
07:40:00

The court will pronounce judgement of the
2nd trial today and victim’s father hope to

maintain the death penalty.

2015-01-08
10:30:00

The court maintains the former death
sentence on attempted murder in the
second trail of Fudan poisoning case.

5.3 Event Evolution Monitoring
We demonstrate through case study the effectiveness of
RING for multi-granularity, multi-aspect event monitoring
that it can tell the story of an event automatically. An evolu-
tion chain distilled by production RING system is shown
in Table 7. Given (by search or trending event ranking
interface) the “latest” event in the table, an evolution chain
that spans several month was revealed. These events are
about the second trial of the infamous poisoning case in
Fudan University, China, where the suspect poisoned his
roommate to death in April 2013. The detected events are all
significant in its development and we can see that forecast,
process and judgement of the trial all drew a lot of attention,
hence detected by RING. The descriptions of these events are
extracted automatically either directly from tweets or from
representative tweets that contained predefined brackets
indicating proper titles. Recall from 3.1 that our system
reports trending events in 10-minute intervals.

Each of these events in Table 7 has been repeatedly de-
tected in consecutive time intervals, lasting from 20 minutes
to 60 minutes. It is indicated by trending keywords detection
algorithm that a consecutive exponential growth of tweets
in volume has been detected. The system consolidate such
similar events to show only one such event and highlight
such event for special attention. We manually inspect the
average latency of detection of these events, i.e. the time
from the first tweet appearing in our data to the detection
time, to be 14.4 minutes, which is shown in the table.

5.4 Efficiency of Anomaly Detection
We now demonstrate the efficiency and linear horizontal
scalability of our approach using data on Sep.26.2014, which
contains 9808056 tweets. In RING system, trending keyword
detection is run on Spark cluster while event detection and
analysis are run on a single node. There are 7 worker
nodes and 1 master node in the Spark cluster. We set Spark
parameter driver-memory and executor-memory to 30GiB and
set executor-cores to 8.

Effects of Data Volume. We discover that the processing
efficiency of trending keyword detection is affected by data
volume in each time slice on Spark. To simulate the full
data volume of Weibo, we duplicate Sep.26 data 10 and
20 fold to generate larger datasets. We see from Figure 4
that processing efficiency of the system increases with data
volume. Particularly, the system can process 16,000 tweets
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Figure 5: Horizontal Scalability

per second with 20-fold of data, which is a 10X speed up
compared to speed at 1N. Since phase II consumes only a
small portion of the run time, we estimate that the system is
competent to process the entire Weibo and Twitter stream,
which are at the scale of 20 - 50 million tweets per day.
Such acceleration comes from increased ratio of effective
computation using MapReduce.

Horizontal Scalability. Figure 5 shows the result when
we use different number of worker nodes for phase I (by
setting parameter num-executors of Spark to 1 through 7).
We see that the processing speed increases linearly with the
number of computing nodes, demonstrating the horizontal
scalability of our graph stream model.

5.5 Indexing System Evaluation
To demonstrate the efficiency of the RINGINDEX system and
the effectiveness of our strategy, we experimented with the
following 4 parameters in the indexing system to show their
effects. TR is defined as the length of time range. sub is
defined as the count of sub-partitions in each time range.
SW is defined as the length of querys time range. count is
defined as the the count of the querys terms. The strategy
that does not update old indices is used as the baseline. We
call it No Merge, which comes as default for elasticsearch.

5.5.1 Efficiency of Searching.
In this experiment, the keyword queries are generated by
selecting terms from a fixed glossary with 201,196 terms
at random. Given a query with specific time range, the
indexing system uses the time range structure (TR) and sub-
partition (sub) to make a quick navigation. In our experi-
ments, the “without TR” means that the indexing system
uses sub-partitions only and “without sub” uses time range
structures only.

Figure 6 (a) and 6 (b) shows the time efficiency of
searching for different SW and count respectively. Since “No
Merge” index and “without TR” (time range) don’t have the
time range structure, they have stable time cost when the
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Figure 6: Efficiency of RINGINDEX Searching

SW (search window) increasing. As the number of terms
increases in the query, search cost would increase for all
methods. An important observation is that our complete
solution (TRPIS) has the best searching performance. Figure
6 (c) shows the relationship between TR and SW. We can see
that if SW is smaller than TR, the cost will be constant as
the system would read the same index each time. And for a
fixed SW, an equal TR would yield the best performance.
Figure 6 (d) illustrates the average search time cost for
different sub and count. Basically, the shorter the query,
and finer the sub-partitions are, the better the performance.
We can see that the time ranged query performance has
improved up to 10X in RING compared to elasticsearch.

5.6 Graph System Evaluation
RINGGRAPH has been evaluated on three different kinds of
tasks, namely improvement of graph update, incremental
algorithms and hotspot reblancer. We benchmark RING-
GRAPH against the original GraphX. The graph partition
number was set as 32 (4 × 8 in the hash-based partitioning
method), and the results of all experiments are averages of
ten runs. A cluster of five machines are used in the testbed
environment, one as master node and other four as workers.

5.6.1 Graph Update Efficiency.
To demonstrate graph update efficiency, three different real-
world graph datasets are used: (1) Google Web Graph. It
consists of 875K nodes and 5.1M edges. Nodes represent
web pages, and directed edges represented hyperlinks be-
tween them. (2) LiveJournal friendship social network. It
consists about 4.8M nodes and nearly 68.9M edges. Nodes
represent users of LiveJournal, and directed edges represent
friendship between them. (3) Friendster friendship social
network. It consists of about 65.6M nodes and nearly 1.8B
edges. Nodes represent users of Friendster, and directed
edges represent friendship between them.

We generate 10,000 and 100,000 messages per batch to
simulate real graph stream update scenarios. The update
messages consist of three types of updates, i.e., update of
vertex attribute, edge attribute and insertion of new nodes
and edges, at a ratio of 25%, 25% and 50%. RINGGRAPH had
a speed up of 3.7X, 7.1X and 14.3X respectively compared to
GraphX due to finer granularity of updates.

5.6.2 Incremental Processing.
Incremental PageRank is used to test the performance im-
provement of the RING system over the GraphX’s default

version. Incremental algorithms could reuse the previous
results of the last iteration, the computing time and network
traffic can be greatly reduced. The larger the graph, the more
time will be used to recompute PageRank in the default non-
incremental version. With the increased size of the three
datasets, the compute time of incremental PageRank on
average has speedups of 4.3X, 6.3X and 16.7X on 32 cores.
Network traffic decreases by 80%, 88%, 90% on 32 cores.

5.6.3 Effectiveness of Workload Rebalancer.
We do this experiment running event monitoring algorithms
on the Weibo dataset. With the help of the load balancing
technique, the cost of time to run event monitoring algo-
rithm on the whole dataset is reduced by 11%.

6 RELATED WORK

In this section, we review related work about topic detection
and emerging event detection using keyword co-occurrence.

It has long been recognized that modeling topics or
events based on keyword co-occurrence is an effective
approach. Co-occurrence information has been used for
term clustering [53] and keyword extraction from docu-
ments [54]. Palla et al. [28] discovered that a word’s contexts
of different meanings could be represented as overlapping
communities in the word co-occurrence graph. A short text
topic model that directly models the generation of word
co-occurrence pattern has been proposed [15]. Sayyadi et
al. addressed event detection from news articles [55] and
performed topic detection for large and noisy social media
collections [27]. They adopt a betweenness centrality based
clustering algorithm over keyword co-occurrence graph for
the task. They do not address the problem of real-time
emerging event detection from short text stream.

Emerging event detection methods follow similar pro-
cesses involving trending keyword detection and clus-
tering for event identification. TwitterMonitor [16] uses
queuing theory to detect bursty keywords while trends
and event analysis are both computed with history data
based on co-occurrence relations in an out-of-core fashion.
Long et al. [56] utilizes word frequency and entropy to
detect bursty keywords and used a hierarchical divisive
clustering method to get event clusters. Weng et al. [26]
adopts wavelet analysis for bursty keywords detection and
modularity-based graph partitioning technique over key-
word co-occurrence graph to get event clusters. Schubert
et al. [5] uses a scalable outliers detection technique for
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bursty keywords detection and a hierarchical divisive clus-
tering method for trend refinement. For Twitter, this method
would generate many trends that only contain a single
keyword, which is hard to comprehend. The above six
methods lack control over clustering resolution and would
mix unrelated keywords with correlated ones. Keywords are
now allowed to overlap between topics and sub-events and
event correlation analysis are both absent.

In contrast, our approach adopts a unified graph pro-
cessing framework through each phase and meets all the
listed semantic requirements. Interestingly, later work of
TwitterMonitor [57], [58] assumes the existence of such a
framework, and firstly studies dense subgraph maintenance
problem under streaming edge weight update, where the
graph is composed of entities and their co-occurrence rela-
tions. Detecting emerging events basically requires recom-
puting clustering from scratch while the efficiency of [57]
largely exploits incremental computation. As shown in their
experiment, the proposed algorithm requires each detected
subgraph to have no more than 5 nodes and increasing this
number would lead to the significant drop of efficiency [57].
In the scenario, the number of keyword nodes is much
larger than 5. Hence method [57] does not fit in terms
of efficiency. What’s more, entity recognition is costly for
streaming setting in Chinese.

All these existing work neither adopts the distributed
stream computing paradigm, nor provides the event corre-
lation analysis into their consideration.

7 CONCLUSIONS

We have demonstrated RING, a real-time emerging event
monitoring system over microblog platforms, that integrates
our efforts on both emerging event monitoring research and
system research. RING is able to monitor emerging event as
to detect emerging events, build event correlations and trace
event evolutions. Further, RING’s infrastructure is equipped
with customized optimization on its full-text search engine
and distributed graph processing engine to perform event
monitoring more efficiently. What’s more RING supports
event and text queries and many other functionalities to as-
sist the analysis of emerging events, as demonstrated in the
user interface. The system clearly presents its advantages
over existing systems and methods from both technical and
system perspectives for the emerging event monitoring task.
In the future, we would conduct research on automatic story
telling and envolving knowledge base into our results to
provide better intelligence.
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