
1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

1

Privacy-Preserving Aggregate Queries for
Optimal Location Selection

Emre Yilmaz, Hakan Ferhatosmanoglu, Erman Ayday, and Remzi Can Aksoy

Abstract—Today, vast amounts of location data are collected by various service providers. The location data owners have a good idea
of where their customers are most of the time. Other businesses also want to use this information for location analytics, such as finding
the optimal location for a new branch. However, location data owners cannot directly share their data with other businesses, mainly due
to privacy and legal concerns. In this paper, we propose privacy-preserving solutions in which location-based queries can be executed
and answered by location data owners without sharing their data with other businesses and without accessing the customer list of the
businesses that send the query. We utilize a partially homomorphic cryptosystem as the building block of the proposed protocols. We
prove the security of the protocols in semi-honest threat model. We also explain how to achieve differential privacy in the proposed
protocols and discuss its impact on utility. We evaluate the performance of the protocols with real and synthetic datasets and show that
the proposed solutions are highly practical. The proposed solutions will facilitate the sharing of sensitive data between entities in a wide
range of applications without violating their customers’ privacy.

Index Terms—Privacy, Data encryption, Security, integrity, and protection, Query processing, Algorithm/protocol design and analysis.

F

1 INTRODUCTION

UNDERSTANDING the whereabouts of current and po-
tential customers can provide valuable insights for

location-based services, facility location, and competitive
business decisions. Increasing amounts of location data
from mobile services, applications, and network opera-
tors have introduced exciting opportunities for location-
enhanced business analytics. The approaches presented in
the marketing and operations research literature commonly
assume that a business that wants to do analysis owns the
data about it. However, this is rarely the case. Location data
is typically collected by mobile telecommunication opera-
tors and service providers, such as Foursquare. These data
owners seek ways to enable other businesses to run location-
based analytics queries without violating their customers’
privacy. Thus, one needs to prevent the location-based ser-
vice providers from tracking their customers individually,
while still allowing other businesses to obtain useful in-
formation. Similarly, businesses do not want to share their
customer lists with location-based service providers. In this
work, we develop efficient privacy-preserving query pro-
cessing protocols for identifying the best locations to open
new branches considering the distribution of the customer
locations.

Optimal location queries is a common location-based
analysis that seeks the best location to open a new facility
optimizing an objective function given a set of existing
facilities and a set of customers. A common approach is to
utilize computational geometry techniques on the customer
locations with the assumption that the locations are known.

However, third party businesses and analysts cannot
use these techniques in real life because customer locations
are not always known by these businesses. To perform
successful location-based queries, businesses need up-to-
date locations that can be gathered from location data
owners, such as mobile operators and location-based service

• E. Yilmaz, H. Ferhatosmanoglu, E. Ayday, and R. Aksoy are with the
Computer Engineering Department, Bilkent University, Ankara, Turkey.
E-mail: [emre.yilmaz,hakan,erman]@cs.bilkent.edu.tr,
remzi.aksoy@ug.bilkent.edu.tr

• This work is supported in part by Turk Telekom.

providers. For instance, while retail stores or banks may
know the home addresses of their customers, they may also
like to know their locations during certain time periods in
the day. Work addresses of the customers may be missing
or out-of-date in their databases. The location information
needs to be gathered from data owners while preserving
sensitive information of businesses and data owners (such
as customer lists and potential location of new branches)
as well as the privacy of these customers including their
identity and location.

To be consistent, in this paper we refer the location data
owner as the server, and the business that requests queries
as the client. We refer their customers as the users of the
server and the users of the client. The client has existing
facilities, such as branches of a bank, and aims to find the
optimal location for the new one among several candidates.
The client is able to request a fundamental class of queries
that can be used in optimal location selection. In these
queries, the client only obtains aggregate information about
locations of its users without learning the location of any
specific user. The client has several candidates for the new
facility and it can request the queries for each candidate
location and select the best one.

A simple example to these aggregate queries is average
distance query, in which the client retrieves the average
distance of its users to their nearest facilities. The nearest
facility of each user is the facility that has the minimum
distance to that user. The average distance is a valuable
information for the client to minimize it for maximizing user
benefit. In a non-privacy-preserving solution for this query,
the client sends the facility locations and its user list to the
server. The server checks the location of each user (who
gave informed and explicit consent for this information)
and calculates distances to their nearest facilities. At the
end of the query, the server returns the average distance
and the client obtains useful information for facility location
without tracking its users individually. The client can send a
different location for the new facility in each query together
with the locations of existing facilities. As a result, it can
select the best candidate that minimizes the average distance
between users and their nearest facilities.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

2

For a privacy-preserving solution, we need to hide the
client’s user list and the server’s user list from each other.
We also need to hide the answer to the query from the
server. Otherwise, the server learns the best candidate for
the new facility and it may share this information with the
competitors. We investigate privacy-preserving solutions to
aggregate queries which allow analyzing location data in
servers and selecting the best facility location. With our
proposed solutions, without sharing its user list with the
server, the client can obtain aggregate information about
user locations and find an optimal place for its new facility
among several candidates depending on different objective
functions. These objectives are (i) uniformly distributing the
cardinality of the reverse nearest neighbors (RNN), i.e., the
set of points that has the query point as the closest facility,
(ii) minimizing the average distance between each user
and her closest facility, and (iii) minimizing the maximum
distance between a user and her closest facility.

We define three fundamental aggregate queries for opti-
mal location selection and propose two types of privacy-
preserving query-processing protocols for each type of
query, utilizing partially homomorphic encryption as a
building block. We encrypt the sensitive data of the server
and the client, and perform the operations on the encrypted
data to preserve the privacy of both parties. First, we explain
server-based protocols, in which most computation is per-
formed by the server, and hence the workload of the client is
low. This solution is particularly convenient when the client
has limited computational power. To decrease the commu-
nication overhead in each query, we also propose client-
based protocols. In these protocols, the client performs the
majority of the computation during the setup phase (which
occurs only once). After completion of the setup phase,
all queries are processed quickly with low communication
overhead. Therefore, our client-based solution is highly
efficient when the client undertakes some pre-computations
before running its queries.

During the protocols, homomorphic encryption is used
for keeping the user list of the client and the query result
hidden from the server and keeping the user list of the
server and location data hidden from the client. Initially, we
describe the protocols to return exact query results. Since the
server is unaware of the query result and the queries return
aggregate results, some queries may leak information about
users. For instance, if the result of a counting query is one,
that user can be predicted by the client. To prevent informa-
tion leak about any single user, we also satisfy differential
privacy in our protocols by adding controlled noise to the
query result. Therefore, we use homomorphic encryption
and differential privacy together to guarantee privacy of
individuals during query processing. Our contributions are
summarized as follows:

1) We introduce a practical setting in which the client
(e.g., a business) runs a useful class of location-
based queries on the database of the server (e.g.,
a location-based service provider) without violating
the privacy of individuals involved both in the client
and the server side.

2) We enhance facility location problems by remov-
ing the assumption that the customer locations are
known to the businesses. With the proposed solu-
tions, a business can find the best location for a new
facility among several candidates without knowing
its customer locations.

3) We introduce two novel query processing protocols
for three different types of queries such as RNN

cardinality query, average distance query, and max-
imum distance query that are used as a service to
identify optimal facility location. Our protocols uti-
lize homomorphic encryption for protecting privacy
of both parties and satisfy differential privacy. We
also discuss the impact of differential privacy on the
utility of the protocols.

4) The proposed protocols take advantage of using a
potential superset of user space to hide the list of
users of both parties. Our solution does not use
any computationally expensive cryptographic com-
parisons such as private equality testing or private
set intersection. The performance evaluations show
that the proposed protocols are practical, efficient,
and scalable. For instance, when the server has 25
million users, executing privacy-preserving RNN
cardinality query takes around only 10 seconds on a
modest computer.

The remainder of this paper is organized as follows:
A literature review and background information are pre-
sented in Section 2. Section 3 outlines the system model and
threat model and defines the aggregate queries for optimal
location selection. We describe the server-based solutions
in Section 4 and the client-based solutions in Section 5. In
Section 6, we explain how to achieve differential privacy
in our protocols. We present our experimental results in
Section 7. Finally, we conclude in Section 8.

2 RELATED WORK AND BACKGROUND

Since our work is related to optimal location queries
and privacy-preserving location-based query processing, we
give the literature review of both subjects and explain the
major differences between our work and previous works in
the literature. Homomorphic encryption schemes are also
explained as a building block of our protocols. In addition,
the concept of differential privacy is described in this sec-
tion.

2.1 Optimal Location Queries
Given a set of existing facilities and a set of users, the
optimal location query [7] finds a location l for the new
facility with maximum influence. The influence of a point
is commonly formalized based on its RNNs [17]. The RNN
query finds the set of points that has the query point as
the nearest neighbor (NN). The problem is generalized to
k-NN as well. There are two variants of RNN queries. In
the monochromatic version, all points belong to the same
category. In the bichromatic version, points are divided into
two categories, such as users and facilities. Given a facility
f , the bichromatic RNN query finds the set of users that has
f as the nearest facility. The general assumption in optimal
location queries is that each user prefers her closest facility.
Therefore, the RNN query plays an important role in facility
location problems because a facility’s RNN is the set of users
who prefers this facility.

Businesses run an optimal location query to find the best
location for new facilities. The definition of “best location”
or “location with maximum influence” depends on the type
of the facility. In [7], the influence of a location is defined as
the total weight of its RNNs. The authors define the problem
with weighted users and aim to maximize the total weight of
users that are closer to the new location than to their closest
facilities. L1 distance is considered in [7] and they propose
three methods to solve the problem. Another solution to
maximize the bichromatic RNN is proposed in [26]. Instead

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

3

of L1 distance, the solution is developed for L2 distance,
which is a more difficult case to solve.

In the literature, there are also other definitions of the
“best location” which aim to maximize user benefit and
increase service quality. One of them is minimizing the
maximum distance between a user and her closest facility
[2], [3]. Another objective is minimizing the average distance
between each user and her closest facility. The problem is
proposed as min-dist optimal-location query in [30]. This
query has many real-life applications where it aims to
improve the quality of service or reduce the logistics cost
by businesses. [30] and [24] solve the problem with L1 and
L2 distance assumptions, respectively.

In previous works on facility location problems, it is
assumed that customer locations are known. In this pa-
per, we assume that customer locations are not known by
businesses, but stored in a location-based service provider,
and businesses need to analyze location data by requesting
queries. We define three aggregate queries for optimal loca-
tion selection and develop privacy-preserving protocols for
them. These queries are defined to analyze the location data
and they can be used in optimal location selection. Busi-
nesses can decide the best location among the candidates by
requesting several queries and comparing the query results.
2.2 Privacy-Preserving Location-Based Query Pro-
cessing
Today, vast amounts of information are collected and ana-
lyzed in databases around the world. Data may be stored
by multiple parties and these parties may not be keen on
sharing their data with others. In secure multi-party com-
putation (SMC), multiple parties jointly compute a function
over their inputs without revealing their inputs to each
other. In [6], several SMC problems are identified. One such
problem defined in [6] is the privacy-preserving database
query, where Alice seeks a match with her private string q
in Bob’s database T . The privacy requirement is hiding q
and the query result from Bob, and hiding T from Alice.
The authors develop an efficient solution for the matching
problem in [5] by using a semi-trusted third party.

Location-based queries are classified according to their
purpose in [15]. A basic type is the range query, which
finds objects located within a certain range (e.g., finding
all restaurants within three kilometers). Cheng et al. [4]
propose a privacy-preserving range query protocol as an
imprecise query to find users within a range with non-zero
probability. In [4], each user has a cloaked region to hide
her exact location, and the probability of being within a
range depends on the intersection of the cloaked regions.
A hybrid approach that integrates private-set intersection
and location cloaking is presented in [27].

Privacy-preserving NN queries have also been studied
in the literature by hiding the user’s location from the
database owner. A privacy-aware query processing frame-
work called Casper is presented in [19]. This framework
uses a location anonymizer to blur users’ exact location into
cloaked regions. Ghinita et al. [13] eliminate the usage of
third-party anonymizers by using cryptographic techniques.
They utilize private information retrieval (PIR) techniques
to preserve location privacy. In [25], efficient protocols are
proposed for privacy-preserving k-NN searches by using
several primitive SMC protocols. Yi et al. [29] present solu-
tions for the same problem and use Paillier encryption and
location cloaking as building blocks.

For privacy-preserving location-based query processing,
one can follow several approaches, such as location per-
turbation [19], providing k-anonymity by dummy locations

[20], data transformation [16], and using cryptography [13],
[23], [25], [29]. We follow the cryptographic approach, which
provides privacy without compromising utility. However,
providing exact query results may cause information leaks
in some cases such as counting queries. Therefore, we
integrate the principle of differential privacy [8] into the
proposed protocols. We explain the notion of differential
privacy in Section 2.3.

Our work differs from existing works in two aspects.
First, the location-based aggregate queries defined in this
paper have never been defined or studied before. Second,
existing works [4], [13], [19], [20] try to hide the location
information that the querying side has from location-based
services. In our scenario, user location information is stored
in a location-based service provider and the service provider
hides this sensitive information from the querying business.
The service provider allows queries from businesses to
retrieve their customers’ aggregate information.

2.3 Differential Privacy
Differential privacy aims to protect the privacy of indi-
viduals while releasing aggregate information about the
database. It is based on the neighborhood of databases. Two
databases D and D’ are neighbors if they differ in only
one entry. Differential privacy requires that query results
for two neighbor databases should be indistinguishable. Let
the output of a protocol P on database D be P (D). The
differential privacy is formally defined as follows:
Definition 1. Protocol P satisfies ε-differential privacy if for

any two neighbor databases D and D’, and any subset S
of output space of P ,

Pr [P (D) ∈ S] ≤ Pr [P (D’) ∈ S] · eε

A typical way to achieve differential privacy is adding
controlled random noise to the query result. For numeric
queries, Laplace mechanism can be used to produce the
noise drawn from the Laplace distribution. Let Laplace(λ)
be a sample from Laplace distribution with mean 0 and
standard deviation λ. To obtain ε-differential privacy, the
noise drawn from the Laplace distribution must be cali-
brated according to the sensitivity of the protocol [9]. The
sensitivity of the protocol is the maximum possible change
on the output by changing a single record in database. Given
a protocol P , the sensitivity of the protocol is defined as
follows:
Definition 2. Let N be the set of all pairs of neighbor

databases.

∆P = max
(D,D’)∈N

‖P (D)− P (D’)‖

Therefore, a protocol P satisfies ε-differential privacy for
the result

P (D) + Laplace(
∆P

ε
)

In Section 6, we show the sensitivity of each considered
query and how to achieve differential privacy during the
protocols.

2.4 Homomorphic Encryption
In homomorphic encryption, a specific algebraic operation
performed on the plaintext is equivalent to another (possibly
different) algebraic operation performed on the ciphertext.
Cryptosystems that allow homomorphic computation for a
limited number of operations such as addition or multipli-
cation are called partially homomorphic. For instance, given

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

4

two messages x and y, one can compute the encryption
of x + y by using the encryptions of x and y in an ad-
ditive homomorphic encryption scheme. In multiplicative
homomorphic schemes, E(x · y)1 can be computed by using
E(x) and E(y). Gentry [12] proposed first fully homomor-
phic encryption scheme that supports both addition and
multiplication. Since partially homomorphic schemes are
more efficient and calculating the sum is sufficient for our
protocols, we are interested in additive homomorphic cryp-
tosystems [1], [21], [22], satisfying E(x) · E(y) = E(x + y).
Another homomorphic property of these cryptosystems is
that encrypted plaintext E(x) raised to a constant k is equal
to encryption of the product of the plaintext x and the
constant k, i.e. E(x)k = E(x · k).

We develop our protocols by using the Paillier cryp-
tosystem [22]. In Paillier, if the public key (PK) is the
modulus m and the base g, then the encryption of a mes-
sage x is E(x) = gx · rm (mod m2), for some random
r ∈ {0, ...,m− 1}. Using a random value r in encryption
ensures that two messages that are the same will encrypt
to the same value with only a negligible likelihood. Hence,
Paillier provides semantic security. m should be selected as
the product of two primes p and q. The private keys (SK) of
the Paillier cryptosystem are λ = lcm(p − 1, q − 1) and
µ = (L(gλ mod m2))−1 mod m, where lcm(a, b) is the
least common multiple of a and b, and L(u) = u−1

m . The
decryption of a ciphertext c can be performed using private
keys as follows: D(c) = (L(cλ mod m2) ·µ) mod m. Paillier
satisfiesE(x)·E(y) = E(x+y), because (gx ·rm1)·(gy ·rm2) =
gx+y · (r1 + r2)m. As a result of this homomorphic property,
multiplying a ciphertext E(x) with E(0) creates another
ciphertext which is the fresh encryption of x.

3 PROBLEM FORMULATION

We present our system model in Section 3.1. Formal defini-
tions of the queries are given in Section 3.2. We describe the
threat model in Section 3.3.

3.1 System Model
There is a server (S) (e.g., a location-based service provider)
that provides analytics as a service and a client (C) that
requests queries. The server is the database owner and has
ns users US = {S1, S2, ..., Sns

}. In addition, the server has
location information for each Si at different time periods.
The client has nc users UC = {C1, C2, ..., Cnc

} and a list of
its k existing facilities F = {F1, F2, ..., Fk}. The locations of
the existing facilities are public and known by the server.
The client wants to run aggregate queries such as count,
sum, and maximum on the location data of the server, e.g.,
to analyze the possible locations for a new branch. The client
aims to hide UC and the query results from the server. The
server also aims to hide US from the client and prevent
user tracking by the client. Hence, the client will not learn
anything about the location of any specific user; it will only
obtain the query result at the end of the protocol.

We sketch out our system model in Figure 1. To run
aggregate queries about its users, the client must identify
its users in US using an identifier. Before running queries,
the server and the client decide on an identifier such as mo-
bile phone number. Most businesses and service providers
know mobile phone numbers of their customers. Another
identifier can be national identification number. If the server
is a telecommunication company and the client is a bank or

1. For the rest of the paper, E(x) denotes the encryption of message
x

 U
S
 U

C

C : Client

Locations of users in

U
S
 are stored by S.

S : Server
Query: Aggregate queries on

location data of users in U
I

.

The common

users need to be

identified privately

using an identifier

such as a phone

number or national

ID number.

U
I

Response: Only C learns the query

result.

Fig. 1: System model.

a hospital they might use national identification number as
the identifier. Let UI be US ∩UC , and nI be the cardinality of
UI . Since the server does not have the location information
of users in UC\US , we define our queries for the users in UI .

We define three useful types of queries for this context:
RNN Cardinality Query (RNNQ), Average Distance Query
(AVGQ), and Maximum Distance Query (MAXQ). Since the
server knows the user locations, it can calculate the distance
between a user and a facility via any distance measure. The
main challenges are keeping UC hidden from the server and
preventing user tracking by the client.

We propose two types of solutions for each query type,
the server-based solutions and the client-based solutions.
The server is responsible for most of the computation in
the server-based solutions. Hence, they are suitable when
the client prefers outsourcing computation. The drawback
of server-based solutions over the client-based version is
their communication overhead. The client-based solutions
reduce communication overhead significantly. In the client-
based solutions, most of the computation is performed by
the client only in the setup phase. In Section 4 and Section
5, we describe the server-based and the client-based pro-
tocols which return exact query results. Since exact query
results may leak information in some cases such as counting
queries, in Section 6 we explain how to add controlled
random noise to the query result in each protocol to satisfy
differential privacy.

3.2 Query Definitions

3.2.1 RNN Cardinality Query (RNNQ)
One of the objectives of optimal location queries is uni-
formly distributing the workload in facilities. In this case,
the new facility should attract users from dense facilities.
Attracting a user is equivalent to being the closest facility
to the user. This query finds the number of users attracted
by each facility. The formal definition of the RNNQ is as
follows:

Query 1. Given facility locations, find the total number of
users in UI attracted by each facility. In other words,
calculate the cardinality of RNN for each facility.

In practice, the client can initially run the RNNQ with
existing facilities F to analyze the distribution of the users.
Using the result, the client can determine possible locations
for the new facility Fk+1. For possible locations, the client
can run the RNNQ with F ∪ Fk+1. Hence, the client can
observe the total number of users attracted by each possible
location for Fk+1 and select the location that provides the
most balanced distribution.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

5

3.2.2 Average Distance Query (AVGQ)
One of the objectives of optimal location queries is min-
imizing the average distance between each user and her
closest facility. For instance, delivery services pay attention
to decreasing the average distance between their customers
and the nearest shop. The AVGQ is formalized as follows:
Query 2. Given facility locations, find the average distance

between users in UI and each one’s nearest facility.

In practice, the client can run the AVGQ with F ∪ Fk+1,
where Fk+1 is a candidate location for the new facility.
Hence, the client can select the optimal location for Fk+1,
which minimizes the average distance.

3.2.3 Maximum Distance Query (MAXQ)
Another objective of optimal location queries is minimizing
the maximum distance between a user and her closest fa-
cility. In this objective, the aim is to optimize the worst-case
cost of reaching the nearest facility. The MAXQ is formalized
as follows:
Query 3. Given facility locations, find the maximum distance

between a user in UI and her nearest facility.

In practice, the client can run MAXQ with F ∪ Fk+1,
for possible Fk+1 locations. The client can select the optimal
location for Fk+1, which minimizes the maximum distance.

3.3 Threat Model
In our model, both the server and the client are considered
“semi-honest”. Therefore, both parties follow the protocol
correctly; however, they may try to learn additional infor-
mation by analyzing the data. That is, the server may try to
determine the client’s user list, and similarly, the client may
try to determine the individual locations of its users during
the protocol (by using the messages they receive throughout
the protocol). On the other hand, both the server and the
client follow protocol execution honestly by forming correct
messages, input, and output parameters for each other. This
is a reasonable assumption in the problem setting since
both parties are motivated to produce the correct result. The
server sells the service and the correct result increases the
client’s satisfaction. Also, the client finds the best facility
location if the query results are correctly calculated.

The proposed solutions are secure two-party protocols
in which the server and the client wish to compute the
query result securely without sharing their inputs with
the opposing party. Both the server and the client have
sensitive data that should be hidden from the other party.
We formally list the sensitive data as follows:

1) Input of the client: UC .
2) Input of the server: (a) US and (b) location infor-

mation of users in US .
3) Output of the protocol: Query result.

We aim to hide all of the above sensitive data (from
unauthorized parties) in our protocols. The parties must not
learn the input of each other. At the end of the protocols,
only the client must get the query result and the server must
not learn it. The privacy of the server is assured if sensitive
data 2 is hidden from the client, and the privacy of the client
is assured if sensitive data 1 & 3 are hidden from the server.
We prove the security of our proposed protocols in the semi-
honest model using the simulation paradigm defined in [14].

While the locations of existing facilities are typically
public, the location of a new facility can be sensitive data
for the client. In this case, the client can run the query with
some dummy locations to provideK-anonymity [20], which

provides indistinguishability among K locations. Since the
query result is hidden from the server, all of the K locations
are indistinguishable for the server.

One potential threat to the server’s sensitive data may
be obtaining information via exhaustive client queries. By
using non-existing facilities, the client can try to obtain
information about location of some users. For instance, the
client can divide the whole region into two regions and
select the center of each region as a facility location. When
the client performs RNNQ with these facility locations, it
learns the total number of users in each region. The client
can divide each region into smaller regions in subsequent
queries, until each region has at most one user. At the end,
the client learns the small regions which contains a user and
it may predict the user in a small region with background
knowledge. Therefore, if the total number of facilities in
the query is very small or very large, the client may obtain
information about user locations.

We assume the locations of k existing facilities of the
client are public and known by the server. The server
decides two threshold values θ1 and θ2 such that C can
add at most θ1 new facilities or remove at most θ2 existing
facilities in a query2. Thus, when C sends the locations of
the facilities, S aborts the protocols in following cases:

• if the total number of facilities is greater than k + θ1,
• if the total number of facilities is less than k − θ2,
• if the facilities in the query do not include at least

k − θ2 existing facilities of C,

There is a tradeoff between utility and privacy in the
selection of these threshold values. Selecting small θ1 and
θ2 increases privacy, however, the utility of the protocols
decreases due to rejection of more queries. Therefore, there
cannot be an optimal threshold value for the protocols.

Moreover, when the query result includes a small num-
ber of users, the client can make an estimate about these
users. For instance, there may be only one user whose
nearest facility is a particular facility in RNNQ. Hence, if
the RNN cardinality of a facility is one in RNNQ, the client
can predict that user using its background knowledge. To
prevent such privacy leaks in our protocols, we explain how
to provide differential privacy in Section 6.

Finally, we also assume that during the protocol, com-
munication is encrypted between the server and the client
against an eavesdropper and that the server and the client(s)
do not collude.

4 SERVER-BASED QUERY PROCESSING PROTO-
COLS

In this section, we propose server-based solutions that pre-
serve the privacy while processing the queries in Section 3.2.
We introduce the high-level overview of the server-based
protocols in this section and we give the detailed steps of
the protocols in Appendix. We present the security analysis
of server-based protocols in Section 4.1. Table 1 shows the
symbols used in the protocols.

The underlying protocols utilize the additive homomor-
phic property to hide sensitive data from other parties by
calculating the sum of the encrypted values without de-
crypting them. We utilize Paillier cryptosystem as an addi-
tive homomorphic scheme satisfyingE(x)·E(y) = E(x+y).
In the server-based protocols, the server creates a public
and private key pair (PKs, SKs), and shares the public key

2. θ1 and θ2 are design parameters of RNNQ, AVGQ, and MAXQ to
be decided by the server.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

6

TABLE 1: Symbols used in protocols.
ms, mc modulus in Paillier generated by (S, C)
gs, gc base in Paillier generated by (S, C)

PKs, PKc public keys of S and C
SKs, SKc private keys of S and C
Es(x), Ec(x) Encryption of message x using (PKs, PKc)

[x]s, [x]c denotes x is encrypted using (PKs, PKc)
Ds([x]s), Dc([x]c) Decryption of ciphertext x using (SKs, SKc)

d(a, b) Distance between points a and b
US , UC user sets of S and C
U superset of US and UC
UI US ∩ UC

n, ns, nc, nI total number of users in (U , US , UC , UI)
F set of existing facilities of C
k total number of existing facilities
q, Q result (value, set) of the query
w random number greater than q in MAXQ

with the client. The client can encrypt any value or perform
homomorphic operations on the ciphertexts, but only the
server can decrypt encrypted messages. The server performs
the majority of the encryptions in the protocols.

In the setup phase, the server generates (PKs, SKs)
for Paillier cryptosystem. In addition, the server selects
a superset U = {U1, ..., Un} of US such that US ⊂ U .
The aim of selecting U is hiding US (sensitive data 2(a))
from the client. For instance, let the identifier used in the
protocols be mobile phone numbers. Location-based service
providers such as Foursquare and mobile telecommunica-
tion operators, and most businesses such as banks, hotels,
and retailers typically know the mobile phone numbers of
their customers. Hence, they can use them as identifiers.
Assume the phone numbers consist of 7 digits and there
are 50 different mobile operator codes. When the superset
U contains all possible mobile phone numbers, n becomes
500 million. Since U contains all possible numbers, it com-
pletely protects US from the client. Another example is using
national identification numbers as identifier. If national id
numbers consist of 9 digits and the superset U contains
all possible id numbers, n becomes one billion. The server
shares PKs = (gs,ms) and U with the client. Note that
all multiplications and exponentiations of ciphertexts in the
server-based protocols are calculated in mod m2

s.
Figure 2 shows the overview of the setup phase and the

protocols. Here, we briefly explain the steps of the server-
based solutions and illustrate these steps with an example
scenario for RNNQ/S. The server-based protocols consist of
10 steps. Steps 1, 4, 7, and 9 are the communication steps.
In the first step, the client sends the query and the facility
locations (F) to the server. Step 2 is the calculation of dis-
tances between facilities and users. The server determines
the nearest facility for each user. Since encrypted values
cannot be decrypted by the client, the server computes
encrypted values based on nearest facility of each user in
Step 3 to hide US and user locations (sensitive data 2(a) &
2(b)) from the client. Using the encrypted values, the client
calculates the ciphertext of the query result by utilizing
homomorphic properties of Paillier cryptosystem in Step
5. To hide UC and the query result (sensitive data 1 & 3)
from the server, the client masks the encrypted query result
in Step 6 before sending to the server for decryption. The
server decrypts the encrypted masked result in Step 8 and
obtains the masked result. Due to masking in Step 6, the
server cannot deduce the query result. In Step 10, the client
applies unmasking and finds the query result.

Let the identifier used by the server and the client
consists of one digit, and id numbers of the users of the
server be 1, 3, 5, 6, 7, 9. The server can select the superset
U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} such that US ⊂ U . Assume

C S

U , PKS

Setup RNNQ/S, AVGQ/S, MAXQ/S

C S

1: F

7: [X’]s

9: X’’

2: Distance

calculation
3: Creating

encrypted

matrix [T]s

]]

4: [T]s

5: Calculating

encrypted

result

6: Calculating

masked

(permuted)

encrypted

result [X’]s

8: Decrypting [X’]s

10: Unmasking

(Applying

inverse

permutation)

AVGQ/S

C S

1:Facility locations

7:Encrypted masked

results x1’,x2’

 9:Masked results

x1’’ and x2’’

2:Distance

calculation
3:Creating

encrypted lists

T,T’

4:Encrypted

lists T,T’

5:Calculating

encrypted

result

6:Masking

encrypted

result

8:Decrypting

x1’ and x2’

MAXQ/S

C S

1:Facility locations

8:Permuted, masked,

and encrypted result

X’’

 10:Permuted result

X’’’

2:Distance

calculation
3:Creating

encrypted

matrix T

4:Encrypted

matrix T

5:Calculating

encrypted

result

6,7:Masking

and permuting

encrypted

result

9:Decrypting X’’,

changing non-

zero values

11:Applying

inverse

permutation

Fig. 2: Overview of the server-based protocols.

that we have two facilities F1 and F2. When the client
requests RNNQ/S, the server determines the nearest
facility of its 6 users. Let F1 be the nearest facility of
the users 1, 6, and 9, F2 be the nearest facility of the
users 3, 5, and 7. In Step 3, the server computes [T1]s =
{Es(0), Es(1), Es(0), Es(0), Es(0), Es(0), Es(1), Es(0),
Es(0), Es(1)} for F1 and [T2]s = {Es(0), Es(0), Es(0),
Es(1), Es(0), Es(1), Es(0), Es(1), Es(0), Es(0)} for F2.
The server sends these encrypted values [T]s to the client
in Step 4. Let id numbers of the users of the client be
1, 2, 3, 5. In Step 5, the client calculates two ciphertexts for
two facilities by multiplying the ciphertexts of its users in
[T]s. That is, [x1]s = [T1,1]s · [T1,2]s · [T1,3]s · [T1,5]s and
[x2]s = [T2,1]s · [T2,2]s · [T2,3]s · [T2,5]s. These values are
the encryption of the query results such as [x1]s = Es(1)
and [x2]s = Es(2). Let two random values selected by
the client in Step 6 be 15 and 11. The client encrypts
these random values and sends [x′1]s = [x1]s · Es(15) and
[x′2]s = [x2]s ·Es(11) to the server. The server decrypts these
values in Step 8 and obtains x′′1 = 16 and x′′2 = 13. When
the client receives these masked values, it subtracts the
random values and obtains q1 = 1 and q2 = 2. Therefore,
the client learns the RNN cardinality of F1 and F2.

4.1 Security Analysis of Server-Based Protocols
In this section, we prove the security of the server-based
protocols in the semi-honest model. As discussed before,
semi-honest parties follow the protocol correctly; however,
they may try to learn additional information by analyzing
the messages they receive throughout the protocol. In gen-
eral, in secure two-party protocol, the goal of the parties is to
compute a desired output pair f(x, y) = (f1(x, y), f2(x, y))
from their inputs x and y without revealing them to each
other. The first party wants to obtain f1(x, y) and the second
party wants to obtain f2(x, y) at the end of the protocol.
During the protocol, the view of a party consists of its
input, its random-tape, and sequence of incoming messages
throughout the protocol. A protocol privately computes
f(x, y) if a party’s view can be simulated from its input
and output [14].

More formally, let Π be a secure two-party protocol for
computing f(x, y). The views of the parties are denoted
as VIEWΠ

1 (x, y) and VIEWΠ
2 (x, y). Then, the security of a

deterministic protocol in semi-honest model is defined as
follows [14]:

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

7

Definition 3. The protocol Π privately computes f(x, y)
if there exist probabilistic polynomial-time simulators
Sim1 and Sim2 such that

{Sim1(x, f1(x, y))} c≡
{

VIEWΠ
1 (x, y)

}
{Sim2(x, f2(x, y))} c≡

{
VIEWΠ

2 (x, y)
}

where
c≡ implies computational indistinguishability.

Therefore, a party’s privacy is guaranteed if there exists a
simulator that can generate a view indistinguishable from
the view of the opposing party. In the following, we prove
the security of the server-based protocols using this simula-
tion paradigm.

Let the client be the first party and the server be the
second party in our protocols. The private input x of the
client is UC and the private input y of the server is US
and the user locations. F is also the input of the protocol,
which is commonly known by the server and the client. As
discussed in Section 3.3, it should not be hidden from the
server to prevent attacks via exhaustive client queries. In
addition, PKs, PKc, and U are also known by the server
and the client as background information. As discussed
before, U is the superset of the users for keeping the user
list of parties from each other. The client should get query
result as f1(x, y) at the end of the protocol while the server
receives no output (i.e. f2(x, y) = ⊥).

Since the steps of the server-based protocols are similar
as shown in Figure 2, we consider RNNQ/S in the proof.
The security of the other protocols can be proved similarly.
In RNNQ/S, Q = {q1, ..., qk} is the query result where qi
is the total number of users in UI whose nearest facility
is Fi. Therefore, the view of the client (VIEW1) consists of
UC , F , [T]s, and Q. To prove that the server’s privacy is
assured in the protocol, we need to show that there exists
a probabilistic polynomial-time simulator Sim1 such that
Sim1(UC ,F ,Q) is computationally indistinguishable from
VIEW1. Since [T]s contains n · k Paillier ciphertexts, Sim1

can generate n · k random numbers between 0 and m2
s and

these numbers are computationally indistinguishable from
the ciphertexts in [T]s due to the semantic security of Paillier
cryptosystem.

On the other hand, the view of the server (VIEW2)
consists of US , user locations, F , and X ′′. To prove that
the client’s privacy is assured in the protocol, we need
to show that there exists a probabilistic polynomial-time
simulator Sim2 such that Sim2(US , user locations ,F) is
computationally indistinguishable from VIEW2. This is sat-
isfied by letting Sim2 generate k random numbers between
0 and ms to simulate X ′′ because X ′′ contains k values
{q1 + v1, ..., qk + vk} where each vi is a randomly selected
number by the client. Thus, we conclude that RNNQ/S
protocol securely processes RNN Cardinality queries in
semi-honest model.

Although the server-based protocols preserve privacy in
semi-honest model, they can be vulnerable to the attack
of a malicious client. A malicious client can calculate the
encrypted result in Step 5 for a specific customer Ui. There-
fore, the client can obtain information about the location
of Ui such as the nearest facility of Ui and its distance to
the nearest facility. However, in any case, it is not possible
to find the exact location of Ui. To prevent the defined
attack by malicious clients while providing the exact query
result, we propose client-based protocols in Section 5. More-
over, Section 6 explains satisfying differential privacy in
server-based protocols. Differential privacy is a framework

for formalizing privacy in order to protect the privacy of
individuals from these kinds of attacks. It gives a strong
guarantee that presence or absence of an individual will not
affect the final output of the algorithm significantly. When
the queries return noisy results instead of exact results,
a malicious client cannot obtain the nearest facility of a
specific user Ui and its distance to the nearest facility. For
instance, let F1 be the nearest facility of Ui. Then, the exact
query result is (1, 0, 0, ..., 0) for the defined attack. However,
adding a noise to each of these values will prevent the
information leak about Ui. Therefore, differential privacy
provides strong privacy guarantees against attacks from the
malicious client.

5 CLIENT-BASED QUERY PROCESSING PROTO-
COLS

In the protocols defined in Section 4, the data is encrypted
with the public key of the server. The server computes most
of the encryptions, which dominates the computation cost.
In this section, we propose protocols using the public and
private keys (PKc, SKc) of the client, where the client
computes the majority of the encryptions, however, instead
of performing encryptions during each query, the client per-
forms encryptions in the setup. This makes the setup phase
of these protocols more costly than the protocols in Section
4, however, query processing in these protocols is more
efficient in terms of computation and communication costs.
The protocols defined in this section also return exact query
results as in Section 4. We describe achieving differential
privacy during the client-based protocols in Section 6.

In the setup phase, the client generates a public and
private key pair (PKc, SKc) for Paillier cryptosystem.
The client shares PKc = (gc,mc) with the server. All
multiplications and exponentiations of ciphertexts in the
client-based protocols are calculated in mod m2

c . In addi-
tion, the server selects a superset U = {U1, ..., Un} and
shares with the client, as described in Section 4. Then,
for each Ui ∈ U , the client calculates [Ti]c = Ec(0) if
Ui /∈ UC and [Ti]c = Ec(1) if Ui ∈ UC . The client sends
[T]c = {[T1]c , ..., [Tn]c} to the server. Let ri be the random
number used in the calculation of [Ti]c. To prevent malicious
client attack described in Section 4.1, the client sends the
total number of its users (nc) and r =

∏n
i=1 ri to the

server. The server multiplies all [Ti]c values and obtains a
ciphertext which should be equal to encryption of nc. That
is, Ec(nc) = gnc

c · rm =
∏n
i=1 [Ti]c (mod m2

c). The server
encrypts nc with the random value r and verifies the total
number of the client’s users. If

∏n
i=1 [Ti]c is not equal to

Ec(nc) or nc is less than a threshold value, the server aborts
the protocol. Therefore, a malicious client cannot get the
query result for a specific user.

Once the client sends n ciphertexts to the server, any of
the aforementioned queries can be performed with small
computation and communication overheads. We can as-
sume that the users of the client do not change frequently.
Small number of changes on the user list do not have a
notable effect on query results as well. Hence, the client can
update the encrypted list [T]c, when there is a significant
change on its user list. In addition, when the client decides
an update in [T]c, it is not necessary to update all values in
[T]c. The client can only update a subset of users that con-
tains the users to be changed. For instance, if the superset
U includes 100 million users, to change 100 users in [T]c,
the client can update a subset of [T]c containing one million
users instead of all users in [T]c.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

8

C S

U

Setup RNNQ/C, AVGQ/C, MAXQ/C

C S

1: F

5: [X’]c

2: Distance

calculation

3: Creating

encrypted

result

4: Calculating

anonymized

encrypted

result [X’]c

6: Decrypting

encrypted

result [X’]c

PKC

Encrypted list [T]c

nc and r

(for verification)

Fig. 3: Overview of the client-based protocols.

Figure 3 shows the overview of the setup phase and the
protocols. The protocols in this section consist of 6 steps. The
server and the client communicate in Steps 1 and 5. Step 2 is
the calculation of distances as in server-based protocols. In
Step 3, the server utilizes homomorphic properties of Pail-
lier cryptosystem to calculate the encryption of the query
result by using encrypted values in [T]c. Before sending
the encrypted result to the client, the server anonymizes
the result by multiplying it with the encryption of zero
in Step 4. This multiplication does not alter the result; it
only prevents the server from tracking users by the client.
Therefore, the server hides user locations from the client. In
Step 6, the client obtains the query result after decryption.
Since the server only receives the locations of the facilities
during query processing, it is not possible for the server to
determine query result.

5.1 RNN Cardinality Query (RNNQ/C)

Let qi be the total number of users in UI whose nearest
facility is Fi. This query returns the qi values for each facility
Fi ∈ F . Hence, Q = {q1, ..., qk} is the query result. Figure
4 illustrates the steps of the protocol for the same example
scenario explained in Section 4. The protocol is defined as
follows:

• Step 1: C sends the location of each facility to S .
• Step 2: S checks the facility locations and aborts the

protocol if C adds more than θ1 new facilities or
removes more than θ2 existing facilities as described
in Section 3.3. S calculates the distance between each
facility and each user in US . S determines the nearest
facility of each user Ui in US .

• Step 3: For each facility Fj , S calculates the [xj]c
value by multiplying [Ti]c values such that Ui ∈ US
and the nearest facility of Ui is Fj . At the end of this
step, S forms [X]c = {[x1]c , ..., [xk]c} where [xi]c
is the encryption of qi. In this step, S computes the
encrypted result.

• Step 4: S encrypts 0 using k different random val-
ues and calculates [x′i]c = [xi]c · Ec(0) for each
i ∈ {1, ..., k}.

• Step 5: S sends [X ′]c =
{

[x′1]c , ..., [x
′
k]c
}

to C.
• Step 6: C decrypts all [x′i]c values in [X ′]c, and

clearly, Dc([x
′
i]c) is equal to qi. C obtains Q =

{q1, ..., qk}.

User ID [T]C

0 EC(0)

1 EC(1)

2 EC(1)

3 EC(1)

4 EC(0)

5 EC(1)

6 EC(0)

7 EC(0)

8 EC(0)

9 EC(0)

User ID N.F.

0 -

1 F1

2 -

3 F2

4 -

5 F2

6 F1

7 F2

8 -

9 F1

Setup: The client calculates

encrypted values [T]C based

on its users and sends it to

the server

Step 1: The client requests

RNNQ/C for two facilities F1 and F2.

Step 2: The server determines the

nearest facility of each user.

Step 3: For each facility the server

calculates the encrypted results.

 [x1]C = [T1]C · [T6]C · [T9]C = EC(1)

 [x2]C = [T3]C · [T5]C · [T7]C = EC(2)

Step 4: The server anonymizes the

encrypted results.

 [x’1]C = [x1]C · EC(0)= EC(1)

 [x’2]C = [x3]C · EC(0)= EC(2)

Step 5: The server sends [X’]C =

{[x’1]C , [x’2]C} to the client.

Step 6: The client decrypts all

values and obtains 1 and 2 as the

query result.

 Fig. 4: An example scenario for RNNQ/C.

5.2 Average Distance Query (AVGQ/C)
Let q be the average distance between users in UI and each
one’s nearest facility. The protocol is defined as follows:

• Step 1: C sends the location of each facility to S .
• Step 2: As described in RNNQ/C protocol, the server

aborts the protocol if it detects a threat. S calculates
the distance between each facility and each user in
US . S determines the nearest facility of each user Ui
in US and the distance di to the nearest facility.

• Step 3: S calculates the multiplication of [Ti]
di
c val-

ues and the multiplication of [Ti]c values such that
Ui ∈ US . That is, [x1]c =

∏
Ui∈US [Ti]

di
c and [x2]c =∏

Ui∈US [Ti]c. Clearly, [x1]c is equal to Ec(q · nI) and
[x2]c is equal to Ec(nI).

• Step 4: S calculates [x′1]c = [x1]c · Ec(0) and [x′2]c =
[x2]c · Ec(0).

• Step 5: S sends [X ′]c = {[x′1]c , [x
′
2]c} to C.

• Step 6: C decrypts [x′1]c and [x′2]c. Clearly, Dc([x
′
1]c)

is equal to q·nI andDc([x
′
2]c) is equal to nI . C obtains

q after division.

5.3 Maximum Distance Query (MAXQ/C)
Let q be the maximum distance between a user in UI and
her nearest facility. The protocol is defined as follows:

• Step 1: C sends the location of each facility to S .
• Step 2: As described in RNNQ/C protocol, the server

aborts the protocol if it detects a threat. S calculates
the distance between each facility and each user in
US . S determines the nearest facility of each user Ui
in US and the distance di to the nearest facility. Let
max be the maximum distance between a user in US
and her nearest facility. S selects a value w, which is
greater than max.

• Step 3: For each j ∈ {1, .., w}, S calculates the mul-
tiplication of [Ti]c values such that Ui ∈ US and di =
j. That is, S computes [xj]c =

∏
Ui∈US&di=j

[Ti]c. If
there is no such Ui, S sets [xj]c = Ec(0). Therefore,
[xj]c is equal to the encryption of the total number
of users in UI whose distance to the nearest facility
is equal to j. The query result q is equal to the
maximum j value such that Dc([xj]c) 6= 0.

• Step 4: At the end of the protocol, C should not
learn anything more than the query result. To hide
the [xj]c values from C, S randomizes the [xj]c
values by exponentiation. S selects w random values
{v1, ..., vw}. Then, S calculates [x′i]c = [xi]

vi
c for each

i ∈ {1, 2, ..., w}. If [xi]c is the encryption of 0, [x′i]c is
the encryption of 0. Therefore, q is still equal to the
maximum j value such that Dc(

[
x′j
]
c
) 6= 0.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

9

• Step 5: S sends [X ′]c = {[x′1]c , ..., [x
′
w]c} to C.

• Step 6: C decrypts all [x′i]c values. C obtains q,
since it is equal to the maximum j value such that
Dc(

[
x′j
]
c
) 6= 0.

5.4 Security Analysis of Client-Based Protocols
In this section, we prove the security of the client-based
protocols using the simulation paradigm described in Sec-
tion 4.1. To prove the security of the protocols we need
to show that there exists two probabilistic polynomial-time
simulators Sim1 and Sim2 for simulating the views of the
client and the server, respectively. In client-based protocols,
the view of the client only consists of its input and output.
The server only sends the encrypted query result to the
client in Step 5. Since, the encrypted result is anonymized
in Step 4, [X ′]c does not contain any information about the
users. Therefore, the view of the client can obviously be
simulated by Sim1 and the privacy of the server is assured.

The view of the server (VIEW2) consists of US , user
locations, F , and [T]c. To prove that the client’s privacy is
assured in the protocol, we need to show that there exists
a probabilistic polynomial-time simulator Sim2 such that
Sim2(US , user locations ,F)

c≡ VIEW2. This is satisfied by
letting Sim2 generate n random numbers between 0 and
m2
c . These numbers are computationally indistinguishable

from the ciphertexts in [T]c due to the semantic security of
Paillier cryptosystem. Hence, we conclude that the client-
based protocols privately processes the queries in semi-
honest model.

6 PROTOCOLS WITH DIFFERENTIAL PRIVACY

Differential privacy is a framework to formalize privacy
in statistical databases. The security proofs indicate that
the proposed protocols reveal no more information than
the output of the queries. However, providing aggregate
statistical information about a database may reveal infor-
mation about the individuals in the dataset. All of the
queries (RNNQ, AVGQ, and MAXQ) that are defined in this
paper return aggregate results and these query results may
cause information leaks in some cases. For example, RNNQ
returns the cardinality of RNN(Fi) for each facility Fi in
F . If the RNN cardinality of a facility is 1, this user can
be predicted with background knowledge. However, only a
region containing the user’s location can be inferred. In any
case, it is not possible to find the exact location of a user.

The server-based protocols defined in Section 4 and
the client-based protocols defined in Section 5 return exact
query results. To achieve differential privacy in these proto-
cols, we need to add controlled random noise to the query
result. As discussed in Section 2.3, one needs to define the
sensitivity of a query to determine the amount of noise to be
added to the result of a query. Now, we show the sensitivity
of each considered query and how to add the noise during
the protocols.

RNNQ returns the total number of users attracted by
each facility. It can be thought as a histogram query [9]
and its sensitivity is 2. When there is a single change in the
database, RNN of at most two facilities may change. There-
fore, we add a noise Laplace(2

ε) to the RNN cardinality of
each facility.

AVGQ returns two values: (i) the total number of users
in UI (nI) and (ii) the total distance between each user and
her nearest facility (q·nI). Thus, we need to calculate the sen-
sitivity for both subqueries. Since the total number of users
is a counting query, the sensitivity for nI is 1. For the total

distance, the sensitivity is the maximum distance (max)
between a user in US and her nearest facility. Therefore, we
add the noise from Laplace(1

ε) to nI and Laplace(maxε) to
q · nI .

MAXQ returns w3 values containing zero and non-zero
elements. The largest index of a non-zero element is the
result of the query. In MAXQ each of w values can be
considered as a counting query, and hence the sensitivity
of each one is 1. Therefore, we add Laplace(1

ε) to each w
values.

In the server-based protocols, the server adds noise to
the query result in Step 8. Before sending the masked result
X ′′ to the client, the server adds noise to the masked result.
When the client applies unmasking in Step 10, it obtains the
noisy result instead of the exact result.

In the client-based protocols, the server adds noise to the
query result in Step 4. Before sending the encrypted result to
the client, the server anonymizes the result by multiplying
it with the encryption of zero in the client-based protocols.
Instead of encrypting zero values, the server encrypts the
values drawn from the Laplace distribution and multiplies
the encryption of the noise with the encrypted query result.
Due to homomorphic properties of Paillier cryptosystem,
the noise will be added to the query result in plaintext.
When the client decrypts query result in Step 6, it obtains
the noisy result instead of the exact result.

7 EVALUATION
In this section, we analyze the complexity, performance
and the utility of the proposed protocols. As there is no
existing work that solves the stated problems, we only
show the feasibility of our solutions. Firstly, we analyze
the computation complexity and the communication costs
theoretically in Section 7.1. In Section 7.2, we present the
experimental efficiency evaluation of each protocol with
respect to different parameters. In Section 7.3, we show the
utility of the protocols when differential privacy is achieved.

7.1 Complexity Analysis
In this section, we analyze the computation and commu-
nication costs of the proposed protocols in Section 4 and
Section 5. Achieving differential privacy as described in
Section 6 does not change the communication costs of the
protocols. Moreover, its effect on computation time is negli-
gible because only overhead to achieve differential privacy
is producing the noise drawn from the Laplace distribution.
Therefore, we give the computation costs of the protocols as
described in Section 4 and Section 5.

Server-based protocols. Table 2 shows the total number
of operations performed during server-based protocols in
terms of total number of encryptions, decryptions, multipli-
cations, exponentiations, distance calculations, and permu-
tations. In all protocols, encryptions dominate the computa-
tion times. The number of encryptions is proportional to n
and the server performs at least n encryptions in each query.
However, the server encrypts 0 or 1 in each encryption
and it can encrypt these values offline before the protocol.
When the server uses precomputed Es(0) and Es(1) values
in these protocols, computation cost reduces significantly.
In addition, all of these ciphertexts must be transferred to
the client in each query. Hence, the computation costs of
RNNQ/S, AVGQ/S, and MAXQ/S are n · k, 2 · n, and n ·w
ciphertexts, respectively.

3. w is a random number that is selected by the server in the
MAXQ/S and MAXQ/C protocols

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

10

TABLE 2: Computation performed in proposed protocols.

S C

RNNQ/S
ns · k dist.
n · k enc.
k dec.

nc · k mult.
k enc.

AVGQ/S
ns · k dist.
2 · n enc.
2 dec.

2 · nc mult.
2 enc.
1 div.

MAXQ/S
ns · k dist.
n · w enc.
w dec.

w · (nc − 1) mult.
w exp.
2 per.

RNNQ/C
ns · k dist.
k enc.

ns + k mult.
k dec.

AVGQ/C

ns · k dist.
2 enc.

2 · ns mult.
ns exp.

2 dec.
1 div.

MAXQ/C

ns · k dist.
ns mult.
w exp.
≤ w enc.

w − q + 1 dec.

Client-based protocols. In the setup phase of the client-
based protocols, n encryptions are computed by the client.
The client sends these n ciphertexts to the server in the
setup. Therefore, the communication overhead of the setup
is n ciphertexts. After completion of the setup phase, all
queries can be processed with small computation and com-
munication overheads. Table 2 shows computation costs
of client-based protocols in each query. Total number of
encryptions in each query is very small with respect to the
server-based protocols. The computation costs of RNNQ/C,
AVGQ/C, and MAXQ/C are k, 2, and w ciphertexts, respec-
tively.

7.2 Efficiency

We have implemented the protocols in Java and we used
the implementation in [18] for Paillier cryposystem. All ex-
periments were performed on a 64-bit Windows 7 machine
with 2.6 GHz Intel Core i5 processor and 4 GB of RAM.
We used 1024-bit modulus ms and mc in our tests and each
ciphertext consists of 2048 bits. All distances were calculated
by the server in the Euclidean metric.

In our experiments, we used real datasets [28] containing
227,428 check-ins in New York City and 573,703 check-ins
in Tokyo. The x and y coordinates were scaled to integer
values from 1 to 10,000. Since the total number of users in
the datasets is less than 5,000, we considered each check-in
location as the location of a separate user. Therefore, ns =
227, 428 in NYC dataset and ns = 573, 703 in Tokyo dataset.
We randomly chose 20% of them as the users of the client.
For existing facilities, we used the locations of 20 restaurants
of a fast food chain in New York and 10 restaurants of a fast
food chain in Tokyo.

For synthetic datasets, the x and y coordinates of the
user locations and facility locations were selected randomly
as integer values from 1 to maxCoordinate. The user id
values in the superset U were selected as the numbers from
1 to n. We randomly chose ns of them as the users of the
server and nc of them as the users of the client. The key
parameters in the implementation were n, ns, nc, nI , k,
maxCoordinate, ms, and mc (introduced in Table 1). w is
another parameter in the Maximum Distance Query, which
depends on the value of maxCoordinate. We present the
experimental evaluation of the server-based protocols in
Section 7.2.1 and the client-based protocols in Section 7.2.2.

7.2.1 Server-based Protocols
When we use 1024-bit ms in Paillier encryption, one million
encryption nearly takes 2 hours and 45 minutes and the
size of one million ciphertexts is 250 MB. For the protocols
RNNQ/S, AVGQ/S, and MAXQ/S, the computation times
and communication costs are directly proportional to n ·
k, 2 · n, and n · w, respectively. Therefore, when n is one
million, the computation time of each protocol is more than
2 hours and 45 minutes. Moreover, when n is one million,
the amount of data exchanged during each protocol is more
than 250 MB.

In our experiments, we set n = 1, 000, 000, ns =
100, 000, nc = 20, 000, k = 25, and maxCoordinate =
10, 000 in the synthetic dataset. Running time of RNNQ/S
with these parameters is high because it requires n · k
encryptions for the encrypted matrix [T]s. However, all of
these ciphertexts in [T]s are either the encryption of 0 or
the encryption of 1. Therefore, the encrypted values in [T]s
can be computed offline by the server. When the server
precomputes Es(0) and Es(1) values before the protocol,
the remaining computation takes 10 seconds for these pa-
rameters. For the NYC and Tokyo datasets, the query takes
20 seconds and 25 seconds, respectively. Similarly, for the
synthetic dateset with given parameters, AVGQ/S takes 13.5
seconds, when the server computes Es(0) and Es(1) values
before the protocol. Since the computation time of AVGQ/S
is directly proportional to ns, the query takes nearly 35 and
70 seconds for the NYC and Tokyo datasets, respectively.
The computation time of MAXQ/S mostly depends on the
value of w, which is a randomly selected number by the
server. The server performs w decryptions and the client
performs w exponentiations and w ·(nc−1) multiplications.
For instance, when w is selected as 500, the computation
time of MAXQ/S is nearly 5 minutes and it increases lin-
early whenw increases. Whenw remains same, we observed
the similar computation times for the real datasets.

Our experimental results show that the computation at
the client’s side is low in server-based query processing
protocols. Step 3 of these protocols necessitates calculat-
ing an encrypted matrix [T]s. This step dominates the
computation time of server-based protocols. However, the
encrypted values can be computed offline by the server. To
do offline computation, the server does not need to know
the facility locations. The server can compute Es(0) and
Es(1) values before the protocol. When the client sends the
facility locations in a protocol, the server uses previously
computed ciphertexts in the encrypted matrix [T]s. Hence,
if the server computes these encryptions offline before the
protocol, the remaining computation takes a few minutes
on a single computer for millions of users. In addition, the
computation time of calculating [T]s can be reduced via par-
allel computations because all encryptions are independent.
Server-based protocols can be preferable when the client
cannot afford to perform the computations or when the
client wants to outsource all the computations to the server.
However, as we have shown, the encrypted values in [T]s
must be transferred to the client in each query.

7.2.2 Client-based Protocols
In Section 7.1, the computation complexity of each client-
based protocol is given. When the client performs sev-
eral queries, some of these computations are common. For
instance, the server calculates the distance between each
facility and each user in each query. For the same facilities
in separate queries, the server does not need to calculate the
same distance values. In our system model, the locations of

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

11

the existing facilities are considered as public and known
by the server. The client can share these locations in the
setup phase. Since the server knows the locations of the
existing facilities, we assume that all the distances between
users and existing facilities were calculated and the nearest
facility of each user was determined by the server before
the execution of protocols. In each query, the client sends
a possible location for adding a new facility and the server
only calculates the distance between the new location and
each user. The server only updates the nearest facilities of
the users who are attracted by the new facility. Therefore,
we evaluate the following for each protocol under different
parameter settings:

• Precomputation time. Most of the computation
given in Table 2 can be precomputed by the server
because the locations of the existing facilities are
known by the server. Hence, we evaluate the pre-
computation time of each protocol separately.

• Query processing time. Once the server completes
the precomputation, processing of each query re-
quires low computation overhead. We evaluate the
query processing time when the client sends a possi-
ble location for adding a new facility.

• Amortized computation time. When the client re-
quests nq queries, amortized computation time of a
query is equal to ((precomputation time) + nq· (query
processing time)) / nq .

In the setup phase of the client-based protocols, the client
computes n ciphertexts and shares them with the server.
Therefore, the computation cost and the communication cost
of the setup phase of the client-based protocols are directly
proportional to n. One ciphertext consists of 2048 bits and
one encryption takes 10 ms on the machine mentioned
above. Therefore, if n is one million, the execution time of
the setup phase is nearly 2 hours and 45 minutes4 and the
amount of data sent by the client to the server is 250 MB.

Table 2 shows computation costs of client-based proto-
cols including precomputation and query processing. We
evaluate the performance of the protocols with respect to
n, ns, nc, nI , k, and maxCoordinate. As evident in Table
2, the parameters n, nc, and nI have no effect on query
processing times of the protocols. In our experiments, we
observed the similar computation times for different val-
ues of these parameters. Therefore, increasing one of these
parameters does not change the precomputation time and
the query processing time of client-based protocols. For the
other parameters ns, k, and maxCoordinate, we analyze
their effects on the precomputation time, the query process-
ing time and the communication cost of each client-based
protocol. In our experiments, we set n = 200, 000, 000,
ns = 5, 000, 000, nc = 1, 000, 000, nI = 500, 000, k = 100,
and maxCoordinate = 10, 000, unless stated otherwise.

RNNQ/C. Table 2 shows the computation cost of the
protocol, where ns and k are the determining parameters. In
this protocol, ns · k distance calculations, ns multiplications
and k encryptions can be precomputed by the server. The
client computes [X]c = {[x1]c , ..., [xk]c} before the protocol.
When the client requests a query for a new facility location
(Fk+1), the server only calculates the distance between Fk+1

and each user. Then, the client multiplies the [Ti]c values
of the users whose nearest facility is Fk+1 and calculates
[xk+1]c. The client also multiplies the inverse of [Ti]c values
of the same users with the xj values of their previous nearest

4. Computation time can be further reduced via parallel computa-
tions.

neighbors. Therefore, during query processing the server
performs ns distance calculations, nearly 2 · ns

k multiplica-
tions, and nearly ns

k modular inverse calculations. The client
also performs k decryptions during query processing.

Although encryption and decryption are more expensive
operations than multiplication, the most time consuming
part in the precomputation time is ns multiplications be-
cause ns is much higher than k in our experiments. There-
fore, the precomputation time mostly depends on ns and
slightly depends on k. Figure 5(a) illustrates the effect of ns
on precomputation time. The precomputation time increases
from 82 seconds to 407 seconds, when ns increases from 5
million to 25 million. As evident in Figure 5(b), the effect of
k is not sharp as ns. For instance, the precomputation takes
82 seconds when k is 100. When k becomes 500, the time
increases to 110 seconds. For the NYC and Tokyo datasets,
the precomputation time is 4 seconds and 9.6 seconds,
respectively, due to the lower ns values in these datasets.

The query processing time of RNNQ/C depends on the
values of ns and k. Although an increase in k decreases
the workload of the server, it increases the total number of
decryptions performed by the client. Figure 6(a) and Figure
6(b) shows the query processing time for different values
of ns and k. These two variables are not the only factors
that determine the query processing time because the total
number of operations also depends on the total number
of users attracted by the new facility. Query processing
takes 1.9 seconds and 2.5 seconds, for the NYC and Tokyo
datasets, respectively.

We also evaluate the amortized computation time of
RNNQ/C for 100 queries. For the parameters given above,
the precomputation takes 82 seconds and the query process-
ing takes 4.3 seconds. Hence, the amortized computation
time per query is 5.1 seconds.

During query processing, k ciphertexts and the facility
locations are shared between the server and the client.
Hence, k is the most crucial parameter for the communi-
cation cost. When the total number of facilities is 100, the
amount of shared data is nearly 25 KB.

AVGQ/C. In this protocol, the client obtains the total
number of users in UI and the total distance between each
user and her nearest facility. Until there is a change on the
total number of users, there is no need to compute it in
each query. Hence, the total number of users in UI can
be precomputed by the server and the client. This part of
precomputation requires ns multiplications, one encryption,
and one decryption. In addition, the server can precompute
ns · k distance calculations, ns exponentiations, ns multi-
plications, and one encryption for the computation of the
total distance. During query processing the server performs
ns distance calculations, nearly 2 · ns

k multiplications, nearly
ns

k exponentiations, and nearly ns

k modular inverse calcula-
tions. The client performs one decryption and one division
during query processing.

Due to the high number of exponentiations, the pre-
computation time of AVGQ/C is higher than the other
client-based protocols. Figure 5(a) depicts the precompu-
tation time for different values of ns. Query processing
takes nearly 12 minutes when the server has 5 million
users and the time changes linearly with respect to the
value of ns. For the smaller ns values in NYC and Tokyo
datasets, the precomputation takes 41 seconds and 92 sec-
onds, respectively. In addition, Figure 5(c) shows that the
value of maxCoordinate affects the precomputation time
slightly. As maxCoordinate increases, exponent values in
the computation also increase.

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

12

0

1000

2000

3000

4000

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000

se
co

n
d

s

ns

(a) Precomputation Time vs. ns

RNNQ/C MAXQ/C AVGQ/C

0

200

400

600

800

100 200 300 400 500

se
co

n
d

s

k

(b) Precomputation Time vs. k

RNNQ/C MAXQ/C AVGQ/C

0

200

400

600

800

1000

5,000 10,000 15,000 20,000 25,000

se
co

n
d

s

maxCoordinate

(c) Precomputation Time vs. maxCoordinate

RNNQ/C MAXQ/C AVGQ/C

Fig. 5: Precomputation times of client-based protocols.

0

20

40

60

80

100

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000

se
co

n
d

s

ns

(a) Query Processing Time vs. ns

RNNQ/C MAXQ/C AVGQ/C

0

10

20

30

40

50

100 200 300 400 500

se
co

n
d

s

k

(b) Query Processing Time vs. k

RNNQ/C MAXQ/C AVGQ/C

0

20

40

60

80

5,000 10,000 15,000 20,000 25,000

se
co

n
d

s

maxCoordinate

(c) Query Processing Time vs. maxCoordinate

RNNQ/C MAXQ/C AVGQ/C

Fig. 6: Query processing times of client-based protocols.

The query processing time of AVGQ/C is directly pro-
portional to ns and inversely proportional to k. Figure
6(a) and Figure 6(b) shows the query processing time for
different values of ns and k. Since there is no encryption
and only one decryption in query processing, AVGQ/C
has the lowest query processing time among three client-
based protocols. Query processing takes nearly 1 second,
for both NYC and Tokyo datasets. Similar to RNNQ/C, the
total number of users attracted by the new facility affects
the query processing time. The precomputation takes 720
seconds and the query processing takes 2 seconds for the
parameters given above. Hence, the amortized computation
time per query is 9.2 seconds for 100 AVGQ/C queries.

During the protocol, two ciphertexts and the facility loca-
tions are shared between the server and the client. Therefore,
the communication cost is low because the facility locations
are sent as plaintext and the total number of ciphertexts is
two. When the total number of facilities is 100, the amount
of shared data is less than 1 KB during query processing.

MAXQ/C. In MAXQ/C, the server can precompute ns ·k
distance calculations, ns multiplications and w encryptions.
During query processing, the server performs ns distance
calculations, nearly 2· ns

k multiplications, nearly ns

k modular
inverse calculations, and w encryptions. The client also
performs w − q + 1 decryptions during query processing.

w and ns are crucial parameters in the precomputation
time of MAXQ/C. Similar to RNNQ/C protocol, the pre-
computation time mostly depends on ns because ns is much
higher than w in our experiments. Figure 5(a) shows the
precomputation time with respect to ns. Since ns multipli-
cations dominate the computation cost, the precomputation
time of MAXQ/C is similar to RNNQ/C. We also observed
similar results for the real datasets.

Due to the randomness in the selection of w, the query
processing time of MAXQ/C is not directly proportional to
ns ormaxCoordinate.w is a randomly selected value that is
greater than max, which is the maximum distance between
a user in US and her nearest facility. In our experiments, w is
selected randomly in the range [max, 2·max]. Therefore, the
parametermaxCoordinate affects the value ofw, and hence
the query processing time. The query processing time of

MAXQ/C for different values ofmaxCoordinate is given in
Figure 6(c). As evident in Figure 6(c), query processing time
is not directly proportional tomaxCoordinate. For instance,
when maxCoordinate increases from 15,000 to 20,000, the
computation time decreases due to a decrease in w and an
increase in q. Therefore, the distance of each user to her
nearest facility and the query result q also affect the query
processing time. In addition, Figure 6(b) shows the query
processing time for different values of k. Smaller k values
may result in higher query processing times because max
value may increase in smaller k values. For instance, in real
datasets we have smaller k values such as 10 and 20. As
a result, the query processing times are 17 seconds and 60
seconds, for the NYC and Tokyo datasets, respectively.

For the parameters given above, the precomputation
takes 83 seconds and the query processing takes 22.2 sec-
onds. Therefore, the amortized computation time per query
is 23 seconds for 100 MAXQ/C queries. The communication
cost of the protocol isw ciphertexts and the facility locations.
When w is selected as 5000, the amount of shared data is
nearly 1.25 MB.

All these results show the practicality of our proposed
scheme in real-life settings. Any of the aforementioned
queries can be performed in less than a minute on datasets
that include millions of individuals.

7.3 Utility vs. Differential Privacy

In Section 6, we explain how to achieve differential privacy
in the proposed protocols by adding controlled noise to the
query results, which affects the accuracy of the results. To
measure the utility of the protocols under differential pri-
vacy, we selected 100 possible locations for the new facility
and observed the results after executing the protocols. We
divided the whole region into a 10x10 grid and selected
the center of each grid as a possible location for the new
facility. First, we applied the protocols without adding any
noise and ranked the possible 100 locations with respect to
their optimality. Then, we executed the protocols by adding
controlled noise and observed the impact of differential
privacy on the utility. We evaluated the utility of differential

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

13

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(a) NYC Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

0

4

8

12

16

20

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(b) Tokyo Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

0
5

10
15
20
25
30
35
40
45
50

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(c) Synthetic Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

Fig. 7: Deviation in the rankings of the 100 candidate locations after achieving differential privacy in RNNQ. x axis
represents the rankings of the candidate locations when RNNQ is performed with exact query results. y axis represents the
change in the ranking of each candidate location when differential privacy is achieved in RNNQ. For instance, in Figure
7(a) the point (5, 65) for ε = 0.01 shows that the 5th best candidate location for the new facility becomes 70th best location
after adding noise to the query result. Depending on the maximum change in the rankings for each dataset, the range of y
axis varies.

0

10

20

30

40

50

60

70

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(a) NYC Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

0

4

8

12

16

20

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(b) Tokyo Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

0

5

10

15

20

25

30

1 10 19 28 37 46 55 64 73 82 91 100

D
ev

ia
ti

o
n

 in
 r

an
ki

n
g

af
te

r
ad

d
in

g
n

o
is

e

Ranking of the possible locations without noise

(c) Synthetic Dataset

Epsilon = 0.01 Epsilon = 0.1 Epsilon = ln2

Fig. 8: Deviation in the rankings of the 100 candidate locations after achieving differential privacy in AVGQ.

privacy for the real and synthetic datasets. For synthetic
datasets, we set the parameters as given in Section 7.2.

RNNQ. The objective of using RNNQ is uniformly
distributing the cardinality of the RNNs. When the new
facility attracts users from dense facilities, the workloads
of dense facilities decrease. Hence, balancing workload re-
duces the wait times by avoiding overloads. We measured
the standard deviation of the cardinalities of the RNNs. We
sorted 100 candidate locations with respect to the standard
deviation after adding the possible location as the new
facility. The best candidate is the location that minimizes
the standard deviation. We also sorted the candidate loca-
tions after achieving differential privacy. Figure 7 shows the
rankings of the candidates for real and synthetic datasets
after adding controlled noise. We used three different ε
values such as 0.01, 0.1, and ln 2, which are typically chosen
values in the literature. As evident in Figure 7, the utility
increases when ε increases. When ε is ln 2, the ranking of the
candidates are almost same as the rankings without adding
any noise. Although the deviations in the rankings increase
for the smaller values of ε, the best candidate is same most of
the time after achieving differential privacy. Therefore, the
utility of RNNQ under differential privacy is remarkable for
large ε values and acceptable for small ε values.

AVGQ. We sorted 100 candidate locations with respect
to the average distance value returned from the query. The
best candidate is the location that minimizes the average
distance. Figure 8 shows the rankings of the candidates
after adding controlled noise. The deviation on the rankings
is less than RNNQ. Therefore, the utility of AVGQ under
differential privacy is better than RNNQ for all ε values.

MAXQ. This query returns w values containing zero and
non-zero elements. The largest index of a non-zero element
is the result of the query. After adding the noise to each of w
values, most of the zero values becomes non-zero. Therefore,
adding the noise changes the query result significantly. In

our experiments, we observed that the query result becomes
w or w − 1 most of the time after adding the noise. Since w
is a randomly selected value, the query returns a random
result in each execution. Hence, the utility of MAXQ under
differential privacy is very low.

Discussion. Our experimental results show that achiev-
ing differential privacy in RNNQ and AVGQ causes low
utility loss. Since these queries contain counting subqueries,
running them under differential privacy increases the pri-
vacy of individuals with a negligible computational over-
head. On the other hand, MAXQ is not suitable for differ-
ential privacy because the query result changes significantly
after adding noise to each counter value in the query. To
prevent high utility loss of differential privacy in MAXQ,
only non-zero values should be randomized as described in
Section 5.3.

8 CONCLUSION

We proposed novel protocols for privacy-preserving anal-
ysis of location data in a location-based service provider
(referred as the server) by a business (referred as the client)
as a service. We defined three queries addressing different
objectives in optimal location selection: (i) to minimize the
average distance between each user and her closest facility,
(ii) to minimize the maximum distance between a user
and her closest facility, and (iii) to uniformly distribute
the workload in facilities. We developed two homomorphic
encryption-based solutions: (i) a server-based solution, in
which most of the computation is performed by the server,
and hence the workload of the client is low, and (ii) a client-
based solution, in which the client performs the majority
of the computation during the setup phase (which only
occurs once) and after completion of the setup phase, all
queries are processed quickly. We showed that the proposed
protocols keep the client’s user list and the query result
hidden from the server, and the location information stored

1545-5971 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2693986, IEEE
Transactions on Dependable and Secure Computing

14

at the server hidden from the client. The security provided
by all protocols relies on the underlying security of the Pail-
lier cryptosystem (which relies on the decisional composite
residuosity assumption) proved in [22]. We also showed that
it is possible to achieve differential privacy in the proposed
protocols with low utility loss. Using the proposed protocols
will facilitate sharing location information between entities
without compromising customer privacy. We evaluated the
efficiencies of the proposed protocols through experiments
for each considered query type and showed that the pro-
posed protocols are feasible, efficient, and scalable.

REFERENCES

[1] J. Benaloh. Dense probabilistic encryption. In Proceedings of the
Workshop on Selected Areas of Cryptography, pages 120–128, 1994.

[2] J. Cardinal and S. Langerman. Min-max-min geometric facility
location problems. In Proc. European Workshop on Computational
Geometry (EWCG’06), pages 149–152, 2006.

[3] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long.
Efficient algorithms for optimal location queries in road networks.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 123–134. ACM, 2014.

[4] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user
location privacy in mobile data management infrastructures. In
Privacy Enhancing Technologies, pages 393–412. Springer, 2006.

[5] W. Du and M. J. Atallah. Protocols for secure remote database
access with approximate matching. In E-Commerce Security and
Privacy, pages 87–111. Springer, 2001.

[6] W. Du and M. J. Atallah. Secure multi-party computation problems
and their applications: a review and open problems. In Proceedings
of the 2001 workshop on New security paradigms, pages 13–22. ACM,
2001.

[7] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In Advances
in Spatial and Temporal Databases, pages 163–180. Springer, 2005.

[8] C. Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation, pages
1–19. Springer, 2008.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography
Conference, pages 265–284. Springer, 2006.

[10] C. Dwork, A. Roth, et al. The algorithmic foundations of differen-
tial privacy. Foundations and Trends in Theoretical Computer Science,
9(3-4):211–407, 2014.

[11] L. Garber. Analytics goes on location with new approaches.
Computer, (4):14–17, 2013.

[12] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

[13] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L.
Tan. Private queries in location based services: anonymizers are
not necessary. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 121–132. ACM, 2008.

[14] O. Goldreich. Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[15] S. Ilarri, E. Mena, and A. Illarramendi. Location-dependent query
processing: Where we are and where we are heading. ACM
Computing Surveys (CSUR), 42(3):12, 2010.

[16] A. Khoshgozaran and C. Shahabi. Blind evaluation of nearest
neighbor queries using space transformation to preserve location
privacy. In Advances in Spatial and Temporal Databases, pages 239–
257. Springer, 2007.

[17] F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In ACM SIGMOD Record, volume 29,
pages 201–212. ACM, 2000.

[18] K. Liu. Paillier’s cryptosystem in java.
http://www.csee.umbc.edu/%7Ekunliu1/research/Paillier.html.

[19] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query
processing for location services without compromising privacy. In
Proceedings of the 32nd international conference on Very large data bases,
pages 763–774. VLDB Endowment, 2006.

[20] B. Niu, Q. Li, X. Zhu, G. Cao, and H. Li. Achieving k-anonymity
in privacy-aware location-based services. In INFOCOM, 2014 Pro-
ceedings IEEE, pages 754–762. IEEE, 2014.

[21] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as
secure as factoring. Advances in Cryptology EUROCRYPT’98, pages
308–318, 1998.

[22] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology EUROCRYPT’99,
pages 223–238. Springer, 1999.

[23] R. Paulet, M. G. Kaosar, X. Yi, and E. Bertino. Privacy-preserving
and content-protecting location based queries. Knowledge and Data
Engineering, IEEE Transactions on, 26(5):1200–1210, 2014.

[24] J. Qi, R. Zhang, Y. Wang, A. Y. Xue, G. Yu, and L. Kulik. The min-
dist location selection and facility replacement queries. World Wide
Web, 17(6):1261–1293, 2014.

[25] Y. Qi and M. J. Atallah. Efficient privacy-preserving k-nearest
neighbor search. In Distributed Computing Systems, 2008. ICDCS’08.
The 28th International Conference on, pages 311–319. IEEE, 2008.

[26] R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu. Effi-
cient method for maximizing bichromatic reverse nearest neighbor.
Proceedings of the VLDB Endowment, 2(1):1126–1137, 2009.

[27] Z. Wu, L. Yu, J. Zhu, H. Sun, Z. Guan, and Z. Chen. A hybrid
approach for privacy preservation in location based queries. In
Web-Age Information Management, pages 315–326. Springer, 2013.

[28] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling user activity
preference by leveraging user spatial temporal characteristics in
lbsns. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
45(1):129–142, 2015.

[29] X. Yi, R. Paulet, E. Bertino, and V. Varadharajan. Practical k nearest
neighbor queries with location privacy. In Data Engineering (ICDE),
2014 IEEE 30th International Conference on, pages 640–651. IEEE,
2014.

[30] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation
of the min-dist optimal-location query. In Proceedings of the 32nd
international conference on Very large data bases, pages 643–654. VLDB
Endowment, 2006.

Emre Yilmaz received his M.S. degree from
Computer Science, ETH Zurich in 2010, B.S.
degree from Computer Science and Engineer-
ing, Sabanci University in 2008. He is continuing
his Ph.D. studies in Computer Engineering at
Bilkent University, Ankara, Turkey. His research
interests include data privacy, cryptography, and
data analysis.

Hakan Ferhatosmanoglu is a Professor of
Computer Engineering at Bilkent University,
Ankara, Turkey. His research is on building scal-
able systems for streaming data management
and analytics. Before joining Bilkent, he was an
associate professor (with tenure) in the Depart-
ment of Computer Science and Engineering at
The Ohio State University. He received his Ph.D.
in Computer Science from University of Califor-
nia Santa Barbara in 2001. He received Career
Awards, from the US Department of Energy, US

National Science Foundation, and Turkish Academy of Sciences.

Erman Ayday is an Assistant Professor of Com-
puter Engineering at Bilkent University, Ankara,
Turkey. Before that he was a Post-Doctoral Re-
searcher at Ecole Polytechnique Fdrale de Lau-
sanne, Switzerland. He received his M.S. and
Ph.D. degrees from Georgia Tech Information
Processing, Communications and Security Re-
search Lab in the School of Electrical and Com-
puter Engineering, Georgia Institute of Technol-
ogy, Atlanta, GA, in 2007 and 2011, respectively.
His research interests include privacy-enhancing

technologies (including big data and genomic privacy), wireless network
security, game theory for wireless networks, trust and reputation man-
agement, and recommender systems.

Remzi Can Aksoy received B.S. degree from
Computer Engineering at Bilkent University,
Ankara, Turkey in 2016. He started his gradu-
ate studies in Computer Science at University
of Michigan. His research interests include data
privacy and big data.

