
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Privacy-Preserving Multikeyword Similarity
Search Over Outsourced Cloud Data

Chia-Mu Yu, Chi-Yuan Chen, and Han-Chieh Chao, Senior Member, IEEE

Abstract—The amount of data generated by individuals and
enterprises is rapidly increasing. With the emerging cloud comput-
ing paradigm, the data and corresponding complex management
tasks can be outsourced to the cloud for the management flexibility
and cost savings. Unfortunately, as the data could be sensitive,
the direct data outsourcing would have the problem of privacy
leakage. The encryption can be used, before the data outsourcing,
with the concern that the operations can still be accomplished by
the cloud. We consider the multikeyword similarity search over
outsourced cloud data. In particular, with the consideration of the
text data only, multiple keywords are specified by the user. The
cloud returns the files containing more than a threshold number
of input keywords or similar keywords, where the similarity here
is defined according to the edit distance metric. We propose three
solutions, where blind signature provides the user access privacy,
and a novel use of Bloom filter’s bit pattern provides the speedup
of search task at the cloud side. Our final design to achieve the
search is secure against insider threats and efficient in terms of the
search time at the cloud side. Performance evaluation and analysis
are used to demonstrate the practicality of our proposed solutions.

Index Terms—Cloud computing, counterintelligence, out-
sourced data, privacy, similarity search.

I. INTRODUCTION

C LOUD computing has become a new computing
paradigm. Currently, an increasing number of individuals

and enterprises are generating a huge amount of data every-
day. It is no longer economically feasible to maintain their
own hardware and staffs for data management. Recently, a
reasonable and popular choice to mitigate the burden of data

Manuscript received August 24, 2014; revised November 22, 2014; accepted
January 24, 2015. This work was supported in part by the Ministry of Science
and Technology of Taiwan under Grant MOST 102-2218-E-155-006-MY2,
Grant 103-2221-E-197-018, and Grant 101-2221-E-197-008-MY3; by the Na-
tional Nature Science Foundation of China under Grant 61170296 and Grant
60873241; and by the Program for New Century Excellent Talents in University
under Grant 291184.

C.-M. Yu is with the Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan 32003, Taiwan, and also with Innovation Center for
Big Data and Digital Convergence, Taoyuan 320, Taiwan (e-mail: chiamuyu@
saturn.yzu.edu.tw).

C.-Y. Chen is with the Department of Computer Science and Information En-
gineering, National Ilan University, Yilan 260, Taiwan (e-mail: chiyuan.chen@
ieee.org).

H.-C. Chao is with the Department of Electronic Engineering and the
Institute of Computer Science and Information Engineering, National Ilan
University, Yilan 260, Taiwan, with the Department of Electrical Engineering,
National Dong Hwa University, Hualien 97401, Taiwan, with the College of
Information Engineering, Yangzhou University, Yangzhou 225009, China, and
also with the School of information Science and Engineering, Fujian University
of Technology, Fuzhou 100044, China (e-mail: hcc@niu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2015.2402437

management is to outsource the complex data management task
to the cloud with the major benefit of cost savings. One may
have concern that the cloud cannot always be trusted; it may
purposely and unsolicitedly examine the outsourced data [1].
To keep the advantage of cost savings and protect the data
privacy, the data, before outsourced to the cloud, need to be
encrypted. Despite the success in gaining the data privacy, data
encryption does not allow the cloud to answer the users’ queries
on the data. A straightforward solution for the user to overcome
such a difficulty is to simply download the entire data set. This,
however, is practically infeasible because of the huge volume
of the incurred bandwidth consumption.

The problem of retrieving information from the encrypted
files has already been very challenging. In the context of
outsourced cloud data, the problem is even aggravated by a
large number of on-demand users and a huge amount of out-
sourced data files. Therefore, with the given considerations, it
is extremely difficult to meet the requirements of both retrieval
feasibility and system performance.

In the current use, text data that can be seen everywhere
would be the one delivering the majority of information. An
important method of retrieving information on the text data is
the keyword search, in which only the text files containing the
specific keywords are returned to the user. However, possibly
due to the lack of the files perfectly matching the input key-
words, the keyword search may return an empty result. In this
sense, the user naturally turns to seek for the similar result.
Here, the similar result could be the files containing part of
input keywords or containing the words similar to the input
keywords. Such similar keyword search can find numerous ap-
plications, such as record linkage [21] and biological database
[32]. Due to its ability in enhancing system usability and overall
user experience, the research on the similar keyword search has
been conducted extensively. Unfortunately, most of them are
considered without security and privacy concerns [18], [23].
Still, only a few research efforts on similar keyword search are
done under the constraint of encrypted texts.

A. Related Work

Searchable encryption [7], [12]–[14], [22], [25], [27] is a
cryptographic primitive developed for performing the keyword
search over the encrypted data. The basic idea behind the very
first searchable encryption is to encrypt each word in a text
file individually. Then, as can easily be known, the search cost
of the given basic searchable encryption would be very high.
The subsequent research efforts are put to develop an index
that can support more efficient keyword search. Another line of

1932-8184 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html
mailto: chiamuyu@saturn.yzu.edu.tw
mailto: chiamuyu@saturn.yzu.edu.tw
mailto: chiyuan.chen@ieee.org
mailto: chiyuan.chen@ieee.org
mailto: hcc@niu.edu.tw

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

research on searchable encryption is to enrich search predicates;
therefore, conjunctive keyword search, subset query, and range
query over encrypted data are also introduced. The advantage
of searchable encryption is its provable security. Nevertheless,
although different searchable encryption techniques are pro-
posed, applying searchable encryption directly cannot tackle
the similarity keyword search problem because it can only
handle the exact keyword matching.

Recently, privacy-preserving keyword search [26], [30], such
as secure ranked search, where only the files with better match-
ing to the input keywords are returned, has been studied in
the settings of single keyword [29] and multikeyword [15].
Nonetheless, in the setting of secure ranked search, only the
number of keyword matches is concerned, and the similarity
between the input keywords and the actual words in text is
not taken into account. On a different front, privacy assured
similarity search, where the files containing exactly the same
keyword or containing similar keyword are returned, has also
been studied. However, in the setting of privacy assured simi-
larity research, only single keyword is allowed, restricting the
practical use.

B. Problem Description

In this paper, we focus on privacy-preserving multikeyword
similarity search (PPMKSS) over the outsourced cloud data.
In the PPMKSS over the outsourced cloud data, the data are
encrypted and then outsourced to the cloud. The user, after
gaining the authorization, sends keywords to the cloud, which
returns to the user the files containing as many keywords or
their variants as possible. A more mathematical definition of
multikeyword similarity search can be found in Section III-C.

Our problem is considered more difficult than the one in
[15] and [29] because, in our problem, the keywords found
in the returned result is allowed to be different from the input
keywords. On the other hand, our problem is considered more
challenging than the one in [31] because multiple input key-
words are taken into account. Multikeyword similarity search,
as stated in Section I, can find numerous applications.

A concrete example of multikeyword similarity search is
that, when several keywords are input to Google, although
some of them are misspelled, the webpages containing as many
keywords closest to the input keywords as possible will be
returned.

C. Contribution

Our contribution can be summarized as follows.
1) PPMKSS over the outsourced cloud data is considered for

the first time in the literature.
2) We propose a user authorization scheme with the guaran-

tee of user access privacy by using blind signature.
3) By taking advantage of keyword suppressing technique

and the Bloom filter, we propose three PPMKSS solu-
tions, namely, PPMKSS-1, PPMKSS-2, and PPMKSS-3,
to achieve PPMKSS. The first one could be thought of as
a natural extension of the method in [31]. In PPMKSS-2,
we use Bloom filter as a tool to perform the private

Fig. 1. Conceptual illustration of PPMKSS.

set intersection with the attempt to find out the satisfying
files. PPMKSS-3 can be regarded as a hybrid method
combining the advantages of PPMKSS-1 and PPMKSS-2.
In particular, the last proposed solution is highly efficient
in terms of the incurred storage and computation cost at
the cloud side.

4) Simulation result and analysis are conducted to evaluate
the proposed methods and guarantee the performance.

II. SYSTEM MODEL

A. Notations

The system model considered in this paper is shown in Fig. 1,
where the owner owns the data. In this paper, this amounts to
the owner having a collection C = {f1, . . . , fn} of text files.
A predefined set W = {w1, . . . , wp} of distinct keywords in C
can be used to retrieve particular files. The owner outsources
the data C to the cloud. However, to keep the data private, the
data will be encrypted before outsourced to the cloud. Since
the data could be valuable to the user, the user may purchase
the authorization token to perform the multikeyword similarity
search to access the data of interest. To achieve this goal,
before returning the search result, the cloud checks whether the
user has specific token to make sure the user is authorized to
perform the search. An authorized user submits q keywords
X = {x1, . . . , xq} and two parameters δ ≤ q and d to the
cloud. The parameter δ is used to specify the minimum number
of input keywords or their variants needed to be contained in
the returned files, whereas the parameter d is used to specify
the extent to which the input keywords are allowed to vary.
The cloud performs similarity search over the encrypted data
C and sends back all the set CX of encrypted files that fulfill
the requirement of similarity keyword search on input keywords
X . A more formal definition of the problem of PPMKSS over
outsourced cloud data can be found in Section III-C.

B. Insider Threat

We consider an insider threat from the cloud. In particular,
the cloud management or the staffs may have the privacy breach
by checking the file contents stored in the cloud. In essence, a
cloud with such an insider threat can be honest but curious. By
honest, we mean that the cloud faithfully follows the designed
protocols to interact with both the owner and user. For example,
once the cloud finds CX , it faithfully returns CX to the user. By
curious, we mean that the cloud will look into each incoming
message, trying to gain additional information. The honest-
but-curious assumption is contrast to the so-called malicious

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: PPMKSS OVER OUTSOURCED CLOUD DATA 3

cloud, which might returns part of results only, or in general,
might not follow the designed protocol. In this paper, we only
focus on how the cloud can respond to the similarity search
request over the encrypted data. The consideration of honest-
but-curious cloud is consistent with most of the searchable
encryption research. Therefore, we only assume honest-but-
curious cloud in this paper.

C. Design Goals

The following design goals will be achieved with the consid-
eration of insider threats from the cloud.

1) Multikeyword similarity search: all of the files contain-
ing at least a threshold number of keywords similar to the
input keyword specified by the user will be returned to
the user.

2) Data privacy: The cloud cannot learn additional in-
formation from the outsourced encrypted data and the
corresponding index.

3) Keyword-file association privacy: The cloud learns
nothing about the association between files and keywords.

4) User access privacy: Both the owner and cloud cannot
know which user is performing the multikeyword simi-
larity search.

5) File access privacy: Both the owner and cloud cannot
know which file is accessed more frequently.

6) Keyword access privacy: Both the owner and cloud
cannot know which keyword is queried more frequently.

The given privacy guarantees are used to defend against the
insider threats (see Section II-B). In particular, since the insider
is able to have access to every file content, the data privacy
via data encryption guarantees no file content is leaked. The
use of crytpographic hashed inverted list and blind signature
(described later) also ensure the keyword–file, user access, file
access, and keyword access privacy.

III. BACKGROUND KNOWLEDGE

Here, some of the background knowledge used in this paper
are introduced. First, since the similarity between two words are
frequently used in identifying the similar words, it is essential to
have a quantitative metric to measure the similarity. For the text
data, edit distance is a natural metric to measure the similarity.
The notion of edit distance will be presented in Section III-A. In
our proposed solutions, the Bloom filter is often used as a means
to reduce the storage cost and gain the access speedup at the
cloud side. Therefore, the Bloom filter is also briefly described
in Section III-B. Finally, the formal definition of PPMKSS over
outsourced cloud data is shown in Section III-C.

A. Edit Distance

Edit distance is a quantitative metric to measure the similarity
between two strings [2]. The edit distance ed(w1, w2) between
two words is defined as the minimum number of operations
required to transform from one word to another. The operations
considered here are character insertion, deletion, and replace-
ment. Given a keyword w, the notation Sw,d is used to represent

the set of all possible keyword variants, each of which has
edit distance less than or equal to d. In other words, for each
w′ ∈ Sw,d, ed(w,w′) ≤ d. We also note that the edit distance is
always integer valued simply because of its definition.

B. Bloom Filter

As a probabilistic data structure, a Bloom filter consists of
an array of b bits. Together with k independently and randomly
selected hash functions, h1, . . . , hk, with range [0, b− 1], it is
used to represent a set of elements with the support of member-
ship query. Assume that a Bloom filter B is used to represent
a set S = {s1, . . . , sm} of m elements. To insert an element
si, the bits B[hj(si)] for 1 ≤ j ≤ k are set to 1. Note that the
bit remains unchanged when being already set to 1. To check
whether an element x is in the set S, we can check whether the
bits B[hj(x)] for 1 ≤ j ≤ k are all 1’s. If and only if they are
all equal to 1, x is deemed to be an element of S. The size b
of the Bloom filter is independent of the size of elements and
can be constant, which is very memory efficient. Nevertheless,
the membership query on the Bloom filter has false positive
but has no false negative. In other words, it is probable to
falsely consider an element that actually does not belong to S
as an element of S. In [9], such false-positive probability can

be obtained as (1− (1− (1/b))km)
k ≈ (1− e−km/b)

k
. The

optimization between the performance efficiency (e.g., array
length or hash functions required) of the Bloom filter and
the false-positive probability can be obtained, but it is beyond
the scope of this paper. Note that one of the characteristics
of the Bloom filter we use in the design of our proposed
solutions is that the query result is always correct if the content
to be queried is indeed stored in the Bloom filter.

C. Multikeyword Similarity Search

In the following, we define the problem of multikeyword
similarity search over outsourced cloud data. Given a collection
C = {f1, . . . , fn} of encrypted files, a set W = {w1, . . . , wp}
of predefined distinct keywords, a set X = {x1, . . . , xq} of
keywords, a threshold d for the minimum edit distance, and a
threshold δ for the minimum occurrences of keywords appear-
ing in the file, the result of the multikeyword similarity search
is CX such that, for each file f ∈ CX ,

∑q
i=1 βi ≥ δ, where

βi is defined as βi = |Sk(f),d ∩ Sxi,d| with K(f) =
⋃

w Sw,d,
where w’s are the keywords extracted from the file f , denoting
the set of all keyword variants contained in the file f .

IV. PROPOSED METHODS

In this section, we propose three solutions to enable
PPMKSS. The protocol that the user purchases the authoriza-
tion token without compromising the user access privacy is
presented in Section IV-A. The first solution, i.e., PPMKSS-1,
described in Section IV-B, can be regarded as a direct extension
of the method in [31]. The second solution, i.e., PPMKSS-2,
which is described in Section IV-C, finds the keyword existence
by leveraging the bit pattern of the Bloom filter. The third
solution, i.e., PPMKSS-3, which is described in Section IV-D,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

TABLE I
NOTATION TABLE

utilizes the bit pattern of the Bloom filter on the index, instead
of on the files, to make sure whether a specific keyword is
contained in a file. The notations frequently used in this paper
are summarized in Table I.

A. User Authorization

In our considered scenario, the user may access the files in
the cloud by presenting the authorization token to the cloud
first. More precisely, for the access control policy, we assume
that once the user presents an authorization token to the cloud,
the user is allowed to perform PPMKSS once. Moreover, after
a particular authorization token is used for a search request,
it is no longer valid. To perform another keyword search, the
user is required to present another authorization token. The
straightforward solution is to use the digital signature [5] to
construct the authorization tokens. In particular, when the user
purchases the authorization token, the owner signs and then
sends back the authorization token to the user. Hence, if the user
has a need to perform the search, the user submits the signed
token to the cloud. The cloud returns the search result if the
signature on the signed token can be verified successfully. On
the other hand, for the user access privacy, it is assumed that,
although many users may gain the right to access the files in
the cloud, the user does not want to leak the information about
who is submitting a search request. Therefore, this use of the
conventional digital signature cannot have the guarantee of the
user access privacy.

To achieve the user access privacy, we propose to use blind
signature protocol [11], which itself depends on the well-known
Rivest–Shamir–Adleman (RSA) cryptosystem. The use of blind
signature can have the guarantee that the owner signs and
the cloud verifies the authorization token without knowing the
user’s identity. In particular, as stated earlier, the blind signature
is based on RSA. Thus, the owner creates the RSA key pair,
the public key 〈μ, e〉, and the private key π. Here, the public
key μ = p1p2 is the product of two prime numbers p1 and p2,

Fig. 2. Blind signature.

and e ∈ [1, φ] is coprime to φ = (p1 − 1)(p2 − 1). In addition,
π is selected such that eπ = 1(mod φ). The public key μ
here is usually chosen as a 1024-bit number for the sufficient
security guarantee. Note that, in our use, the public key e is
used for the signature verification only. Because e determines
the computation cost at the cloud side and larger e implies
more computation cost, e can be chosen to be 3 for achieving
a very efficient signature verification. Afterward, the owner
sends the public key to the cloud and keeps the private key
confidential. This enables the cloud to verify the signed token
while guaranteeing that no one can forge the signature.

The user is required to purchase the authorization token
to perform the search. In our use, the authorization token
is assumed a λ-bit random bit string, where λ is a system
parameter. Therefore, how the owner uses the blind signature
is to sign a random bit string. More precisely, the procedure
is that the user generates an authorization token and sends
it to the owner. The owner signs the received authorization
token and sends it back to the user. When the user wants to
perform the search, it presents the signed authorization token
to the cloud for the verification. As can be easily observed, the
authorization token itself being a random number does not have
a role in achieving the security. The importance comes from the
signature associated with the token. Only if the signature can
be verified successfully that the cloud returns the search result.
The algorithms executed jointly by the owner and user to sign
and obtain the signed authorization token is shown in Fig. 2. In
Step 3, if the owner faithfully follows the protocol, the owner
returns the σ∗

m to the user. Note that σ∗
m can be thought of as the

signature of the authorization token anonymized by a random
number k. In Step 4, one can easily see that σm actually is a
valid RSA signature on m because

σm = k−1σ∗
m = k−1mdked

= k−1mdk = md (mod μ). (1)

In Fig. 2, one can know that the owner cannot know both
m and σm. This implies that the owner and cloud cannot
distinguish the origins of two signatures, therefore achieving
the user access privacy. In other words, even if the owner and
cloud receive an authorization token, they cannot link it to the
user who generates the token. Note that, although the autho-
rization token can have different monetary value and therefore
represents different numbers of authorized search requests, we
do not consider such case in this paper. However, the proposed
protocol can be extended to allow the authorization token with
different monetary values in a straightforward way.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: PPMKSS OVER OUTSOURCED CLOUD DATA 5

Fig. 3. Example of the inverted list.

B. PPMKSS-1

1) Basic Idea: Inverted list is a fundamental technique to
support keyword search. We thus still follow the notion of
inverted list to have our design for similarity search.

Inverted list can be considered a 2-D array, each row of which
consists of a tuple. The length of the array is equivalent to the
number keywords that can be searched in the system. The first
entry of each tuple is a keyword, whereas the second entry of
each tuple consists of the file IDs that the corresponding files
contain the keyword.

The basic idea to support multikeyword similarity search is
to construct a very large inverted list such that, even if the
input keywords are not included in the keywords predefined in
the system, they still can be found in the inverted list. In this
sense, the “similar” keywords can also be thought of as part of
predefined keywords. Afterward, since many file IDs will be
found including some of input keywords, some postprocessing
will be conducted to identify the files that contain at least δ
input keywords. An example can be shown in Fig. 3. It can be
seen that each keyword is associated with a list of file IDs.
Consider the first row for example. It describes that, files 1
and 32 contain the keywords “acid,” and the files 23, 442, and
500 contain the keyword “you.” The inverted list is beneficial
to the exact keyword search. Consider an example where the
input keywords are “acid” and “network.” The way the cloud
responds to the search request is to perform the set intersection
between {1,32} and {1,32,33,34,56,110,120}. After that, the
cloud finds that there are two files, i.e., files 1 and 32, containing
both input keywords.

2) Protocol Description: The proposed PPMKSS-1 method
is shown in Fig. 4. There are two phases: preprocessing and
searching. During the preprocessing phase, the owner con-
structs and sends out the index for the further searching pur-
pose. During the searching phase, the authorized user sends the
keywords to the cloud, and then the cloud returns the search
result to the user.

The aforementioned method of constructing a very large
inverted list is theoretically useful; however, it is practically
useless. This is because the storage cost is overwhelming.
For example, consider the keyword CLOUD. In the case of
edit distance d, this implies ((�w + 1) + �w)

d26d more entries

Fig. 4. PPMKSS-1.

Fig. 5. Example of the use of wildcard in the suppressing technique.

needed to be inserted to the inverted list, where �w is the number
of alphabets, because there are (�w + 1) + �w positions that
can be manipulated and each position has 26 possibilities for
alphabets if only alphabets are considered. Obviously, directly
constructing and maintaining such a huge inverted list would be
a heavy burden. Thus, the technique of suppressing the length
of inverted list [20], [31] will be used here.

The method of suppressing the inverted list is to use the
wildcard ∗ to succinctly represent many keyword variants by
using one only keyword. For example, in the case of d = 1, the
variants of keyword CLOUD could be ACLOUD, BCLOUD,
. . ., ZCLOUD, . . . if none of the suppressing method is used.
However, if the suppressing technique is used, the given key-
word variants could be represented as ∗CLOUD only, in which
∗ can present all of the possibilities that the wildcard can be
filled. An example can be found in Fig. 5. Obviously, once the
suppressing technique is used, the number of keyword variant
representation can be significantly reduced, although in the
given case, ∗CLOUD only represent ACLOUD, BCLOUD, . . .,
ZCLOUD, and many of the other variants are to be transformed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Fig. 6. Example of storage cost reduction by using the suppressing technique.

This directly implies that the length of the inverted list can
also be significantly reduced. A concrete example of using
the suppressing technique to suppress the keyword variants is
shown in Fig. 6.

After the suppressing technique is used, the owner applies
the cryptographic hash function to the first column of the
inverted list (line 1 of preprocessing phase in Fig. 4), i.e., the
owner calculates the corresponding hash. Afterward, the owner
applies the encryption algorithm, such as Advanced Encryption
Standard, to the second column of the inverted list (line 1 of
preprocessing phase in Fig. 4), i.e., the owner calculates the
corresponding encrypted list of file IDs. Note that the owner ac-
tually generates two distinct secret keys first, and then use these
two keys to calculate the hash and encryption, respectively.
Finally, the owner sends such an encrypted inverted list to the
cloud (line 2 of preprocessing phase in Fig. 4). Apparently,
from the cloud point of view, the cloud, after receiving such
an encrypted inverted list, cannot have much information. The
cloud can only see a list of hash values and the encryptions.
Without the secret key, the cloud cannot know the content of
the encrypted inverted list.

Suppose that the user wants to perform the multikeyword
similarity search, then it needs to purchase the authorization
token from the owner. As stated in Section IV-A, the user can
obtain the authorization tokens without the worry about the
identity leakage. Therefore, in the following description, we
assume that the user has obtained at least one authorization
token and wants to perform the multikeyword similarity search.
In this case, the user submits the authorization token to the
cloud for the authorization verification purpose. The user’s
search request will be denied if the authorization verification
fails and will be further processed otherwise. In the case of
the successful verification, the owner first calculates all of the
possible keyword variants of the input keywords. Let X =
{x1, . . . , xq} be the set of input keywords. The user computes
Sxi,d, i ∈ [1, q], where Sxi,d denotes the set of all words with
the edit distance d to the input keyword xi (line 1 of searching
phase in Fig. 4). In other words, each element in Sxi,d is either
the input keyword itself or a variant of the input keywords. The
reason that the user calculates such a set is to fit the setting of
how the owner constructs the inverted list, where each element
of the first column of the inverted list is a possible keyword

Fig. 7. PPMKSS-1.

variant. After that, the user computes the hashes of these
keyword variants (line 1 of searching phase in Fig. 4). This
procedure is also used to fit the setting of the encrypted inverted
list. Here, the hash of the keyword variant is used as an index
to look up the corresponding file IDs whose corresponding files
contain the requested keyword.

After receiving the hashes from the user, the cloud searches
for the matching in the encrypted inverted list (line 4 of
searching phase in Fig. 4). However, instead of searching for
the matching directly, the cloud searches for the matching for
different categories. In other words, for each Sxi,d, the cloud
constructs a set Cxi,d of file IDs whose corresponding files
contain the keywords specified in Sxi,d. For example, if the
file ID 35 is associated with an entry in Sxi,d, then the file
ID 35 is included in Cxi,d. Such file ID can be found by
looking to the encrypted inverted list. After the construction of
Cxi,d, the cloud can be sure that each file in Cxi,d contains
an input keyword variant. Thus, a natural way to discover
which files contain at least δ input keywords is to examine
the different combinations of the Cxi,d. For example, in the
case of |X| = q = 3 and δ = 2, the cloud would have Cx1,d,
Cx2,d, and Cx3,d. Then, the cloud can perform the set inter-
section operation over the Cx1,d, Cx2,d, and Cx3,d, i.e., the
cloud calculates C1,2 = Cx1,d ∩ Cx2,d, C2,3 = Cx2,d ∩ Cx3,d,
and C1,3 = Cx1,d ∩ Cx3,d. Here, each time, only two Cxi,d are
considered because of the δ specified in the user’s request.
Obviously, we can see that, for example, the files in C1,2 all
contain at least two input keywords or their keyword variants.
Finally, the cloud sends back CX = C1,2 ∪ C2,3 ∪ C1,3 to the
user as the search result.

Once the user receives the result returned by the cloud, it
decrypts the encrypted file IDs to obtain the files containing at
least two specified keywords or their keyword variants.

The solution (see Fig. 7) can be used to solve the problem
of PPMKSS. As can be easily seen, this method only has one
parameter to be set. In particular, in the preprocessing phase,
the owner constructs the inverted list and the corresponding
encrypted inverted list. Here, only d affects the storage cost
at the cloud side. When the parameter d is larger, more rows
are considered in the inverted list and encrypted inverted list.
In the search phase, the parameters d and δ are user-specified
parameters that can be variant because of different practical
applications. They are also not the parameters required in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: PPMKSS OVER OUTSOURCED CLOUD DATA 7

Fig. 8. PPMKSS-2.

the solution. Nonetheless, the cloud has the heavy burden to
calculate a large number of hashes to make sure which files
contain the specified keywords. In the following, we take a
different approach (as shown in Section IV-C) to find out the
files with the specified input keywords.

C. PPMKSS-2

1) Basic Idea: Instead of using the inverted list, in
PPMKSS-2, the owner uses a more direct way to do the
keyword search. In particular, once the keywords are selected
and associated with the file, when the input keywords are sent
to the cloud, the cloud is able to find out the files containing the
input keywords. However, this straightforward method implies
two problems. First, since there would be a large number of
keyword variants, directly comparing the keywords would be
a heavy computation cost for the cloud. Thus, we propose to
use the Bloom filter to store the keyword variant and at the
same time offer a more efficient membership query at the cloud
side. However, the induced problem from the use of the Bloom
filter is that, because the Bloom filter represents the keyword
variants, the cloud may also query the Bloom filter to know
the keywords associated with the particular files, breaching the
keyword privacy. To solve this problem, we propose to use
different sets of hash functions to disable the cloud’s ability to
check the keyword existence in files.

2) Protocol Description: The proposed PPMKSS-2 method
is shown in Fig. 8. Before outsourcing the files to the cloud,
the owner constructs a table, in which the first column consists
of the file IDs, whereas the second column consists of the
keywords and the keyword variants extracted from the corre-
sponding file (line 1 of the preprocessing phase in Fig. 8). As
can easily be known, such setting is completely opposite to the
case in Section IV-B. Here, keyword variants are associated
with the files, whereas in PPMKSS-1, the file IDs are associated
with the keywords. As we can know from information retrieval
literature, the setting in this section is more inefficient during

Fig. 9. PPMKSS-2 (the black parts denote Bloom filters).

the file retrieval. However, the setting in this section serves
to explain the use of the Bloom filter in retrieving the files.
A more practical solution will be presented in Section IV-D.
An example of such a table is shown in Fig. 9, where the first
column (gray column) contains the encrypted file Ids, and the
second part (black columns) consists of the keywords. Similar
to the given setting, the owner applies the encryption function
to the first column, resulting the encrypted file IDs. In the
setting in Section IV-B, the owner is supposed to apply the
hash function to each keyword variant in the second column.
Nevertheless, instead of doing so, the owner actually adds all of
the keyword variants in a row to a Bloom filter. Here, let Bi be
the Bloom filter associated with the file ID i. The table with the
first column being the encrypted file ID and the second column
being the Bloom filter constructed as given is called the Bloom
table. After constructing the Bloom table, the owner sends the
Bloom table to the cloud.

Suppose that the user wants to perform the multikeyword
similarity search, then it needs to purchase the authoriza-
tion token from the owner. The token verification proce-
dures are completely the same as given earlier; therefore, we
omit the corresponding description here. Assume the X =
{x1, . . . , xq} are the keywords to be searched. The user com-
putes Sx1,d, . . . , Sxq,d, in a way similar to that given. Af-
terward, the users calculates and submits the hashes of the
Sx1,d, . . . , Sxq,d to the cloud.

After receiving the hashes of the Sx1,d, . . . , Sxq,d from the
user, the cloud checks whether they are in the Bi for each i.
The file i is included in CX if

∑q
j=1 θj ≥ δ, where θj = 1 if

some elements in Sxj ,d appears in fi and θj = 0 otherwise.

D. PPMKSS-3

The PPMKSS-2 method, although theoretically feasible, is
very inefficient in terms of search time because the cloud needs
to access each file to make sure whether the particular files con-
tain the input keyword variants. Thus, in this section, we com-
bine the idea about the encrypted inverted list in Section IV-B
and the idea about the Bloom table in Section IV-C to construct
a new data structure to support the PPMKSS.

PPMKSS-3 is shown in Fig. 10. The owner first constructs
the inverted list as in Section IV-B. However, instead of con-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 10. PPMKSS-3.

Fig. 11. PPMKSS-3 (the black parts denote Bloom filters).

structing the corresponding encrypted inverted list, the owner
constructs a so-called Bloom inverted list (line 1 of the prepro-
cessing phase in Fig. 10), where the first column of the Bloom
inverted list corresponds to the hashes of the first column of the
inverted list. In other words, each element in the first column
of the encrypted Bloom inverted list is the hash of a keyword
variant. An example is shown in Fig. 11. In this sense, the first
column of the Bloom inverted list is completely the same as
the first column of the encrypted inverted list in Section IV-B.
Nevertheless, the file IDs in the inverted list are all added to a
Bloom filter. As a consequence, for a Bloom inverted list, each
keyword variant is associated with a Bloom filter. However, if
the Bloom inverted list is directly outsourced to the cloud, the
cloud is also able to test the keyword existence for each file by
simply launching the membership query. To counteract against
such abuse, we add z − |I ′′| dummy elements to B(Sw,d)
(line 2 of preprocessing phase in Fig. 10). By controlling the
number of dummy elements, the Bloom inverted list is secure

against the cloud attempting to know the keyword existence in
files. Finally, at the end of the preprocessing phase, the owner
sends the Bloom inverted list to the cloud.

Suppose that the user wants to perform the multikeyword
similarity search, then it needs to purchase the authoriza-
tion token from the owner. The token verification procedures
are completely the same as given earlier; therefore, we omit
the corresponding description here. Assume the X = {x1,
. . . , xq} are the keywords to be searched. The user computes
Sx1,d, . . . , Sxq,d, in a way similar to that given. Afterward,
the users calculates and submits Bloom filter B(SX,d) to the
cloud.

After receiving B(SX,d) from the user, the cloud simply
counts the number of common 0’s in both B(SX,d) and
B(Sw,d), w ∈ W . By knowing the number of common 0’s
in both B(SX,d) and B(Sw,d), one can infer the number of
elements appearing in both sets. Note that this technique has
been developed in [28] very recently. In essence, given the
number of common bit 0 positions n0 in both the Bloom filters
B(SX,d) and B(Sw,d), the number of elements appearing in
both sets can be estimated as

2
∣
∣⋃

w∈W Sw,d

∣
∣ z−|I′′|∣
∣⋃

w∈W
Sw,d

∣
∣ − |I ′′| (ln |I ′′| − lnn0)

k
(2)

=
2 (z − |I ′′|)− |I ′′| (ln |I ′′| − lnn0)

k
. (3)

The remaining procedures are exactly the same as those
presented in the first solution. For example, in the case of
|X| = q = 3 and δ = 2, the cloud would have Cx1,d, Cx2,d,
and Cx2,d. Then, the cloud can perform the given estima-
tion over the Cx1,d, Cx2,d, and Cx2,d, i.e., the cloud calcu-
lates C1,2 = Cx1,d ∩ Cx2,d, C2,3 = Cx2,d ∩ Cx3,d, and C1,3 =
Cx1,d ∩ Cx3,d. Here, each time, only two Cxi,d’s are considered
because of the δ specified in the user’s request. Obviously,
we can see that, for example, the files in C1,2 all contain at
least two input keywords or their keyword variants. Finally, the
cloud sends back CX = C1,2 ∪ C2,3 ∪ C1,3 to the user as the
search result.

V. PERFORMANCE EVALUATION

AND SECURITY ANALYSIS

The current keyword search on commercial systems is im-
plemented with the inverted list. Our proposed PPMKSS-2
method is not an inverted list-based approach and therefore
not practically useful. The main purpose of PPMKSS-2 is to
inspire us to increase the performance by taking advantage of
the Bloom filter. Hence, we eventually decide not to include the
numerical results in this paper.

A. Performance Evaluation

We evaluate the performance according to the storage cost,
computation cost, and communication cost. First of all, the stor-
age cost of three proposed solutions is highly efficient mainly
due to the use of the suppressing technique and Bloom filter.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YU et al.: PPMKSS OVER OUTSOURCED CLOUD DATA 9

Fig. 12. Comparison of the computation cost of PPMKSS-1 and PPMKSS-3.

The use of the suppressing technique significantly shortens the
length of the inverted list, directly implying the reduced storage
cost. Moreover, the use of the Bloom filter further cuts the
storage overhead of the inverted list because, in the original
case, the hashes need to be stored in plaintext and cause a high
storage burden, whereas after the use of the Bloom filter, the
hashes can be all added to a single Bloom filter. Because in the
proposed solutions, only membership query is concerned.
The Bloom filter offers a storage-efficient way to accomplish
the membership query in our proposed solutions.

On the other hand, the computation cost is also proportional
to the storage cost because more storage cost implies that more
elements need to be checked, resulting in more computation
cost. In this sense, the use of suppressing technique and the
Bloom filter also contributes to the computation overhead re-
duction. The computation cost reduction due to the use of the
suppressing technique is obvious; furthermore, the comparison
of PPMKSS-1 and PPMKSS-3, shown in Fig. 12, can also be
used to show the computation overhead reduction due to the use
of the Bloom filter. In Fig. 12, we can see that the computation
cost of PPMKSS-1 grows steadily, whereas the computation
cost of PPMKSS-3 remains stable. This can be explained in
the following way. In the first solution, as d becomes larger,
the number of possible keyword variants also grows, which
means that the length of the inverted list will be increased. As a
consequence, the computation cost is increased as well because
the cloud has to examine each element individually. However,
in PPMKSS-3, only the number of common 0’s of two Bloom
filters matters. Counting the number of 1’s from the intersection
of two bit strings can be accomplished in logarithmic time.
Therefore, the curve of the computation cost of PPMKSS-3
goes rather stable.

Moreover, the communication cost actually also depends on
the use of the suppressing technique and the Bloom filter. In
the first solution, since no Bloom filter is used, the user has to
submit the hashes of all possible keyword variants individually.
Therefore, the communication cost depends on the average
length of the input keywords. However, in PPMKSS-3, the
communication cost is determined by the number of keyword
specified in the system. Note that, usually, the number of the
keywords specified in the system is more than the number of

Fig. 13. Comparison of the communication cost of PPMKSS-1 and PPMKSS-3.

keywords manually input by the user. Thus, compared with
PPMKSS-1, PPMKSS-3 can achieve much lower communica-
tion cost. This can also be confirmed in Fig. 13.

B. Security Analysis

Our proposed solutions are supposed to fulfill the require-
ments stated in Section II-C. The first solution can be thought
of as a natural extension of the method in [31]. In essence,
only some postprocessing are further considered compared with
the method in [31]. Thus, the security of our first solution
directly inherits the security guarantee of the method in [31].
In addition, PPMKSS-3 strikes the balance between search
performance and incurred overhead; here for simplicity, we
only discuss the security analysis of PPMKSS-3.

PPMKSS-3 achieves the data privacy simply because the files
are always encrypted from the cloud point of view. Thus, the
cloud, without the access of the secret key, cannot know the file
contents. In addition, because of the use of blind signature, the
user access privacy can also be guaranteed. More specifically,
both the owner and cloud cannot know which user ever submits
or is submitting the search request to the cloud. Moreover,
the keyword–file association privacy, keyword privacy, and file
privacy can also be achieved simply because the keywords are
not revealed in plaintext, and the files are always encrypted.
Hence, the cloud is not able to infer the association between
them or infer the frequently used keyword/file.

VI. CONCLUSION

We consider the problem of PPMKSS over outsourced cloud
data, for the first time in the literature. With the keyword
suppressing technique and the Bloom filter, three solutions,
namely, PPMKSS-1, PPMKSS-2, and PPMKSS-3, are pro-
posed as candidates for dealing with such search problem. In
particular, PPMKSS-3 is highly efficient in terms of storage,
computation, and communication overhead. Moreover, we also
design a user authorization mechanism based on blind signa-
ture, to ensure the user access privacy. As a whole, based on
our evaluation, the proposed schemes can be practically useful
in offering PPMKSS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

REFERENCES

[1] F.-H. Liu, H.-F. Lo, L.-C. Chen, and W.-T. Lee, “Comprehensive secu-
rity integrated model and ontology within cloud computing,” J. Internet
Technol., vol. 14, no. 6, pp. 935–946, 2013.

[2] M. J. Atallah, Algorithms and Theory of Computation Handbook.
Boca Raton, FL, USA: CRC Press, 1998.

[3] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[4] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[5] B. Schneier, Applied Cryptography: Protocols, Algorithms, Source Code
in C. Hoboken, NJ, USA: Wiley, 1996.

[6] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Proc. Annu. CRYPTO, 2007, pp. 535–552.

[7] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory Appl.
EUROCRYPT , 2004, pp. 506–522.

[8] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunc-
tive keyword searches over encrypted data,” in Proc. ICICS, 2005,
pp. 414–426.

[9] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Math., vol. 1, pp. 485–509, 2005.

[10] D. Boneh and B. Waters, “Conjunctive, subset, range queries on encrypted
data,” in Proc. Theory of Cryptography Conf. TCC, 2007, pp. 535–554.

[11] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Commun. ACM, vol. 28, no. 10, pp. 1030–1044,
Oct. 1985.

[12] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. ACM Conf. CCS, 2006, pp. 79–88.

[13] D. Cash et al., “Dynamic searchable encryption in very-Large databases:
Data structures and implementation,” in Proc. NDSS, 2014, pp. 1–16.

[14] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Proc. ACNS, 2005, pp. 442–455.

[15] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in Proc. IEEE
INFOCOM, 2011, pp. 829–837.

[16] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Santa Barbara,
CA, USA, Rep. No. 2003/216, 2004.

[17] P. Golle, J. Staddon, and B. R. Waters, “Secure conjunctive keyword
search over encrypted data,” in Proc. ACNS, 2004, pp. 31–45.

[18] M. Kargar, A. An, N. Cercone, P. Godfrey, and J. Szlichta, “MeanKS:
Meaningful keyword search in relational databases with complex
schema,” in Proc. ACM Int. Conf. SIGMOD, 2014, pp. 905–908.

[19] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc.
Financial Cryptography Workshops, Jan. 2010, pp. 136–149.

[20] J. Li et al., “Fuzzy keyword search over encrypted data in cloud
computing,” in Proc. IEEE INFOCOM, 2010, pp. 1–5.

[21] C. Li, B. Wang, and X. Yang, “Vgram: Improving performance of
approximate queries on string collections using variable-length grams,”
in Proc. Int. Conf. VLDB, 2007, pp. 303–314.

[22] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable en-
cryption via blind storage,” in Proc. IEEE Symp. SP, 2014, pp. 639–654.

[23] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-K nearest keyword
search on large graphs,” Very Large Data Base Endowment, vol. 6, no. 10,
pp. 901–912, Aug. 2013.

[24] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proc. IEEE Symp. SP,
2007, pp. 350–364.

[25] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. NDSS, 2014, pp. 1–15.

[26] W. Sun et al., “Verifiable privacy-preserving multi-keyword text search
in the cloud supporting similarity-based ranking,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 11, pp. 3025–3035, Nov. 2014.

[27] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data,” in Proc. IEEE Symp. SP, 2000, pp. 44–55.

[28] J. Sun, R. Zhang, and Y. Zhang, “Privacy-preserving spatialtemporal
matching,” in Proc. IEEE INFOCOM, 2013, pp. 800–808.

[29] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proc. ICDCS, 2010, pp. 253–262.

[30] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 8, pp. 1467–1479, Aug. 2012.

[31] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and privacy-
assured similarity search over outsourced cloud data,” in Proc. IEEE
INFOCOM, 2012, pp. 451–459.

[32] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava, “Bed-tree:
An all-purpose index structure for string similarity search based on edit
distance,” in Proc. ACM Int. Conf. SIGMOD, 2010, pp. 915–926.

Chia-Mu Yu received the Ph.D. degree from Na-
tional Taiwan University, Taipei, Taiwan, in 2012.

From 2005 to 2010, he was a Research Assistant
with the Institute of Information Science, Academia
Sinica, Taipei. From September 2010 to Septem-
ber 2011, he was a Visiting Scholar with Harvard
University, Cambridge, MA, USA. From January
2012 to September 2012, he was a Visiting Scholar
with Imperial College London, London, U.K. From
October 2012 to July 2013, he was a Postdoctoral
Researcher with IBM Thomas J. Watson Research

Center, Yorktown Heights, NY, USA, where he will serve as Visiting Professor
from February 2015 to March 2015. He is currently an Assistant Professor with
the Department of Computer Science and Engineering, Yuan Ze University,
Taoyuan, Taiwan. He is also with Innovation Center for Big Data and Digital
Convergence, Taoyuan.

Dr. Yu is currently an Associate Editor for IEEE ACCESS and an Associate
Editor for Security and Communication Networks and for Gate to Multimedia
Processing. His research interests include cloud security, sensor network secu-
rity, and cryptography.

Chi-Yuan Chen received the Ph.D. degree in electri-
cal engineering from National Dong Hwa University,
Hualien, Taiwan, in 2014.

Since 2014, he has been an Assistant Profes-
sor with the Department of Computer Science and
Information Engineering, National Ilan University,
Yilan, Taiwan. His research interests include mo-
bile communication, network security, and quantum
computing.

Dr. Chen has served as the Associate Editor-
in-Chief for Journal of Internet Technology since

February 2014. He is a member of the Association for Computing Machinery.

Han-Chieh Chao (SM’04) received the M.S. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1989 and
1993, respectively.

From September 2008 to July 2010, he served as
the Director of the Computer Center for the Ministry
of Education of Taiwan. He is currently a Joint
Appointed Full Professor with the Department of
Electronic Engineering and the Institute of Computer
Science and Information Engineering, National Ilan
University, Yilan, China, where he also serves as

President. He is also with the Department of Electrical Engineering, National
Dong Hwa University, Hualien, Taiwan; the College of Information Engineer-
ing, Yangzhou University, Yangzhou, China; and the School of information
Science and Engineering, Fujian University of Technology, Fuzhou, China.

Dr. Chao serves as the Editor-in-Chief for Institution of Engineering and
Technology (IET) Networks, the Journal of Internet Technology, the Interna-
tional Journal of Internet Protocol Technology, and the International Journal
of Ad Hoc and Ubiquitous Computing He has served as the Guest Editor for
Mobile Networking and Applications, IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS, IEEE COMMUNICATIONS MAGAZINE, Computer
Communications, IEE Proceedings Communications, the Computer Journal,
Telecommunication Systems , Wireless Personal Communications, and Wireless
Communications & Mobile Computing. He is a Fellow of IET (IEE) and a
Chartered Fellow of the British Computer Society.

