
1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 1

Preventing Distributed Denial-of-Service Flooding
Attacks with Dynamic Path Identifiers

Hongbin Luo, Member, IEEE, Zhe Chen, Jiawei Li, and Athanasios V. Vasilakos, Senior Member, IEEE

Abstract—In recent years, there are increasing interests in
using path identifiers (PIDs) as inter-domain routing objects.
However, the PIDs used in existing approaches are static, which
makes it easy for attackers to launch distributed denial-of-
service (DDoS) flooding attacks. To address this issue, in this
paper, we present the design, implementation, and evaluation
of D-PID, a framework that uses PIDs negotiated between
neighboring domains as inter-domain routing objects. In D-
PID, the PID of an inter-domain path connecting two domains
is kept secret and changes dynamically. We describe in detail
how neighboring domains negotiate PIDs , how to maintain
ongoing communications when PIDs change. We build a 42-node
prototype comprised by six domains to verify D-PID’s feasibility
and conduct extensive simulations to evaluate its effectiveness and
cost. The results from both simulations and experiments show
that D-PID can effectively prevent DDoS attacks.

Index Terms—Inter-domain routing, security, distributed
denial-of-service (DDoS) attacks, path identifiers.

I. INTRODUCTION

D ISTRIBUTED denial-of-service (DDoS) flooding attacks
are very harmful to the Internet. In a DDoS attack, the at-

tacker uses widely distributed zombies to send a large amount
of traffic to the target system, thus preventing legitimate users
from accessing to network resources [1]. For example, a DDoS
attack against BBC sites in Jan. 2016 reached 602 gigabits
per second and “took them down for at least three hours” [3].
More recently, the hosting provider OVH suffered a large scale
DDoS attack in Sep. 2016, launched by a botnet composed at
least of 150,000 Internet-of-things (IoT) devices. This attack
peaked at nearly one terabit per second (Tbps) and even
forced Akamai to stop offering DDoS protection to OVH [2].
Therefore, many approaches [4] have been proposed in order
to prevent DDoS flooding attacks, including network ingress
filtering [5] - [9], IP traceback [10] - [14], capability-based
designs [15] - [18], and shut-up messages [19] - [20].

Manuscript received July 22, 2016, revised Dec. 28, 2016, accepted March
23, 2017. This work was supported in part by the Natural Science Foundation
of China (NSFC) under Grant Nos. 61422101, 61271200, and 61232017, in
part by the “973 Program” of China under Grant No. 2013CB329106, and in
part by the Fundamental Research Funds for the Central Universities under
Grant No. 2016JBZ002.

H. Luo is with the School of Computer Science and Engineering, Beihang
University, Beijing 100083, China. This work was done when he was in Bei-
jing Jiaotong University, Beijing 100044, China (Email: hbluo@bjtu.edu.cn).

Z. Chen is now with Huawei Technologies. This work was done when
he was in Beijing Jiaotong University, Beijing 100044, China (Email: chen-
zhe17@huawei.com).

J. Li is with the School of Electronic and Information Engineering, Beijing
Jiaotong University, Beijing 100044, China (Email: 15111049@bjtu.edu.cn).

A. V. Vasilakos is with the Department of Computer Science, Electrical and
Space Engineering, Lulea University of Technology, 97187 Lulea, Sweden
(Email: athanasios.vasilakos@ltu.se).

Digital Object Identifier:

At the same time, in recent years there are increasing
interests in using path identifiers PIDs that identify paths
between network entities as inter-domain routing objects, since
doing this not only helps addressing the routing scalability
and multi-path routing issues [21], but also can facilitate the
innovation and adoption of different routing architectures [22].
For instance, Godfrey et al. proposed pathlet routing [21], in
which networks advertise the PIDs of pathlets throughout the
Internet and a sender in the network constructs its selected
pathlets into an end-to-end source route. Koponen et al.
further argued in their insightful architectural paper that using
pathlets for inter-domain routing can allow networks to deploy
different routing architectures, thus encouraging the innovation
and adoption of novel routing architectures [22]. Jokela et
al. proposed in LIPSIN [23] to assign identifiers to links in
a network and to encode the link identifiers along the path
from a content provider to a content consumer into a zFilter
(i.e., a PID), which is then encapsulated into the packet
header and used by routers to forward packets. Luo et al.
proposed an information-centric internet architecture called
CoLoR [24] that also uses PIDs as inter-domain routing
objects in order to enable the innovation and adoption of new
routing architectures, as in [22].

There are two different use cases of PIDs in the afore-
mentioned approaches. In the first case, the PIDs are globally
advertised (as in pathlet routing [21] and [22]). As a result, an
end user knows the PID(s) toward any node in the network.
Accordingly, attackers can launch DDoS flooding attacks as
they do in the current Internet. In the second case, conversely,
PIDs are only known by the network and are secret to end
users (as in LIPSIN [23] and CoLoR [24]). In the latter case,
the network adopts an information-centric approach [25] - [27]
where an end user (i.e., a content provider) knows the PID(s)
toward a destination (i.e., a content consumer) only when the
destination sends a content request message to the end user.
After knowing the PID(s), the end user sends packets of the
content to the destination by encapsulating the PID(s) into
the packet headers. Routers in the network then forward the
packets to the destination based on the PIDs .

It seems that keeping PIDs secret to end users (as in [23],
[24]) makes it difficult for attackers to launch DDoS flooding
attacks since they do not know the PIDs in the network.
However, keeping PIDs secret to end users is not enough
for preventing DDoS flooding attacks if PIDs are static.
For example, Antikainen et al. argued that an adversary can
construct novel zFilters (i.e., PIDs) based on existing ones and
even obtain the link identifiers through reverse-engineering,
thus launching DDoS flooding attacks [28]. Moreover, as it

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 2

is shown in Sec. II-B, attackers can launch DDoS flooding
attacks by learning PIDs if they are static.

To address this issue, in this paper, we present the design,
implementation and evaluation of a dynamic PID (D-PID)
mechanism. In D-PID, two adjacent domains periodically
update the PIDs between them and install the new PIDs
into the data plane for packet forwarding. Even if the attacker
obtains the PIDs to its target and sends the malicious packets
successfully, these PIDs will become invalid after a certain
period and the subsequent attacking packets will be discarded
by the network. Moreover, if the attacker tries to obtain the
new PIDs and keep a DDoS flooding attack going, it not only
significantly increases the attacking cost (Sec. V-A1), but also
makes it easy to detect the attacker (Sec. V-A2). In particular,
our main contributions are two fold.

On one hand, we propose the D-PID design by addressing
the following challenges. First, how and how often should
PIDs change while respecting local policies of autonomous
systems (ASes)? To address this challenge, D-PID lets neigh-
boring domains negotiate the PIDs for their inter-domain
paths based on their local policies (Sec. III-B). In particular,
two neighboring domains negotiate a PID-prefix (as an IP-
prefix) and a PID update period for every inter-domain path
connecting them. At the end of a PID update period for an
inter-domain path, the two domains negotiate a different PID
(among the PID-prefix assigned to the path) to be used in
the next PID update period. In addition, the new PID of an
inter-domain path is still kept secret by the two neighboring
domains connected by the path.

Second, since inter-domain packet forwarding is based on
PIDs that change dynamically, it is necessary to maintain
legitimate communications while preventing illegal commu-
nications when the PIDs change. To address this challenge,
D-PID lets every domain distribute its PIDs to the routers
in the domain (Sec. III-C). For every inter-domain path, the
routers in a domain forward data packets based on the PID of
the previous PID update period and that of the current PID
update period. In addition, D-PID uses a mechanism similar to
the one that the current Internet collects the minimum MTU
(maximum transmission unit) of networks so that a content
consumer knows the minimum update period of PIDs along
the path from a content provider to it (Sec. III-D - Sec. III-F).
Based on this period, the content consumer periodically re-
sends a content request message to the network in order to
renew the PIDs along the path.

Third, the overheads incurred by changing PIDs should
be kept as small as possible. This includes not only the
overhead in negotiating PIDs by neighboring domains, but
also the overhead for a domain to distribute the updated PIDs
to routers in the domain, and that for transmitting content
request messages resent by content consumers. To address this
challenge, the PID prefix assigned to an inter-domain path is
unique among the PID prefixes assigned by the two domains
connected by the inter-domain path.

On the other hand, we build a 42-node prototype (Sec. IV)
comprised by six domains to verify D-PID’s feasibility and
conduct extensive simulations (Sec. V) to evaluate D-PID’s
effectiveness and overheads. Our results show that D-PID

does help preventing DDoS flooding attacks since it not only
imposes significant overhead for the attacker to launch DDoS
flooding attacks, but also makes it easier for the network to
detect the attacker. Surprisingly, achieving such benefits only
incurs little overheads. Our simulation results show that the
number of extra content request messages caused by D-PID is
only 1.4% or 2.2% (by using different data traces), when the
PID update period is 300 seconds. Even if the PID update
period is 30 seconds, the peak PID update rate of a domain
is less than 10 per second with a probability higher than 95%,
and the maximal PID update rate of all domains is 202 per
second, which is significantly less than the peak update rate
(1,962 per second) of IP-prefixes in the current Internet [32].

While part of this work has been published in [45], we
significantly extend it with the following new contributions.
First, we propose an approach for neighboring domains to
negotiate PIDs (Sec. III-B) and to distribute them to routers
in a domain (Sec. III-C). Second, we implemented D-PID in a
prototype to verify its feasibility (Sec. IV). Third, we conduct
extensive simulations to evaluate the effectiveness of D-PID
in defending against DDoS flooding attacks (Sec. V-A).

The rest of this paper is organized as follows. In Section
II, we briefly introduce CoLoR and present two approaches
for learning PIDs when PIDs are static. In Section III, we
describe the design details of D-PID. In Section IV, we show
the implementation of D-PID. In Section V, we present the
results from extensive simulations. In Section VI, we outline
related work and compare D-PID with them. Finally, we
conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first make a brief introduction to CoLoR
because it lays the foundation of our study in this paper.
We then describe why we should dynamically change PIDs
in II-B, thus motivating our study. Note that D-PID can be
applied to other Internet architectures that use secret PIDs as
inter-domain routing objects (such as LIPSIN [23]).

A. Brief Introduction to CoLoR

CoLoR is a receiver-driven information centric network
architecture that assigns unique and persistent content names
(or service identifiers, SIDs) to content chunks. As in [20]
and [27], CoLoR assigns intrinsic secure self-certifying node
identifiers (NIDs) to network nodes and ASes so that authenti-
cating a node/AS does not require an external authority such as
ICANN, thus improving security and privacy. In addition, two
neighboring domains negotiate a PID for every inter-domain
path between them and the PID is only known by them.
The two domains then use the PIDs assigned to their inter-
domain paths to forward packets from one domain to the other.
For this purpose, the routers in a domain maintains an inter-
domain routing table, which records the PID of each inter-
domain path and the border router that the PID originates,
as illustrated at the upper right corner in Fig. 1. For instance,
the border router in domain N2 connecting PID2 in Fig. 1
is R5 . On the other hand, each domain is free to choose its
preferred intra-domain routing architecture so that a domain

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 3

R2

RM2

R3

RM3

R4

R5

R6

RM1
R1

N1

N2

N3

PID1

PID2

(1)

Data

GET

C

(9)
IPv4

IPv6

(3,4)

(8)

(5)

PID1NIDcSIDSID

(1)

(2)
(3)

(4)

(6)

(8) (9)

NIDc

PID Neighbor Nxt hop pref.

PID1 N1 R1 100

PID2 N3 R5 100

Inter-domain routing table of R2Registeration

S(6)

(5)

(7)

(7)

IPv4

PID3R7
N4

PID3 N4 R4 100

NIDc dataSIDIPc IPR1PID1 NIDc dataSIDIPR2 IPR5

PID1 PID2NIDcSID PID2 PID1 NIDc dataSIDIPR6 IPS LSP1 PID1 NIDc dataSID

providerconsumer

PID2

NIDc dataSIDPID1

TTL

t1

t2

t3

Fig. 1. Illustration for the basic operations in CoLoR.

A uses IPv4 for intra-domain routing while another domain B
may use IPv6 for intra-domain routing.

Furthermore, every domain in the Internet maintains a log-
ically centralized (but may be physically distributed) resource
manager (RM) used to propagate the reachability information
of SIDs . Particularly, when a content provider wants to pro-
vide a content chunk to consumers, he registers the SID of the
content chunk to its local RM . The local RM then registers
the SID to its providers or peers, by using an approach similar
to the one used in [26].

When a content consumer wants to obtain a piece of content,
it sends out a GET message to its local RM . If the desired
content is hosted by a local node, the RM forwards the
GET message to that node. Otherwise, the RM forwards the
GET message to the RM in a neighboring domain (toward
the content provider) over a secure channel between the
two RMs (because of the use of intrinsic secure identifiers).
During this process, the PIDs of inter-domain paths from the
content provider to the content consumer are determined. The
content provider then sends the desired content to the content
consumer by embedding the collected PIDs into headers of
packets for the desired content.

Fig. 1 illustrates the basic content retrieval process in CoL-
oR, assuming that the content provider holds a piece of desired
content with name SID and the content consumer wants to
obtain the content. Firstly, the content provider registers the
SID to its local RM (i.e., RM3), which then registers the SID
to its provider RM (i.e., RM2), as illustrated by the dashed
lines in Fig. 1. When the content consumer wants to obtain the
content, it sends a GET message to its local RM (i.e., RM1),
as illustrated by (1) in Fig. 1. Since no local host can provide
the desired content, RM1 appends PID1 at the end of the
GET message and forwards the GET message to its neighbor
RM2 , as illustrated by (2) in Fig. 1. Similarly, RM2 appends
PID2 at the end of the GET message and forwards the GET
message to RM3 , as illustrated by (3) in Fig. 1. RM3 then
forwards the GET message to the content provider who holds
the desired content, as illustrated by (4) in Fig. 1.

When the content provider receives the GET message,
it encapsulates the obtained PIDs into headers of packets
for the desired content, and sends the data packets to the
content consumer. When the data packets enter a domain,

the ingress border router encapsulates them an outer header
corresponding to the routing protocol used by the domain. By
contrast, when a data packet leaves a domain, the egress border
router removes the outer header. For instance, when router R5

receives a data packet carrying PID1 , it encapsulates the data
packet with an IPv4 header (as illustrated by (7) in Fig. 1), if
domain N2 uses IPv4 for intra-domain routing. When router
R2 receives the data packet, it removes the outer IPv4 header,
as illustrated by (8) in Fig. 1. Note that the outermost PID
is popped out by the ingress border router of each domain in
order to prevent content consumers from knowing the PIDs
toward a content provider and launching DDoS attacks. For
example, when the border router R5 receives the data packet,
it removes PID2 since it is the outermost PID , as can be seen
by comparing (6) and (7) in Fig. 1.

CoLoR offers several interesting features. First, as an
information-centric network architecture, routers in the net-
work can locally cache the popular contents so as to serve
nearby users, thus reducing redundant transmission and con-
tent retrieval delay. To achieve this, the router caching a piece
of content simply needs to register the SID of the content to
its local RM . Second, it is easy to accurately, timely estimate
the traffic matrices of a network since an ingress border router
of a domain can know the egress border router of a packet
by looking up the inter-domain routing table [29]. Third,
CoLoR makes it easy to efficiently integrate information-
centric networking and software-defined networking [30]. In
addition, the data plane in CoLoR is scalable because the sizes
of inter-domain routing tables maintained by border routers
depend on the number of neighbors of a domain, which is
limited to be several thousands in the Internet today. While
RMs needs to deal with SIDs whose number is quite large, the
RM in a large domain can be realized by using a distributed
system (e.g., a data center) and the content names could be
aggregated by using appropriate name formats such as P : L
[26]. Furthermore, to upgrade from the current Internet to
CoLoR, the intra-domain routers of domains do not need to
be upgraded, thus reducing deployment cost. Finally, CoLoR
offers some security benefits [31] while avoiding Interest
flooding attacks suffered by NDN [44] because 1) both routers
and RMs in CoLoR do not maintain pending Interest tables;
and 2) the PIDs carried in GET messages can be used to trace

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 4

D

I

H

K

N

P S

L M

B

A C

F E

J

1
2

3

4 5

8

9

11

10

12

16

14

6

7

R

13

15

17

18

QG

19

20

GET 161 3 8A to J:

Inter-domain Path

Learned Path

Tempted AS &

Attacking AS

Luring AS

M to J:

S to J:F to J: GET 5 164

GET 1613 11 10

GET 19 15 16

R to J: GET 20 17 15 16

Attacking Traffic

Tempted AS &

Victim AS

Fig. 2. Illustration for the GET luring.

back attackers.
CoLoR also has some drawbacks that need to be addressed

before its real deployment in the future. First, carrying the
NID of the content consumer and the desired SID in packet
headers reveals user privacy. Second, border routers need
to encapsulate/decapsulate outer packet headers (e.g., IPv4
headers), which makes it challenging to realize line-speed
packet forwarding. Third, as it is shown below, attackers can
learn PIDs in the network and launch DDoS attacks in the
data plane, if PIDs are static. As an attempt to address these
drawbacks, in this paper we propose D-PID to prevent DDoS
attacks in the data plane.

B. Why Dynamically Changing PIDs

In this subsection, we explain why it is necessary to dynam-
ically change PIDs in CoLoR. To this end, we first present
two approaches to learning PIDs whey they are static. We
then present an example to show that an attacker can launch
DDoS attacks when he have learnt some PIDs in the network.

1) Two approaches to learning PIDs: The first approach
to learning PIDs is GET Luring, where an attacker uses an
end host to register normal content names into the network,
thus luring GET messages from content consumers. Since the
corresponding PIDs are carried by the GET messages, the
attacker then can learn a part of PIDs in the network. We call
such a process as the PID learning stage in the rest of this
paper. Fig. 2 illustrates the process of GET luring. For ease
of presentation, we call the AS where the attacker locates as
a luring AS and the ASes that send GET messages to the
luring AS as tempted ASes . Each node in Fig. 2 represents
an AS in the Internet, AS J is the luring AS , and ASes A,
F , M , R, and S are the tempted ASes . At the beginning, AS
J registers content names into the network. Then, ASes A, F ,
M , R, and S are lured to send GET messages to AS J . The
GET messages received by AS J are shown at the bottom of
Fig. 2. The attacker then learns the corresponding PIDs in the
network, which are represented by solid lines in Fig. 2.

Another approach to learning PIDs is botnet cooperation.
In botnet cooperation, an attacker is assumed to have con-
trolled a distributed botnet by using various methods such
as worms or instant messaging applications. In particular,
zombies in the botnet register content names to the network

D

I

H

K

N

P S

L M

B

A C

F E

J

R

QG

Bot AS &

Attacking AS

Bot AS &

Victim AS

Inter-domain Path

Learned Path

Attacking Traffic

Fig. 3. Illustration for the botnet cooperation.

and send GET messages mutually, thus learning the PIDs in
the network. Fig. 3 illustrates botnet cooperation, assuming
that an AS in which one or more bots locate is called a bot
AS . In Fig. 3, ASes A, F , M , R, and S are bot ASes . When a
zombie in bot AS A sends a GET message to another zombie
in bot AS R, the inter-domain paths A−B , B −D , D −H ,
H −N , and N −R are learned. Similarly, other inter-domain
paths marked with bold lines in Fig. 3 can also be learned.

2) Launching DDoS Attacks: Once the attacker has learned
a part of PIDs in the network (through GET luring, botnet
cooperation, or other possible approaches), it can freely send
packets along the paths represented by the learned PIDs . We
assume that the attacker can compromise a number of com-
puters along the paths as zombies, by using similar methods
with the ones in the current Internet (e.g., by using worms).
Note that this is a pessimistic assumption since the integrality
of a content in information-centric networking is usually easy
to verify [25] - [27]. Then the attacker can order the zombies
to flood a victim that should also be along the learned paths.
We call such a process as the attacking stage.

Fig. 2 and Fig. 3 illustrate the attacking stage. We call
the ASes where the compromised computers (that flood the
victim) locate as attacking ASes and the AS where the victim
locates as the victim AS . Note that an AS may play multiple
roles, e.g., a tempted AS at the PID learning stage may be an
attacking AS at the attacking stage. In Fig. 2, AS M is the
victim AS , and ASes A, F , R, and S are the attacking ASes
that are compromised by the attacker and can flood the victim
by using the learned PIDs , as illustrated by the arrowed lines
in Fig. 2. In Fig. 3, AS M is the victim AS , ASes A, F , J ,
R, and S are the attacking ASes , and the attacking traffic is
represented by the arrowed lines.

From the above descriptions, one can see that it is possible
for an attacker to launch DDoS attacks if PIDs are kept
secret but static. In addition, since the PIDs carried by data
packets are popped out domain-by-domain, the victim does not
know the PIDs to the attackers. Accordingly, it cannot trace
back them. One may argue that we should not pop out the
PIDs when data packets pass through domains. In that case,
however, an attacker can try to hide himself by prepending
some invalid PIDs at data packets. For instance, the actual
PIDs from the content provider S to the content consumer
C in Fig. 1 are PID2 and PID1 . In order to hide himself, S
can prepend an invalid PID (e.g., PID6 not shown in Fig. 1)
before PID2 and PID1 . This way, the content consumer C
cannot easily find S even if we do not pop out PIDs during the

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 5

Domain A
Domain B

R1

R2

R3
R4

R5

R6

R7RM2RM1

0x1A01010A/8

0x1AF12C03/80x2A000001/8

0x1B000008/8

0x1D00FF01/8

0x1C:000501/8
0x1B000012/8

AS No.

C

D

B

PID Prefix

0x1B*/8

0x2A*/8

0x1A*/8

PID

0x1B000008

0x2A000001

0x1A01010A

Period

T2

T3

T1

Exp. Time

t2

t3

t1

AS No.

C

D

B

PID Prefix

0x1B*/8

0x2A*/8

0x1A*/8

PID

0x1B000008

0x2A000001

0x1AF12C03

Period

T2

T3

T1

Exp. Time

t2

t3

t1+T1

PID

0x1B000008

0x2A000001

0x1A01010A

Border router

R1

R2

R3

Exp. Time

t2+T2

t3+T3

t1+T1

PID

0x1B000008

0x2A000001

0x1A01010A

Border router

R1

R2

R3

Exp. Time

t2+T2

t3+T3

t1+T1

0x1AF12C03 R3 t1+2T1

PID Updating Msg.

Updating Confirm Msg.

④

⑥

①

②

③

③

③

③

③

③

Domain D

Domain C

Domain E

Domain F

Domain G

⑤

⑤

⑤
⑤ ⑤ ⑤

⑤

⑦

P1

P2

P3 P4
P5

P6

Before t1: After t1:

After t1:Before t1: Path No.

P2

P3

P1

Path No.

P2

P3

P1

Path No.

P2

P3

P1

0x1AE581FA R3 t1P1

Path No.

P2

P3

P1

P1

③

GET

GET

subscriber

source

Fig. 4. Illustration for PID negotiation and PID update in D-PID.

packet forwarding process. Therefore, we propose to defend
against DDoS attacks by dynamically changing PIDs .

III. THE D-PID DESIGN

In this section, we first present an overview of D-PID, and
then describe the design details.

A. Overview of D-PID

From Sec. II-B, one can see that an attacker can learn a
part of the PIDs used by domains in the Internet and launch
attacks, if the PIDs are static. Thus, the core idea of D-
PID is to dynamically change the PID of an inter-domain
path. In particular, for a given (virtual) path connecting two
neighboring domains A and B , it is assigned a PID and an
update period TPID . The update period TPID represents how
long the PID of the path should be changed since the PID is
assigned. For instance, if path P1 in Fig. 4 is assigned PID1

at time t , the RMs in the two domains should negotiate a new
PID (i.e., PID2) for P1 at time t +TPID and a new update
period T ′

PID , by using the negotiation process described in
Sec. III-B. At time t + TPID + T ′

PID , the two RMs will
negotiate another new PID (i.e., PID3) for P1 .

Once the new PID (i.e., PID2) is assigned to the path, the
RMs in domains A and B then distribute the new PID (i.e.,
PID2) to the routers in domains A and B (Sec. III-C). After
that, the RMs append the new PID (i.e., PID2) onto GET
messages if the path is chosen to carry the corresponding data
packets. At the same time, the border routers forward data
packets based on the new PID (i.e., PID2). Since some GET
packets are forwarded from domain A (or B) to domain B
(or A) by using the old PID (i.e., PID1) of the path, the old
PID is still valid until t + TPID + T ′

PID . Without loss of
generality, we assume that TPID equals to T ′

PID in the rest
of this paper. That is, the update period of a path is fixed.

Note that the new PID of the path is still known only by
the two domains. However, it is possible that a communication

lasts longer than two update periods. Thus, when the PID of
the path changes to PID3 , ongoing communications may be
interrupted. To address this issue, in Sec. III-F we propose a
mechanism similar to the one that the current Internet collects
the minimum MTU of networks so that a content consumer
knows the minimum update period of PIDs along the path
from a content provider to it. Based on this period, the content
consumer then re-sends a GET message to the network in order
to renew the PIDs along the path.

Note also that in D-PID, all domains should dynamically
change the PIDs of its inter-domain paths. Depending on its
local policy, a domain may simultaneously (or asynchronous-
ly) change these PIDs . In the former case, the cost for
updating the PIDs is fixed since a domain only needs to
distribute the new PIDs to its border routers once every PID
update period. In the latter case, every time the PID of an
inter-domain path is updated, the domain needs to distribute
the new PID to its border routers. As it is shown in Section
V-C, however, the cost for updating PIDs in the latter case
is significantly less than the update cost of IP-prefixes in the
Internet today.

B. Negotiating PIDs

Since inter-domain packet forwarding is based on PIDs , it
is necessary to guarantee that the PIDs used by a domain are
different from each other, even if they change dynamically.
To achieve this, a direct approach is for domain A to notify
its neighboring domain B the set of PIDs that are used (or
conversely, the set of PIDs not used) by domain A, and
domain B chooses a PID not used by both domains A and
B . However, domains may be reluctant to adopt this approach
since it may leak their privacy. More importantly, a domain
can have as much as 5,000 neighboring domains [33] and
may simultaneously negotiate PIDs for paths that connect the
domain with these neighbors. As a result, two neighboring
domains of a domain A may simultaneously choose a common

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 6

PID for two paths. This in turn entails multiple rounds of
negotiation, leading to a very long negotiation delay.

Therefore, we propose an approach that 1) guarantees the
negotiated PIDs are unique; and 2) requires only one round
of negotiation for each path. To achieve this, two domains
negotiate a PID block represented by a PID-prefix (like an
IP prefix) to every inter-domain path between them at the
bootstrapping stage when they interconnect with each other.
The PIDs belonging to the PID-prefix are then only used to
represent the path. The PID-prefix assigned to an inter-domain
path is unique in the sense that the two domains connected
by the path do not assign the PID-prefix to any other inter-
domain path. This means that a PID-prefix could be used to
represent multiple inter-domain paths in the Internet. For in-
stance, the PID-prefix 0x1B000000/8 is assigned by domains
A and C to inter-domain path P2 in Fig. 4. At the same time,
it is also assigned by domains B and E to inter-domain path
P4 in Fig. 4. This way, it is scalable for domains to assign
PID-prefixes since it is not necessary for domains to globally
cooperate to assign PID-prefixes to inter- domain paths.

As IPv4 addresses, PIDs are 32-bit long in our imple-
mentation. First, the largest AS in the current Internet has
about 5,000 neighboring domains [33]. Since two domains
may have multiple (typically, up to four) inter-domain paths
[34] and every path needs a unique PID-prefix, the largest
AS may need about 20,000 PID-prefixes, which entails 15
bits to represent. Second, the number of PIDs within a PID-
prefix should not be too small in order to prevent attackers
from correctly guessing the PID used by a path. Assume
that an ingress border router can detect an attack and alarm
the neighboring domain to suppress the attack if it receives
ten data packets carrying wrong PIDs every second from
a neighboring domain. Accordingly, an attacker cannot send
more than 20 × T data packets carrying wrong PIDs during
a PID update period T in order to avoid being detected,
since a PID needs to be used to forward data packets for
two PID update period T . Even if T is set to be 3,600
seconds, an attacker can try 72,000 PIDs in a PID update
period. Accordingly, it is enough to use 17 bits to present the
number of PIDs within a PID-prefix. Third, PIDs should not
be too long since using longer PIDs consumes more network
bandwidth.

For ease of presentation, we use hexadecimal numbers
to denote PIDs and PID prefixes. Similar to current IP
addresses, we also use a PID-prefix mask to denote the length
of a PID-prefix. For example, a PID can be represented as
“0x1A01010A/8”, where “/8” represents the mask length of
the PID (i.e., eight bits). In Fig. 4, the path P1 connecting
domains A and B is assigned the PID-prefix 0x1A000000/8,
and the path P2 connecting domains A and C is assigned
the PID-prefix 0x1B000000/8. Similarly, other inter-domain
paths are also assigned corresponding PID-prefixes, as shown
in Fig. 4. Note that the PID blocks assigned to paths may be
of different size. For instance, two domains may assign a /8
PID-prefix to an inter-domain path, and a /4 prefix to another
one connecting them.

The actual negotiation process is quite simple. Recall that,
for the PID of a path connecting two neighboring domains, it

is associated with an update period. At the end of the update
period, the initiative RM in the two neighboring domains
randomly chooses a new PID from the PID-prefix assigned
to the path, and sends the chosen PID to the RM in another
domain, as illustrated by (1) in Fig. 4. If the later one accepts
the chosen PID , it sends a confirmation message back to the
initiative RM , as illustrated by (2) in Fig. 4. Otherwise, the
later RM chooses another PID from the PID-prefix and sends
the chosen PID back to the initiative RM . As stated in Sec.
III-A, if the update period of a path is not fixed, the two
domains can also negotiate the new period used to update the
PID of the path.

C. Distributing PIDs to Routers

Having negotiated the new PID of a path connecting a
neighboring domain, the RM in a domain A needs to distribute
the new PID to the routers in that domain so that the new PID
can be used to forward data packets. To achieve this, the RM
simply sends a PID update message to every border router in
the domain. The PID update message contains the path and
its corresponding new PID . When a border router receives
the PID update message, it updates its inter-domain routing
table. After that, it sends an acknowledgement message to the
RM . When the RM receives the acknowledgement messages
from all border routers, it then updates its PID table. After
that, the RM appends the new PID instead of the old one
onto the GET messages when it forwards them. Accordingly,
the corresponding data packets will be forwarded from the
neighboring domain to domain A by using the new PID .

Fig. 4 illustrates the PID distribution process, assuming that
domains A and B change path P1 ’s PID from 0x1A01010A
to 0x1AF12C03 during the PID negotiation process. In ad-
dition, before path P1 ’s new PID is distributed, the inter-
domain routing table of router R2 is shown at the bottom
left corner in Fig. 4. Note that in order to maintain legal
communications (Sec. III-D), the inter-domain routing table
of router R2 has two entries for path P1 : 0x1A01010A that
is used by the RM before the negotiation and will be replaced
by 0x1AF12C03 after the negotiation, and 0x1AE581FA that
is used in the previous negotiation and has been replaced by
0x1A01010A. Similarly, after the negotiation is completed,
the PID table of the RM is shown at the upper left corner
in Fig. 4. When the negotiation completes, RM1 distributes
the new PID 0x1AF12C03 of path P1 to the border routers
in domain A by sending to each of them a PID update
message, as illustrated by (3) in Fig. 4. When border router
R2 receives the PID update message, it deletes the outdated
PID 0x1AE581FA and inserts the new PID 0x1AF12C03
into its inter-domain routing table, as illustrated by (4) in Fig.
4. Having updated its inter-domain routing table, router R2

then sends an acknowledgement message to its local RM (i.e.,
RM1), as illustrated by (5) in Fig. 4. When RM1 receives the
acknowledgement messages from all border routers, it updates
its PID table, as illustrated by (6) in Fig. 4. At this time,
the PID distribution process completes and RM1 forwards
GET messages to RM2 by using the new PID 0x1AF12C03
instead of the old 0x1A01010A, as illustrated by (7) in Fig.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 7

: the GET message that arrives at domain A : the first data packet that arrives at domain B with the updated PID

T
i
PID

0

2T
i
PID 3T

i
PID

t

t0

T
i
PID

0

2T
i
PID 3T

i
PID

t

t0

i
RTT

T
i
PID

0

2T
i
PID 3T

i
PID

t

t0 t0+TGET

T
i
PID

0

2T
i
PID 3T

i
PID

t

t0 t0+TGET

i
RTT

i
RTT

i
RTT

(b) correct (c) disrupted

(e) correct (f) disrupted

T
i
PID

0

2T
i
PID 3T

i
PID

t

t0

i
RTT

(a) correct

0

PID1 PID2 PID3PID1 PID2 PID3

PID1 PID2 PID3 PID1 PID2 PID3 PID1 PID2 PID3

T
i
PID 2T

i
PID 3T

i
PID

t

t0 t0+TGET

i
RTT

(d) correct

PID1 PID2 PID3

Fig. 5. The mathematical model for determining TPID and TGET .

4. Similarly, RM2 also distributes the new PID to the border
routers in domain B .

It is worthy of noting that the RM will update its PID table
after it receives acknowledgements from all border routers so
that the border routers do not discard data packets that carry
the new PID (e.g., 0x1AF12C03). Since the RM and border
routers are in the same domain, the delay used for waiting the
acknowledgements from border routers is fairly small (less
than one second), especially when compared with the PID
update period (several tens of seconds).

D. Maintaining Legal Communications

As mentioned before, the communications that last long
enough (e.g., longer than 2TPID) may be interrupted when
D-PID is applied in CoLoR. As a result, we need to design
a mechanism to timely update the PIDs that are used by
the active communication between a content provider and
a content consumer. To achieve this, we let the subscriber
periodically retransmit the same GET message for an active
communication. When the source receives the PID sequence
contained by the retransmitted GET message, it updates the
old PID sequence to the fresh one and uses the updated PID
sequence to send subsequent data packets. Accordingly, the
data packets from the source can be correctly forwarded to
the subscriber and the ongoing communication will not be
interrupted. In the rest of this paper, we denote the GET
retransmission period as TGET .

We use the example in Fig. 4 to further illustrate such
a process. Assuming that, before time t1 , the subscriber in
domain C sends a GET message to the source in domain
F to request a content. Thus, the source initially sends the
corresponding data packets back to the subscriber based on
the old PID 0x1A01010A. After t1 , the PID is updated
to 0x1AF12C03, while the data plane can still forward data
packets based on the old PID 0x1A01010A. Accordingly, the
communication will not be interrupted before t1+T1 , but will
be interrupted after t1 +T1 . However, if the subscriber timely
retransmits the same GET message to the source (an enough
time period before t1 +T1), the new PID 0x1AF12C03 will
be encapsulated in the GET message and sent to the source.

This way, the source knows the new PID 0x1AF12C03 and
uses it to forward the subsequent data packets to the subscriber.
Therefore, if the subscriber periodically retransmits the GET
message and the period is appropriately set, the source can
know the valid PIDs toward the subscriber, thus maintaining
a legal communication.

It is worthy of noting that the retransmission of a GET
message is initiated by a content consumer based on its
GET retransmission period TGET and the initial time the
consumer sends out the first GET message for a piece of
content. Therefore, when the PID of an inter-domain path
from the content provider to the consumer changes, the content
consumer does not resend a GET message immediately when
the itPID changes. This way, we can efficiently avoid the
sudden increase in the number of GET messages received by
RMs in the Internet, as it is shown in Fig. 12.

E. Setting TPID and TGET

In D-PID, TPID and TGET should be carefully set so that
a legal communication will not be interrupted when PIDs
change dynamically. To achieve this, we build a mathematical
model to calculate the appropriate values of TPID and TGET ,
with the help of Fig. 5.

Without loss of generality, we assume that there are N
inter-domain paths along the path from a server to a client.
In particular, we consider the i − th (1 ≤ i ≤ N) inter-
domain path and assume that it connects two domains A and
B . Specifically, we call the timeout period in which a GET
message arrives at domain A as the present timeout period
and the GET message will be forwarded to domain B . We
also assume that the present timeout period begins at time
zero, as illustrated by Fig. 5. In addition, we assume that the
GET message arrives at domain A at time ti0 and the round-
trip time from domain A to the content provider is δiRTT . For
ease of presentation, we denote the timeout period of the i−th
path be T i

PID.
With these assumptions, one can observe from Fig. 5(a)

that, if (ti0 + δiRTT) is less than T i
PID, the corresponding

data packets for the GET message will arrive at domain B
in the same timeout period in which the GET message arrives

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 8

D1: IPv4 Domain

D3: IPv6 Domain

D6: IPv6 Domain

D2: IPv6 Domain D4: IPv4 Domain

D5: IPv4 Domain

P5

P6
P9

P10

P1

P3 P4

P2

P7

P8

P11

RM1

RM3

RM2

RM5

RM4

RM6

R1

R2

R3

R4

R5

R12 R13 R14

R15 R16

R7 R8

R6

R9 R10

R11

R17

R18

R20

R19

R21

R22

R23

R24

R27

R25

R28

R29

R26

R30

R33

R32 R34

R31

A1

A3

A4
A6

Victim

R35

R36

Fig. 6. The topology of the prototype.

at domain A. In this case, the data packets can be correctly
forwarded to domain A. Similarly, if (ti0 + δiRTT) is less than
2T i

PID, the corresponding data packets will arrive at domain B
in the next timeout period, as shown by Fig. 5(b). In this case,
the data packets also can be correctly forwarded to domain A
because domain B is able to forward data packets based on the
PIDs chosen for the present and the previous timeout periods.

However, when (ti0+δiRTT) is larger than 2T i
PID, as shown

in Fig. 5(c), data packets will be dropped by domain B . There-
fore, in order to guarantee correct data packet forwarding, it
must hold that:

ti0 + δiRTT < 2T i
PID.

Note that ti0 should be evenly distributed in [0, T i
PID). To

guarantee correct packet forwarding, it requires that:

T i
PID > sup(δiRTT),

where sup(x) represents the supremum of x. This formula
indicates that when we set TPID for an inter-domain path,
the value should be greater than the supremum value of the
network’s round-trip time. From Fig. 13 in [35], we know
that with probability higher than 99.9%, the round-trip time
is less than 1.5 seconds. Therefore, we can treat the value of
sup(δiRTT) as 2 seconds in practice.

We now describe how to set the value of the GET re-
transmission period TGET for an active session. Obviously,
the second GET message (i.e., the first retransmitted GET
message) arrives at domain A at the time (ti0 +TGET). When
the data source receives the second GET message, it will renew
the PID sequence and then sends subsequent data packets to
the client by using the new PID sequence. We assume that
the first one of these subsequent packets arrives at domain B
at time (ti0 + TGET + δiRTT).

Similar to our discussions on setting T i
PID, there are also

three cases. In the first case, ti0 and (ti0 + TGET + δiRTT) are
in the same timeout period, as illustrated by Fig. 5(d). In this
case, when domain B receives the data packets sent by the
server, it can correctly forward these data packets to domain
A. In the second case, (ti0 + TGET + δiRTT) is in the next

timeout period to ti0, as illustrated by Fig. 5(e). In this case,
domain B also can correctly forward data packets to domain
A because now domain B can forward packets based on both
PID1 and PID2 . In the third case, (ti0 + TGET + δiRTT) is
larger than 2T i

PID, as illustrated by Fig. 5(f). In this case,
some data packets will be discarded during the period (2T i

PID,
ti0 + TGET + δiRTT). Therefore, to guarantee the correct data
forwarding, it must hold that:

ti0 + TGET + δiRTT < 2T i
PID.

As discussed before, ti0 may be very close to T i
PID, so the

above inequation can be rewritten as:

TGET < T i
PID − sup(δiRTT).

Note that the above discussions are focused on a given inter-
domain path. Since there are N inter-domain paths between
the client and the server, to ensure that the data packets could
be correctly forwarded along all intermediate paths, the TGET

should be given by:

TGET < min
i=1,2,...,N

(T i
PID − sup(δiRTT)).

Without loss of generality, we assume that sup(δiRTT) is the
same for all inter-domain paths. In addition, as discussed
before, we can set sup(δiRTT) to be 2 seconds in practice.
Accordingly, the above inequation can be rewritten as:

TGET < min
i=1,2,...,N

(T i
PID)− 2. (1)

F. Collecting Minimum T i
PID

From Equation (1), we know that the subscriber needs to
be aware of mini=1,2,··· ,N (T i

PID) in order to appropriately
set TGET . To achieve this, we add a field called MINI-
MUM PERIOD in the GET message and the data packet to
collect the PID update period T i

PID of PIDs along the path
from the subscriber to the source. When the subscriber sends
out a GET message, the value of MINIMUM PERIOD is set to
be infinite. When a RM receives a GET message and chooses

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 9

DPDK PMD Drivers

Encap/Decap X-protocol header

GET
RMs

Border

routers

Physical NIC ... Physical NIC
Intel DPDK Kernel Space

DPDK User Space

PID distribution

PID negotiation

SID Table

Registration

Policy store

DPDK Lib

RMs

cache

PID

Table

(a) RMs

PID distribution PID Table

CoLoR Packet Processing

Encap/Decap X-protocol header

Physical NIC Physical NIC

CLICK Router

...

(b) Border routers

SID controller

DATA GET REGISTER

Application

Socket

API (SID, dstPort, PID_num,

PID[1, …, PID_num])

data delivery

Active

sockets

User

space

Kernel

space

CoLoR

Physical NICs

Flow table Registered SID table

GET resend

timer
PID update

Physical NICs

(c) End hosts

Fig. 7. The structures of RMs, border routers, and end hosts in our implementation.

the inter-domain path toward the next hop domain, it compares
the value of MINIMUM PERIOD with the path’s TPID . If the
path’s TPID is smaller than the value of MINIMUM PERIOD,
the RM replaces the value of MINIMUM PERIOD by the
path’s TPID . When the source receives the GET message, it
writes the value of MINIMUM PERIOD into the data packets
that are sent to the content subscriber. This way, the content
subscriber knows the minimum of all T i

PID along the path
from the content subscriber to the content provider.

IV. PROTOTYPE IMPLEMENTATION

We verified D-PID’s feasibility and effectiveness by imple-
menting it in a 42-node prototype. Our implementation effort
was instrumental in refining our design, leading to several
revisions. For example, we initially use the approach discussed
in the first paragraph in Sec. III-B to negotiate PIDs . Through
experiments, we found such a design may cause multiple
rounds of PID negotiations, which stimulated us to propose
the PID-prefix approach described in Sec. III-B. Below we
describe our implementations and present results from running
experiments on the prototype.

A. Prototype Design

The prototype has six domains (i.e., D1 - D6) that use
different intra-domain routing protocols, as shown in Fig. 6.
The six domains are inter-connected by 11 inter-domain paths
(i.e., P1 - P11) , each of which is assigned with a PID-
prefix based on the design in Sec. III. Every domain has
one centralized RM . Every node in the prototype (including
the routers, the RMs , and the end-hosts) is running on an
aTCA-9300 processor blade, with a four-core Intel Xeon
E3 1275V2 processor, an 8 GB DDR3-1600 memory, and
six Intel I210 Gigabit Ethernet controllers. The RMs are
implemented based on the DPDK [36] platform for fast packet
processing, the routers are implemented by using the CLICK
software platform [37], and the end-hosts are implemented as
a module in Linux kernel version 2.6.35. We now present the
implementation details of the prototype.

1) RMs: Fig. 7 (a) shows the structure of the implemented
RMs , where “X-protocol” represents the local routing protocol
used by the domain where the RM locates. The Registration
module is used to process registration messages, and it stores
the reachability information of the registered content names

into the SID Table. The GET module is used to process GET
messages, and it queries the SID Table in order to determine
the next hop for a GET message. The PID Table stores the
currently used PIDs for the inter-domain paths associated with
the domain where the RM locates. To support D-PID, an entry
in the PID table has a timer recording the time that a new
PID should be negotiated. When the timer of a PID entry
times out, the PID negotiation module negotiates a new PID
for the inter-domain path with the associated neighbor RM .
When the negotiation completes, the PID distribution module
distributes new PIDs to border routers in a domain.

2) Border Routers: Fig. 7 (b) shows the structure of the
implemented border routers, where “X-protocol” represents
the local routing protocol used by the domain where the
border router locates. The Packet Processing module is used
to process CoLoR format packets based on the PIDs , and
it queries the PID Table to determine the operation for an
incoming packet (e.g., encapsulating the packet with an IPv4
packet header and sending it to another border router). The
PID distribution module is used to process PID update
messages from the RM . When it receives a PID update
message, it adds the new PID into the PID table and sends an
acknowledgement back to the RM . In addition, a PID entry
in the PID table also has a timer recording the time that the
PID should be removed from the PID table. Once the timer
of a PID entry in the PID table expires, the entry is deleted
from the PID table.

3) End Hosts: Fig. 7(c) shows the structure of the imple-
mented end hosts. We implement CoLoR as an independent
protocol stack (as same as the TCP/IP stack) in the Linux
kernel, and provide APIs (Application Program Interfaces) for
applications to call the CoLoR socket that can send/receive
GET, data, and registration messages. In particular, we embed
several functionalities into the CoLoR stack in the Linux
kernel. To collect the minimum TPID , the DATA module reads
the MINIMUM PERIOD field when it receives a data packet,
and sets the timer to resend GET messages for the associated
session based on MINIMUM PERIOD. When the timer for the
session times out, the GET module re-sends the GET message
to the content provider in order to refresh the PIDs . When the
source receives a resent GET message for an active session,
the PID update module refreshes the PID sequence used by
the session based on the PIDs contained in the GET message.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 10

delay (ms)
0 5 10 15 20

C
D

F

0

0.2

0.4

0.6

0.8

1

25% load
75% load

(a) The PID negotiation delay

delay (ms)
10-2 10-1 100 101 102 103 104

C
D

F

0

0.2

0.4

0.6

0.8

1

75% load
25% load

(b) The PID distribution delay

delay (us)
10-1 100 101 102 103

C
D

F

0

0.2

0.4

0.6

0.8

1

75% load
25% load

(c) The PID installation delay

Fig. 8. The PID negotiation performance obtained from the prototype.

time (s)
0 100 200 300 400

at
ta

ck
in

g
tra

ffi
c

ra
te

 (M
bp

s)

0

20

40

60

80

no D-PID
do not reduce
 T (T=60s)
reduce T from
60s to 10s

detect the
attack and
reduce T

Fig. 9. The attacking rate received by the victim.

0

100

200

300

400

500

600

20% 40% 60% 80%

G
E
T
 m

e
ss
a
g
e
 r
a
te
 (
p
k
/s
)

ratio of tempted ASes

T=60 T=240 T=360

(a) The GET luring

0

5

10

15

20

25

30

50 200 800 1500

G
E
T
 m

e
ss
a
ge
 r
a
te
 (
p
k/
s)

number of bot ASes

T=60 T=240 T=360

(b) The botnet cooperation

Fig. 10. The GET message rates received by attackers.

B. Testbed Experiments

To evaluate the performance of D-PID, we tested the PID
negotiation delay, the PID distribution delay, and the PID
installation delay in our prototype. The PID negotiation delay
is the interval between the time when a RM sends the PID
update message to its neighbor RM and the time when it
receives the update confirmation message from its neighboring
RM (i.e., the duration of steps (1) and (2) in Fig. 4). The PID
distribution delay is the interval between the time when a RM
sends the PID distribution message to a border router and the
time when the RM receives the confirmation message from all
border routers (i.e., the duration of steps (3), (4), and (5) in Fig.
4). The PID installation delay is the time for a border router
to install a PID into its forwarding table (i.e., step (4) in Fig.
4). We also record the three kinds of delays in two different
scenarios: 1) the border routers are forwarding data packets at
25% link speed, and 2) the border routers are forwarding data
packets at 75% link speed. For each kind of delay, we record
20,000 samples by running D-PID in the prototype.

Fig. 8(a) shows the cumulative distribution function (CDF)
of the PID negotiation delay. We observe from Fig. 8(a) that
all PID negotiations are finished within 20 milliseconds (ms).
Fig. 8(b) and Fig. 8(c) show the CDFs of the PID distribution
delay and the PID installation delay, respectively. From them,
we observe that the PID distribution delay is less than 3 ms
with a probability higher than 99% and the PID installation
is less than 20 microseconds (us) with a probability higher
than 99%. In addition, the traffic load of the border routers
does not have much effect on the PID distribution delay and
the PID installation delay. From Fig. 8, we conclude that the
PID distribution delay is mainly determined by the maximal

end-to-end delay from the RM to the border routers.

C. Resilient to DDoS Flooding Attacks

We conduct an experiment to test the effect of D-PID on
defending against DDoS flooding attacks. To achieve this, we
set four attackers (i.e., A1 , A3 , A4 , and A6 in Fig. 6) and a
victim in domain D5 , assuming that the attackers have learned
the PIDs in the network before the attack. At time 100 second,
we let each attacker flood the victim at a rate of 20 Mbps
(megabits per second) and observe the attacking traffic at the
victim. There are three different scenarios in our experiments:
1) the PIDs are static; 2) the PIDs dynamically change with
an update period of 60 seconds; and 3) the update period of the
PIDs is 60 seconds at the beginning, and when domain D5

detects the attack, it changes the update period of the PIDs
P10 , P9 , P6 , and P5 to 10 seconds.

Fig. 9 shows the observed attacking traffic at the victim
in the three scenarios. From the results, we observe that the
attacking traffic is 60 Mbps if D-PID is not applied. On the
other hand, the attacking traffic is gradually eliminated (in 115
seconds) if the PIDs dynamically change once every 60 sec-
onds. Furthermore, if the network (i.e., D5) where the victim
locates reduces the PID update period when it detects the
attack at 100 second, the attacking traffic is quickly removed
(in only 18 seconds). This indicates that D-PID not only can
effectively defend against DDoS attacks, but also can make it
possible for the victim to actively take measures to eliminate
an ongoing attack. Note that if the attacker periodically learns
the PIDs in the network, the attacking traffic cannot be
eliminated. However, this not only significantly increases the
cost for the attacker to launch attacks, but also makes it easier

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 11

GET message rate (pk/s)
10-4 10-3 10-2 10-1 100 101

C
D

F

0

0.2

0.4

0.6

0.8

1

normal users

50 bots

200 bots

800 bots

1500 bots

maximum=4.50
mean=0.14

mean=0.56

mean=2.23

mean=4.19

(a) TPID = 360 seconds

GET message rate (pk/s)
10-4 10-3 10-2 10-1 100 101

C
D

F

0

0.2

0.4

0.6

0.8

1

normal users
1500 bots
800 bots
200 bots
50 bots

maximum=4.52
mean=0.21

mean=6.30

mean=3.36

mean=0.84

(b) TPID = 240 seconds

GET message rate (pk/s)
10-4 10-3 10-2 10-1 100 101

C
D

F

0

0.2

0.4

0.6

0.8

1

normal users

50 bots

200 bots

800 bots

1500 bots

maximum=5.01
mean=0.86

mean=25.86

mean=13.79

mean=3.45

(c) TPID = 60 seconds

Fig. 11. The GET message rate of normal users and attackers in the botnet cooperation.

for the network to detect the attacker, as it is shown in Sec.
V-A.

V. SIMULATION RESULTS

In this section, we first evaluate the effect of D-PID in
defending against DDoS attacks in large scale networks. We
then evaluate D-PID’s overheads, including the extra GET
messages sent by the subscriber, and the control overhead
incurred by PID negotiation and distribution.

A. Defending Against DDoS Attacks

1) Attacking Cost: In D-PID, the PIDs learned by the
attacker at the PID learning stage (as described in Sec. II)
will become invalid after a certain period. As a result, if the
attacker does not continuously (or periodically) learn the valid
PIDs in the network, the attacking traffic rate received by the
victim will be quickly reduced to zero, as demonstrated in Sec.
IV-C. On the contrary, if the attacker periodically learns the
valid PIDs in the network, it will receive more GET messages,
thus increasing the attacking cost. Below we evaluate such a
cost through extensive simulations.

We use the AS-level topology of the current Internet, which
is derived from the BGP data set collected by Route Views,
RIPE RIS, PCH, and Internet2 [38]. The data set has 49,448
ASes and 212,543 AS links. We divide all ASes in the
topology into two categories: edge ASes and core ASes . An
AS is classified as an edge AS if it always appears at the end
point of an AS path [39]. As a result, we identify 41,734 edge
ASes and 7,714 core ASes . In all simulations, we assume that
the attacking ASes are chosen from the edge ASes .

For GET luring, we randomly choose an edge AS as the
luring AS and let it publish content names into the network.
Then we choose another portion (i.e., 20%, 40%, 60%, and
80%) of edge ASes as tempted ASes and let them send GET
messages to the luring AS at the PID learning stage so that
the attacker can obtain some PIDs in the network. In the
attacking stage, we randomly choose an edge AS that is along
the learned path as the victim AS , and a portion of edge ASes
(along the learned path) as attacking ASes . To launch the
attack, we let the luring AS periodically learn the PIDs in the
network, and record the GET message rate (i.e., the number
of GET messages received by the attacker per second).

For the botnet cooperation, we randomly choose a number
of edge ASes (50, 200, 800, and 1,500, respectively) as bot

ASes , and let them send GET messages to each other. The
maximum number of bot ASes is set to be 1,500 in the
simulations because the number of source ASes in almost all
current DDoS attacks is under 1,000 [40]. Then we randomly
choose an edge AS along the learned path as the victim AS .
To launch attacks, we let the bot ASes periodically learn the
PIDs in the network and record the average GET message
rate received by all bot ASes . For each combination of the
parameters, we run the simulation 20 times. All results shown
below are the mean values of 20 simulations.

Fig. 10(a) shows the GET message rate that a luring AS
receives in GET luring, if D-PID is deployed and the attacker
still tries to learn the valid PIDs in the network. From Fig.
10(a), we observe that the PID update period (T in Fig. 10)
has a significant effect on the attacking cost. For example,
when the ratio of tempted ASes is 80% and the PID update
period is 360 seconds, a luring AS receives less than 100
GET messages per second. However, when the PID update
period is 60 seconds, a luring AS will receive about 570 GET
messages per second. From Fig. 10(a), we also observe that,
when T = 60, an attacker receives about 150 GET messages
per second if he controls only 20% ASes . However, if the
attacker controls 80% ASes , he receives as high as 570 GET
messages per second. Therefore, the more ASes controlled by
an attacker, the more GET packets the attacker receives. This
not only hurts the attacker itself since it receives more traffic,
but also makes it easier for the attacker to be detected by using
the number of GET messages it receives. By contrast, if PIDs
do not change, the attacker will not receive GET messages
once he has learned the PIDs in the network.

Fig. 10(b) shows the GET message rate that a bot AS will
receive in the botnet cooperation, if D-PID is deployed and the
attacker still tries to continuously learn the valid PIDs in the
network. From Fig. 10(b), we can make conclusions similar
to those from Fig. 10(a). Therefore, D-PID can significantly
increase the cost in launching DDoS attacks, which cannot be
achieved if the PIDs are static.

2) Detecting DDoS Attacks: With D-PID, an attacker has to
periodically learn the valid PIDs to launch a DDoS flooding
attack, thus receiving a large amount of GET messages. This
in turn provides a new dimension for the network to detect
the attackers, since a normal user in the Internet usually
receives very few GET messages. To illustrate this, we conduct
emulations based on the real data trace collected from a

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 12

0 10 20 30 40 50 60
0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

time (min)

G
E

T
 m

es
sa

ge
 r

at
e

(p
k/

m
in

)

no D PID

T = 30s

T = 60s

T = 180s

(a) Datacenter trace

0 5 10 15 20
0.8

0.9

1

1.1

1.2

1.3
x 10

6

time (min)

G
ET

 m
es

sa
ge

 ra
te

 (p
k/

m
in

)

no D−PID
T = 30
T = 60
T= 180

(b) Tier-1 AS traces

Fig. 12. The GET message rates obtained from the data traces.

university campus [41]. In the emulations, we assume that
when a node opens a new TCP/IP flow to another node,
it receives a GET message. In addition, before the flow is
finished, the node also receives a GET message at the end of
every GET retransmission period.

In the emulations, we record the GET message rates re-
ceived by 6,601 normal users in the data trace for 9,481
seconds, and calculate the mean GET message rate received
by each user during the 9,481 seconds when the PID up-
date period TPID is 30s, 180s, and 300s, respectively. For
comparison, we also simulate (as described in Sec. V-A1)
the GET message rate received by the attackers in the botnet
cooperation when the PID update period TPID is 60s, 240s,
and 360s, respectively, assuming that the number of bot ASes
controlled by the attacker is 50, 200, 800, and 1,500.

Fig. 11(a) shows the empirical CDF of the GET message
rates of attackers and normal users when the PID update
period TPID is 360s. From Fig. 11(a), we observe that
the number of GET messages received by the attacker is
significantly larger than that received by most of the normal
users, regardless how many bot ASes the attacker controls.
This implies that we can count the GET message rates of users
to detect DDoS attacks. While there are still some normal
users (e.g., web servers) receiving more GET messages per
second than attackers, we can narrow our focus to the users
who receive significantly more GET messages per second and
try to identify attackers among those users. To this end, we
can simply reduce the PID update period TPID and observe
the changes in the GET message rates of them. For instance,
when the PID update period TPID reduces from 360 seconds
to 240 seconds, the GET message rate of the attacker increases
from 0.56 to 0.84 (i.e., significantly increased by 50%) if the
attacker controls only 200 bot ASes . By contrast, the GET
message rate of a normal user (with the max GET message
rate) only increases from 4.50 to 4.52 (i.e., slightly increased
by 0.4%). When the PID update period further reduces to
60 seconds, the GET message rate of the attacker increases
from 0.84 to 3.45 (i.e., increased by 310.7%), but that of a
normal user only increases from 4.52 to 5.01 (i.e., increased
by 10.8%). This way, we can effectively detect the attacker.

B. Extra GET Messages

Applying D-PID in CoLoR requires that the content con-
sumer should periodically retransmit GET messages. This in

TABLE I
THE MEAN GET MESSAGE RATE (NO. OF GET MSG. PER SECOND)

TGET 30s 60s 180s 300s 600s no D-PID
DC 260.4 239.7 226.9 224.6 222.9 221.5

Tier-1 20481 17027 14994 14662 14432 14348

turn causes extra overhead on the network, especially on the
RMs . We evaluate such overheads by using two sets of real da-
ta traces. The first real data trace is collected from a data center
and lasts 65 minutes [41]. The second trace lasts 20 minutes
and is collected from a Tier-1 link [42]. For our evaluation, we
develop a packet-level simulator based on C++, which could
simulate the generation of GET massages based on the active
flows in the data traces, under different values of TGET . In
particular, we define a flow as a sequence of packets that share
the same 5-tuple ⟨the source IP address, the destination IP
address, the source port number, the destination port number,
the protocol⟩. We count the number GET messages sent by
the content consumers under different TGET .

For the data center data trace, Fig. 12(a) shows the number
of GET messages sent by the content consumers per minute
when TGET is 30, 60, and 180 seconds, respectively. For
comparison, we also show the number of GET messages sent
by the content consumers per minute when we do not deploy
D-PID (represented by “no D-PID”). Table I shows the average
number of GET messages per second for different TGET . From
the results, we observe that the extra number of GET messages
is about 8.2% (= (239.7−221.5)

221.5) when TGET is 60 seconds.
When TGET increases to 300 seconds, however, this number
is reduced to about only 1.4% (= (224.6−221.5)

221.5) .
Fig. 12(b) and Table I show the number of GET messages

sent by the content consumers per minute when TGET is 30,
60, and 180 seconds, respectively, for the Tier-1 network data
trace. From them, we observe that the extra number of GET
messages is about 18.7% (= (17027−14348)

14348) when TGET is 60
seconds. However, this number is reduced to about only 2.2%
(= (14662−14348)

14348) when TGET increases to 300 seconds.
In summary, these results indicate that the extra number

of GET messages caused by the D-PID mechanism could be
trivial if TGET is properly set.

C. Control Overhead
To evaluate the control overhead caused by PID negotiation

and distribution, we conduct simulations with the real Internet

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 13

PID updating rate (No./s)
100 101 102

C
D

F

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

mean update period = 30s
mean update period = 60s
mean update period = 180s
mean update period = 300s
mean update period = 600s

(a) Total PID update rates

PID updating rate (No./s)
100 101 102

C
D

F

0

0.2

0.4

0.6

0.8

1

mean update period = 30s
mean update period = 60s
mean update period = 180s
mean update period = 300s
mean update period = 600s

(b) Peak PID update rates

PID updating rate (No./s)
10-2 10-1 100 101 102

C
D

F

0

0.2

0.4

0.6

0.8

1

mean update period = 30s
mean update period = 60s
mean update period = 180s
mean update period = 300s
mean update period = 600s

(c) Mean PID update rates

Fig. 13. Empirical cumulative density function (CDF) of PID update rates.

topology [38] used in Sec. V-A. In the simulations, we assign
each inter-domain path with a PID update period, and all the
periods are normally distributed. We conduct the simulations
by using different parameters: the mean value and the standard
variance of these periods is set to be (30s, 5s), (60s, 10s),
(180s, 20s), (300s, 30s), and (600s, 40s), respectively. At the
beginning of the simulations, for each inter-domain path, we
let the value of its first PID update period be uniformly
distributed between zero and its PID update period. During
the simulations, once the PID of an inter-domain path needs to
be updated, we record the time and the two domains associated
with the path. Therefore, we have the PID update rate for
every domain in the topology. All simulations are conducted
for 6,000 seconds.

Fig. 13 shows the CDF of the PID update rates of all
domains per second, the CDF of the peak PID update rates of
every domain, and the CDF of the mean PID update rates of
every domain, respectively, when the mean value of the update
period is set to different values. From the results, we can
observe that even if the mean PID update period is 30s, the
PID update rate is less than 10 per second with a probability
higher than 99% (Fig. 13(a)). Moreover, the peak PID update
rate per domain is less than 10 per second with a probability
higher than 95% (Fig. 13(b)), and the mean PID update rate
per domain is less than one per second with a probability
higher than 95% (Fig. 13(c)). Note that when the mean PID
update period is 30s, the maximal PID update rate in the
network is 202 per second. We can also observe that, when
we increase the mean PID update period, the PID update
rate in the network is significantly decreased. For example, if
the mean PID update period is 600s, the peak PID update
rate per domain is less than one per second with a probability
higher than 87%, and the maximal PID update rate in the
network is only 19 per second (Fig. 13(b)).

Note that the PID update rate is significantly less than the
update rate of IP-prefixes in the current Internet. First, the peak
update rate of IP-prefixes is 1,962 per second (at 15:26:01,
March 14, 2015) [32], while the peak update rate of PIDs is
only 202 per second when the mean PID update period is 30s.
Second, the mean update rate of IP-prefixes is 5.23 per second
[32], while the mean update rate of PIDs is only 0.295 per
second and 0.014 per second when the PID update periods
are 30s and 600s, respectively. Third, all Tier-1 domains suffer
from high update rate of IP-prefixes (up to 1,962 per second)

in the current Internet, while only a few large domains having
thousands of neighbors suffer from high PID update rate (near
to 202 per second) in D-PID and the vast majority of domains
process trivial number of PID updates (Fig. 13).

VI. RELATED WORK

Because of the complexity and difficulty in defending
against DDoS flooding attacks, many approaches have been
proposed in past two decades. For instance, filtering-based
approaches aim at mitigating DDoS flooding attacks by de-
ploying source address filtering at routers [5] - [9]. Similarly,
IP traceback-based methods trace attacks back through the
network toward the attacking sources [10] - [14]. In addition,
the approaches proposed in [19] - [20] aim at mitigating DDoS
attacks by sending shut-up messages to the attacking sources,
assuming that they will cooperate and stop flooding. While
there are too many literatures, we refer interested readers to
[4] for a survey on existing approaches in defending again
DDoS flooding attacks. Instead, we outline prior work closely
related to this work and compare D-PID with them.

A main reason that DDoS flooding attacks proliferate is a
node can send any amount of data packets to any destination,
regardless whether or not the destination wants the packets.
To address this issue, several approaches have been proposed.
In the “off by default” approach [15], two hosts are not
permitted to communicate by default. Instead, an end host
explicitly signals, and routers exchange, the IP-prefixes that
the end host wants to receive data packets from them by using
an IP-level control protocol. The D-PID design is similar in
spirt, since D-PID dynamically changes PIDs and a content
provider can send data packets to a destination only when
the destination explicitly sends out a GET message that is
routed (by name) to the content provider. However, there are
two important differences. First, the “off by default” approach
works at the IP-prefix granularity, but D-PID is based on
an information-centric network architecture and works at the
content granularity. Second, the IP-prefixes that an end host
wants to receive packets from are propagated throughout the
Internet in the “off by default” approach, which may cause
significant routing dynamics if the allowed IP-prefixes of end
hosts change frequently. On the other hand, the PIDs are kept
secret and change dynamically in D-PID. While this incurs
cost since destinations need to re-send GET messages, the
results presented in Sec. V show that the cost is fairly small.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 14

The capability-based designs [16] - [17] also share the same
spirt with “off by default” and D-PID. In these approaches, a
sender first obtains the permission from the destination in order
to send data packets to it. The destination provides the capabil-
ities to the sender if it wants to receive packets from the sender.
The sender then embeds the obtained capabilities into packets.
Routers along the path from the sender to the destination verify
the capabilities in order to check whether or not the destination
wants to receive the packets. If not, the routers simply discard
the packets. D-PID differentiates from the capability-based
approaches in two aspects. On one hand, communications are
initiated by receivers in D-PID but by senders in capability-
based approaches. On the other hand, as pointed out in [43],
the capability-based approaches are vulnerable to “denial-of-
capability” attacks, where compromised computer(s) sends
plenty of capability requests to a victim, thus preventing
normal users to obtain the capability from the victim. By
contrast, D-PID effectively mitigates such attacks because of
three reasons. First, the GET messages carry the PIDs along
the paths from the compromised computers to the victim.
Second, the PIDs are negotiated by neighboring domains that
can verify the authenticity of PIDs when they forward GET
messages. These two reasons makes it convenient to trace
back the attackers. Third, the ubiquitous in-network caching
in CoLoR reduces the GET messages sent to the target victim.

Named data networking (NDN) [25] is another approach
closely related to our work. In NDN, a content consumer
sends out an Interest packet when it wants a piece of content.
The Interest is routed (by the content name) to the content
provider by routers in the Internet. When a router forwards
the Interest toward the content provider, it inserts an entry
into its pending Interest table (PIT) that stores the content
name and the incoming interface of the Interest packet. When
the content provider receives the Interest packet, it sends the
corresponding Data packet back to the subscriber. The routers
then forward the Data packet back to the content consumer
according to the PIT entries stored by them. Unfortunately,
maintaining a PIT table at routers makes NDN vulnerable to
Interest flooding attacks [44]. By contrast, routers in D-PID
do not maintain any forwarding state. In addition, as stated
in the previous paragraph, carrying PIDs along the path from
attackers to the victim makes it convenient to trace back the
attackers, thus help preventing them from launching attacks
by sending plenty of GET messages.

VII. CONCLUSIONS

In this paper, we have presented the design, implementa-
tion and evaluation of D-PID, a framework that dynamically
changes path identifiers (PIDs) of inter-domain paths in order
to prevent DDoS flooding attacks, when PIDs are used as
inter-domain routing objects. We have described the design
details of D-PID and implemented it in a 42-node prototype
to verify its feasibility and effectiveness. We have presented
numerical results from running experiments on the prototype.
The results show that the time spent in negotiating and
distributing PIDs are quite small (in the order of ms) and
D-PID is effective in preventing DDoS attacks. We have

also conducted extensive simulations to evaluate the cost in
launching DDoS attacks in D-PID and the overheads caused by
D-PID. The results show that D-PID significantly increases the
cost in launching DDoS attacks while incurs little overheads,
since the extra number of GET messages is trivial (only 1.4%
or 2.2%) when the retransmission period is 300 seconds, and
the PID update rate is significantly less than the update rate
of IP prefixes in the current Internet.

To the best of our knowledge, this work is the first step
toward using dynamic PIDs to defend against DDoS flooding
attacks. We hope it will stimulate more researches in this area.

ACKNOWLEDGMENT

We sincerely appreciate the associate editor and the anony-
mous reviewers for their insightful comments that significantly
improve the paper.

REFERENCES

[1] J. Francois, I. Aib, and R. Boutaba, “Firecol: a Collaborative Protection
Network for the Detection of Flooding ddos Attacks,” IEEE/ACM Trans.
on Netw., vol. 20, no. 6, Dec. 2012, pp. 1828-1841.

[2] OVH hosting suffers 1Tbps DDoS attack: largest Internet has ev-
er seen. [Online] Available: https: //www.hackread.com/ovh-hosting-
suffers-1tbps- ddos-attack/.

[3] 602 Gbps! This May Have Been the Largest DDoS Attack in History.
http://thehackernews.com/2016/01/biggest-ddos-attack.html.

[4] S. T. Zargar, J. Joshi, D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE
Commun. Surv. & Tut., vol. 15, no. 4, pp. 2046 - 2069, Nov. 2013.

[5] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial
of Service Attacks that Employ IP Source Address Spoofing,” IETF
Internet RFC 2827, May 2000.

[6] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law Internets,”
In Proc. SIGCOMM’01, Aug. 2001, San Diego, CA, USA.

[7] A. Yaar, A. Perrig, D. Song, “StackPi: New Packet Marking and Filtering
Mechanisms for DDoS and IP Spoofing Defense,” IEEE J. on Sel. Areas
in Commun., vol. 24, no. 10, pp. 1853 - 1863, Oct. 2006.

[8] H. Wang, C. Jin, K. G. Shin, “Defense Against Spoofed IP Traffic Using
Hop-Count Filtering,” IEEE/ACM Trans. on Netw., vol. 15, no. 1, pp.
40 - 53, Feb. 2007.

[9] Z. Duan, X. Yuan, J. Chandrashekar, “Controlling IP Spoofing through
Interdomain Packet Filters,” IEEE Trans. on Depend. and Secure Com-
puting, vol. 5, no. 1, pp. 22 - 36, Feb. 2008.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Net-
work Support for IP Traceback,” In Proc. SIGCOMM’00, Aug. 2000,
Stockholm, Sweden.

[11] A. C. Snoeren, C. Partridge, L. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-Based IP Traceback,” In Proc.
SIGCOMM’01, Aug. 2001, San Diego, CA, USA.

[12] M. Sung, J. Xu, “IP traceback-based intelligent packet filtering: a novel
technique for defending against Internet DDoS attacks,” IEEE Trans. on
Parall. and Distr. Sys., vol. 14, no. 9, pp. 861 - 872, Sep. 2003.

[13] M. Sung, J. Xu, J. Li, L. Li, “Large-Scale IP Traceback in High-Speed
Internet: Practical Techniques and Information-Theoretic Foundation,”
IEEE/ACM Trans. on Netw., vol. 16, no. 6, pp. 1253 - 1266, Dec. 2008.

[14] Y. Xiang, K. Li, W. Zhou, “Low-Rate DDoS Attacks Detection and
Traceback by Using New Information Metrics,” IEEE Trans. on Inf.
Foren. and Sec., vol. 6, no. 2, pp. 426 - 437, May 2011.

[15] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, S. Shenker, “Off by
default!,” In Proc. HotNets-IV, Nov. 2005, College Park, MD, USA.

[16] A. Yaar, A. Perrig, and D. Song, “SIFF: a stateless internet flow filter to
mitigate DDoS flooding attacks,” In Proc. IEEE Symposium on Security
and Privacy, May 2004, Oakland, CA, USA.

[17] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y. Hu,
“Portcullis: Protecting connection setup from denial-of-capability attack-
s,” In Proc. SIGCOMM’07, Aug.2007, Kyoto, Japan.

[18] X. Yang, D. Wetherall, and T. Anderson, “TVA: A DoS-Limiting
Network Architecture,” IEEE/ACM Trans. on Netw., vol. 16, no. 3, pp.
1267 - 1280, Jun. 2008.

1556-6013 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2017.2688414, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION AND FORENSICS SECURITY 15

[19] X. Liu, X. Yang, and Y. Lu, “To Filter or to Authorize: Network-Layer
DoS Defense Against Multimillion-node Botnets,” In Proc. SIGCOM-
M’08, Aug. 2008, Seattle, WA, USA.

[20] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” In Proc. SIG-
COMM’08, Aug. 2008, Seattle, WA, USA.

[21] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in Proc. SIGCOMM’09, Aug. 2009, Barcelona, Spain, pp. 111 - 122.

[22] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev,
A. Ghodsi, P. B. Godfrey, N. McKwoen, G. Parulkar, B. Raghavan, J.
Rexford, S. Arianfar, D. Kuptsov, “Architecting for innovation,” ACM
Comput. Commun. Rev., vol. 41, no. 3, July 2011, pp. 24 - 36.

[23] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, P. Nikander,
“LIPSIN: Line Speed Publish/Subscribe Inter- networking,” in Proc.
SIGCOMM’09, Aug. 2009, Barcelona, Spain, pp. 195 - 206.

[24] H. Luo, Z. Chen, J. Cui, H. Zhang, M. Zukerman, C. Qiao, “CoLoR: an
information-centric internet architecture for innovations,” IEEE Network,
vol. 28, no. 3, pp. 4 - 10, May 2014.

[25] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM Comput. Commun. Rev., vol. 44, no. 3, pp. 66 - 73, Jul. 2014.

[26] T. Koponen, M. Chawla, B. C G. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker, I. Stoica, “A data-oriented (and beyond) network architecture,”
in Proc. SIGCOMM’07, Aug. 2007, Kyoto, Japan, pp. 181 - 192.

[27] D. Raychaudhuri, K. Nagaraja, A. Venkataramani, “MobilityFirst: a ro-
bust and trustworthy mobility-centric architecture for the future Internet,”
Mobile Comput. and Comm. Rev., vol. 16, no. 3, pp. 2 - 13, Jul. 2012.

[28] M. Antikainen, T. Aura, M. Sarela, “Denial-of-service attacks in bloom-
filter-based forwarding,” IEEE/ACM Trans. on Netw., vol. 22, no. 5, pp.
1463 - 1476, Oct. 2014.

[29] H. Luo, Z. Chen, J. Cui, H. Zhang, “An Approach for Efficient, Accurate,
and Timely Estimation of Traffic Matrices,” In Proc. IEEE Global
Internet Symposium (GI’14), May 2014, Toronto, Canada, pp. 67-72.

[30] H. Luo, J. Cui, Z. Chen, M. Jin, H. Zhang, “Efficient integration of
software defined networking and information-centric networking with
CoLoR,” in Proc. IEEE GLOBECOM’14, Dec. 2014, Austin, TX, USA,
pp. 1962-1967.

[31] Z. Chen, H. Luo, J. Cui, M. Jin, “Security analysis of a future Internet
architecture,” in Proc. IEEE ICNP’13, Oct. 2013, Gottingen, Germany.

[32] The BGP instability report. http://bgpupdates.potaroo.net/instability/bgp-
upd.html/.

[33] BGP Peer Report. http://bgp.he.net/report/peers/.
[34] CAIDA Ark IPv4 Routed /24 AS Links Dataset.

http://www.caida.org/data/active/ipv4 routed to-
pology aslinks dataset.xml/.

[35] H. Jiang, and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM Comput. Commun. Rev., vol. 32, no. 3, pp. 75 - 88, 2002.

[36] Data Plane Development Kit.http://www.dpdk.eu/.
[37] Click Router. http://www.read.cs.ucla.edu/click/.
[38] Internet AS-level Topology Archive. http://irl.cs.ucla.edu/topology/.
[39] R. Oliveira, B. Zhang, and L. Zhang, “Observing the evolution of

Internet AS topology,” In Proc. SIGCOMM’07, Aug. 2007, Kyoto,
Japan, pp. 313 - 324.

[40] Z. M. Mao, V. Sekar, O. Spatscheck, J. V. D. Merwe, R. Vasudevan,
“Analyzing large DDoS attacks using multiple data sources,” In Proc.
SIGCOMM workshop on Large-scale attack defense, Sep. 2006, Pisa,
Italy, pp. 161 - 168.

[41] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” In Proc. SIGCOMM IMC’10, Nov. 2010,
Melbourne, Australia, pp. 267 - 280.

[42] The CAIDA UCSD Anonymized Internet Traces.
http://www.caida.org/data/passive/.

[43] K. Argyraki and D. R. Cheriton, “Network Capabilities: The Good, the
Bad and the Ugly,” in Proc. ACM HotNets’05, Nov. 2015, College Park,
Maryland, USA.

[44] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS&DDoS in named-data
networking,” in Proc. IEEE ICCCN’13, Aug. 2013, Nassau, Bahamas.

[45] Z. Chen, H. Luo, M. Zhang, J. Li, “Improving network security by
dynamically changing path identifiers in future Internet,” in Proc. IEEE
GLOBECOM’15, Dec. 2015, San Diego, CA, USA.

Hongbin Luo received the B.S. degree from Bei-
hang University in 1999 and the M.S. (with honors)
and Ph.D. degrees in communications and informa-
tion science from University of Electronic Science
and Technology of China (UESTC), in June 2004
and March 2007, respectively.

He is now a professor at the School of Com-
puter Science and Engineering, Beihang University.
From June 2007 to March 2017, he worked at the
School of Electronic and Information Engineering,
Beijing Jiaotong University. From September 2009

to September 2010, he was a Visiting Scholar at the Department of Computer
Science, Purdue University. He has authored more than 50 peer-reviewed
papers in leading journals (such as IEEE/ACM Transactions on Network-
ing, IEEE Journal on Selected Areas in Communications) and conference
proceedings. In 2014, he won the National Science Fund for Excellent Young
Scholars from the National Natural Science Foundation of China (NSFC).
His research interests are in the wide areas of network technologies including
routing, Internet architecture, and optical networking.

Zhe Chen received his B.S. and Ph.D. degrees in
communication and information systems from the
Beijing Jiaotong University, Beijing, China, in 2011,
and 2016, respectively.

He is now with Huawei Technologies. His re-
search interests include future Internet architecture
and routing protocols.

Jiawei Li received the B.E. degree in communi-
cation and information systems from the Beijing
Jiaotong University, Beijing, China, in 2014. He is
currently pursuing the Ph.D. degree at the School
of Electronic and Information Engineering, Beijing
Jiaotong University. He has participated in two
National Basic Research Programs of China (“973
Program”), including the Smart Identifier Networks
which aims at developing a clean-slate Future Inter-
net architecture.

Athanasios V. Vasilakos is recently Professor with
the Lulea University of Technology, Sweden. He
served or is serving as an Editor for many technical
journals, such as the IEEE Transactions on Network
and Service Management; IEEE Transactions on
Cloud Computing, IEEE Transactions on Informa-
tion Forensics and Security, IEEE Transactions on
Cybernetics; IEEE Transactions on Nanobioscience;
IEEE Transactions on Information Technology in
Biomedicine; ACM Transactions on Autonomous
and Adaptive Systems; the IEEE Journal on Selected

Areas in Communications. He is also General Chair of the European Alliances
for Innovation (www.eai.eu).

