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Pattern−Based Design and Verification of 
Secure Service Compositions 
Luca Pino, George Spanoudakis, Maria Krotsiani and Khaled Mahbub  

Abstract— Ensuring the preservation of security is a key requirement and challenge for Service-Based Systems (SBS) due to 
the use of third party software services not operating under different security perimeters. In this paper, we present an approach 
for verifying the security properties of SBS workflows and adapting them if such properties are not preserved. Our approach 
uses secure service composition patterns. These patterns encode proven dependencies between service level and workflow 
level security properties. These dependencies are used in reasoning processes supporting the verification of SBS workflows 
with respect to workflow security properties and their adaptation in ways that guarantee the properties if necessary. Our 
approach has been implemented by extending the Eclipse BPEL Designer and validated experimentally. The experimental 
evaluation has produced positive results, indicating that even for complex workflows and large sets of secure service 
composition patterns verification can be performed efficiently. 

Index Terms— Design Tools and Techniques, Security and Protection, Services Composition, Systems analysis and design 
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1 INTRODUCTION 
 

ECURITY assurance is important for any software ap-
plication but acutely so in the case of service-based sys-

tems (SBSs), i.e., systems composed of distributed software 
services, which can be deployed on different and hetero-
geneous infrastructures and operate without common 
ownership and centralised control. 

Assessing and providing assurance about the security 
of SBSs is a complex problem that has no comprehensive 
solution to the best of our knowledge. Existing solutions 
(e.g., [2][3][6][8]) rely on different forms of model check-
ing and theorem proving to verify security properties of 
service compositions. These approaches typically require 
the specification of: (a) behavioural models of the software 
services used by the SBS, (b) the component that orches-
trates them to provide the SBS functionality (i.e., the ser-
vice orchestrator), and (c) the security properties that need 
to be guaranteed in some temporal logic language. There 
are two main difficulties with such approaches. The first is 
that creating accurate specifications of (a)-(c) for realistic 
SBSs is a non-trivial and time-consuming task. The second 
is that, even if SBS specifications are available, performing 
automated static analysis might be computationally in-
tractable.  

In this paper, we present an alternative approach for 
designing, adapting and verifying the security properties 
of SBSs, which is based on pattern driven verification. Our 

approach assumes that an SBS is designed and imple-
mented by a service orchestration process (aka service 
workflow), which invokes (and receives responses from) 
the individual services that constitute the SBS (aka partner 
services) and may perform various computations upon the 
data exchanged with these services. 

To support the verification of security properties, our 
approach uses secure service composition (SCO) patterns. 
These patterns encode proven dependencies between ser-
vice level security properties (i.e., security properties of the 
individual services of an SBS) and workflow level security 
properties (i.e., security properties of the entire orchestra-
tion/workflow of the SBS). The encoding of such depend-
encies in SCO patterns enables the inference of service 
level security properties, which – if satisfied by the indi-
vidual services of the SBS – would guarantee the satisfac-
tion of workflow level security properties for it. 

The inference of service level security properties re-
quired for verifying workflow level properties of an SBS is 
the basis of our approach since – once these properties are 
identified – verification can be based on checking whether 
the specific services that constitute the SBS satisfy the se-
curity properties required of them. Checking this is based 
on digital security certificates, which are assigned to ser-
vices following a certification process. Such certificates 
encode: (i) the service that is certified, (ii) the endpoint at 
which this service can be accessed, (iii) the service level 
security property that is certified for the service, and (iv) 
the evidence demonstrating that the security property is 
satisfied by the service [20].  

The inference of service level security properties using 
the SCO patterns enables also the generation/adaptation 
of an SBS service workflow in a manner guaranteeing that 
it will satisfy required workflow level security properties. 
More specifically, the inference process establishes all the 
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alternative combinations of security properties of the in-
dividual partner services of the SBS (referred to as security 
plans in the rest of the paper) that could ensure the satis-
faction of workflow level security properties by it. Driven 
by such security plans, SBS adaptation is realised as a 
search process that locates potential partner services for 
the SBS workflow that satisfy the required security prop-
erties. The main benefits of our approach are that: 
• It can be used both for the verification of workflow 

level security properties of existing service workflows 
(SBSs), and the adaptation of such workflows in ways 
that are guaranteed to preserve security properties.  

• It is computationally feasible since the verification of 
security properties is based on finding combinations of 
the pre-specified SCO patterns that would entail them. 
Although this process may, in principle, have a com-
binatorial complexity, experimental results have 
shown promising average performance even for large 
SCO pattern sets. 

• It can be extended through the incorporation of new 
SCO patterns.
It should be noted that, although our approach pro-

vides sound and feasible verification analysis, it is not 
complete in performing security verification. This is be-
cause, there is no guarantee that SCO patterns will encode 
ALL the combinations of service level security properties 
that can guarantee a workflow level security property. 
Hence, a failure of the pattern driven verification process 
does not mean that the security property in question does 
not hold for the workflow. 

The work we present in this paper extends our previ-
ous work described in [24][25][26][28]. The work in 
[24][25] presented an initial proof-of-concept realisation of 
our approach for pattern-driven generation of secure ser-
vice compositions without, however, addressing verifica-
tion. In our original work, patterns were modelled using 
OWL-S [19] and Situation Calculus [16]. This, however, 
turned out to be inefficient for both specifying and apply-
ing patterns for secure service composition. In [26], we 
presented the initial version of the algorithm for inferring 
service level from workflow level security properties, and 
provided an overview of how it could support workflow 
verification/adaptation without any algorithmic details 
for these processes. In [28], we presented formal proofs of 
some SCO patterns (e.g., integrity) and an initial proto-
type of our approach focusing on security-driven service 
discovery.  

The pattern proofs approach introduced in [28] was 
based on modelling patterns using the Security Modeling 
Framework SeMF [13]. SeMF provides an adequate formal 
framework for modelling basic service workflows (e.g., 
sequential, split-join, OR-orchestrations) in SBS systems 
and proving pattern properties [27]. However, it cannot 
support the application of patterns once they are proven.  

The main contributions of this paper, with respect to 
our earlier work, are: 
(a) It extends the SCO patterns representation scheme 

with additional conditions about pattern activity in-
puts and outputs, which are required for matching 
patterns with SBS workflows, and provides a scheme 

for expressing patterns in Drools [9], to enable pattern 
application (matching). 

(b) It introduces the verification algorithm that is based 
on the extended form of SCO patterns and can verify 
if a service workflow satisfies specific security proper-
ties required of it. 

(c) It presents and discusses the outcomes of an experi-
mental evaluation of our approach. 

The remainder of this paper is structured as follows. 
Section 2 presents a scenario showing the need for and the 
ways of using the pattern driven verification approach. 
Section 3 introduces SCO patterns and describes their 
specification in Drools. Sections 4 and 5 present the securi-
ty verification and the secure workflow generation pro-
cesses, respectively.  Section 6 describes the tool we im-
plemented to realise our approach. Section 7 presents the 
outcomes of the experimental evaluation of our approach. 
Section 8 discusses related work. Finally, Section 9 pro-
vides conclusions and outlines directions for future work. 

2 SCENARIO 
To exemplify our approach, consider the SBS service 

workflow fragment that is shown in Fig 1. This fragment 
(called Checkout) corresponds to the last part a purchasing 
process realised by an SBS. More specifically, upon receiv-
ing a purchasing request consisting of a list of items to be 
purchased, the credit card details and address of the pur-
chaser, Checkout takes payment (see activity Payment in 
Fig. 1) for the purchased items, places the order in a pur-
chase repository (see activity PlaceOrder in Fig. 1), and 
creates an order report (see activity WriteReport in Fig. 1). 
The activities Payment, PlaceOrder and WriteReport of 
Checkout are realised through the invocation of operations 
of partner services, which are assumed to have identical 
names with the relevant workflow activities. 
 

 
Fig. 1. Example of SBS service workflow – Checkout. 

 
In this scenario, a designer might wish to verify wheth-

er the Checkout workflow preserves the confidentiality of 
the credit card and address information of the user. To en-
sure this, it is necessary to verify that all the services, 
which are orchestrated by Checkout (i.e., Payment, PlaceOr-
der and WriteReport), preserve the confidentiality of credit 
card and address information, as well as the confidentiali-
ty of additional information that is exchanged internally 
within the workflow (i.e., paySuccess and orderSuccess) if 
the latter also includes any information about the credit 
card and address information of the user. Furthermore, the 
preservation of confidentiality will need to be checked 
against the transmission, processing and storage of any of 
the information items that need to remain confidential.  
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3 SECURE COMPOSITION PATTERNS 

3.1 Overview of pattern structure and semantics 
SCO patterns encode proven dependencies between 

security properties of individual services (i.e., service level 
security properties) and security properties of the entire SBS 
service workflows (i.e., workflow level properties). As dis-
cussed in Sect. 1, the encoding of such dependencies ena-
bles: (i) the verification that the service workflow of an 
SBS satisfies certain security properties, and (ii) the gener-
ation (and adaptation) of an SBS workflow in a way that is 
guaranteed to satisfy required workflow level security 
properties. The specification of an SCO pattern consists of 
four parts: 
(i) The workflow (WF) part – This part of the pattern de-

fines the form of the workflow (i.e., service orchestra-
tion) that the pattern applies to. WF is specified as an 
orchestration of abstract activity placeholders.  When a 
pattern is matched against the workflow of an SBS, 
the placeholders in its WF may be bound to invoca-
tions of operations of specific partner services of the 
SBS or sub-workflows of it. 

(ii) The RSP properties part – This part of the pattern 
defines the workflow level security properties (re-
ferred to as “RSP properties” in the following) that 
the pattern can guarantee for the workflow specified 
in its WF part. 

(iii) The ASP properties part– This part of the pattern 
defines the service level security properties (referred 
to as “ASP properties” in the following), which are 
required of the activity placeholders in the workflow 
of the pattern, in order to guarantee the RSP proper-
ties specified in the pattern.  

(iv) The CONDITIONS part – This part includes condi-
tions, regarding the inputs and outputs of the activi-
ty placeholders of the pattern. 

The semantic interpretation of an SCO pattern having 
the above structure is that if the ASP properties, which 
have been specified for the activity placeholders in the 
workflow of the pattern, and the conditions of the pattern 
are true, then the RSP property specified in the pattern is 
also true for the entire WF of it. Formally, this can be ex-
pressed as:  where  
denotes the entailment relation that has been established 
by the proof of the pattern. 

SCO patterns cover basic control flow patterns sug-
gested by the Workflow Management Coalition [36]), 
namely the sequential, parallel split and exclusive choice or-
chestrations, and the security properties of confidentiality 
and integrity [27][23]. In the following, we give an exam-
ple of an SCO pattern to demonstrate the use of the above 
structure.  

3.2 Example of an SCO pattern  
Our first example is an SCO pattern regarding the se-

curity property of confidentiality, i.e., a property requir-
ing that no non-authorised disclosure of information 
should be possible in a system. Confidentiality has been 
commonly defined based on the concept of information 
flow (IF) [34] IF-based definitions of confidentiality strati-

fy the users of a system in classes with different access 
rights to information, and distinguish the information 
flows within it according to the class of users that they 
should be accessible to. Typically, the user classes used in 
IF-approaches are low-level users with restricted access to 
information, and high-level users having full access. 
Based on the above principles, there have been several 
definitions of properties, whose intent is to express the 
concept of confidentiality. The definition that we focus on 
is that of Perfect Security Property (PSP) [34]. PSP requires 
that a low-level user, allowed to access only public infor-
mation, should not be able to determine anything about 
high-level (i.e., confidential) information.  

 
 

 

Fig. 2. PSP SCO Pattern. 

Fig. 2 shows the SCO pattern for preserving PSP on a 
sequential service workflow P, i.e., a service workflow 
with two activity placeholders (A and B), in which A is 
executed before B. The structure of P is shown in the WF 
part of the figure. Further conditions that define P are 
specified in the Conditions part. These are: (a) the inputs of 
A are the inputs of the workflow (INP = INA), (b) the inputs 
of B are the outputs of A (INB = OUTA), and (c) the outputs 
of P are the outputs of B (OUTP = OUTA).  

Let us assume that for each x in {P, A, B} 
• INX  and OUTX  are the sets of inputs and outputs of 

x, and EX  = INX∪ OUTX ;  
• VX and CX are two disjoint subsets of EX , which par-

tition it into public parts VX  (i.e., parts visible to 
low-level users) and confidential parts CX  (i.e., parts 
visible only to high-level users) 

Then, as proven in [18],  PSP holds on the workflow P if, 
for all activity placeholders x  {A, B}: (a) the actions of x 
that reveal public information are part of the actions of P 
that reveal public information (i.e., VX   VP ), and (b) the 
confidential actions of x that reveal confidential infor-
mation do not include any action of P that reveals public 
information (i.e., CX∩ VP = Ø). The conditions (a) and (b) 
are expressed as ASP properties of the pattern, and entail 
the PSP property on P. The latter is expressed by 
PSP(P,VP ,CP ) in the RSP part of the pattern. 

3.3 Encoding of SCO patterns in Drools 

3.3.1 Overview of rule language  
SCO patterns are expressed as Drools production rules 

[9]. The reasons for choosing this approach to specify pat-

  <A>INA = INP

OUTA

INP

<B>INB = OUTA

OUTB

OUTP = OUTB
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terns is that Drools is supported by rule engine, which 
realises a rule based reasoning process based on the Rete 
algorithm [11], i.e., an efficient pattern-matching algo-
rithm known to scale well for large numbers of rules and 
data sets. Hence, the choice of Drools enabled us to have 
an efficient implementation of the pattern based reasoning 
process. 

In the following, we introduce the scheme for encoding 
SCO patterns in Drools and then show how the two pat-
terns introduced in Sect. 3 are encoded in this scheme.  

A production rule in Drools has following structure: 

  
The antecedent (i.e., ) part of the rule specifies a set of 
conditions and the consequence (i.e., ) part of the rule 
specifies a list of actions. When a rule is applied, the 
Drools rule engine checks whether its conditions are satis-
fied by (i.e., match with) the facts in the KB and, if they 
are, the actions of the rule are executed. Rule actions are 
typically used to modify the KB by inserting, retracting or 
updating the objects (facts) in it. Such modifications are 
encoded through the standard Drools actions “insert”, 
“retract” and “update”, respectively. The conditions of a 
rule are expressed as patterns of objects that encode the 
facts in the Drools KB. These patterns define object types 
and constraints for the data encoded in objects. These con-
straints may be atomic or complex. Complex Drool object 
constraints are defined through logical operators (e.g., 

). A presentation of the 
full grammar of the Drools rule language is beyond the 
scope of this paper and may be found in-
http://docs.jboss.org/drools/release/6.1.0.Final/drools-
docs/html_single/. Table 1 provides an overview of the 
main specification constructs of this language, to enable 
the reader understand the SCO patterns specifications 
given in the paper.  

3.3.2 Extensions of the rule language for specifying 
SCO patterns 

Drools rules are used to encode relations between the 
ASP and RSP security properties in SCO patterns. The 
encoding scheme is set to enable the inference of the ASP 
properties, which are required of the activity placeholders 
of the workflow of the SCO pattern, for this workflow to 
have the RSP property guaranteed by the pattern. More 
specifically: (i) the  part of the rule encodes the WF 
part of the pattern, the conditions regarding the inputs 
and outputs of the activities of WF, and the RSP property 
guaranteed by the pattern for WF; and (ii) the  part of 
the rule encodes the service level security properties ASP, 
which if satisfied by the WF’s activity placeholders would 
guarantee the workflow level property RSP. Hence, a 
Drools rule expressing an SCO pattern encodes the impli-
cations: WF ∧ Conditions ∧ RSP ⇒ ASPi (i=1,...,n)  where 
ASPi are the ASP properties required of the individual 
services bound to the activity placeholders of the SCO 
pattern. Note that this implication expresses the opposite 
of the dependency relation proven in the pattern, i.e., 

. This encoding enables 
the inference of the ASPi properties, which if satisfied by 
the individual services of a workflow would guarantee 
RSP for it, during the WF verification and adaptation pro-
cesses (see Sect. 4 and 5 below). 

The specification of SCO patterns in Drools makes also 
use of placeholder and (security) requirement objects. The 
types of these objects are specified as shown in the UML 
diagram of Fig. 3. Activity placeholder objects (or simply 
“placeholders”) represent the partner services (or compo-
sitions of partner services) that are already bound or 
should be bound to the workflow of an SCO pattern. 
Placeholders can be of three different types: 
• PartnerLinkActivity (PLA) placeholders – These are used 

to represent partner services that are already bound to 
and can be invoked by the WF of an SCO pattern. PLA 
placeholders contain information about the services 
bound to WF and the security properties that have 
been certified for them.  

• OrchestrationPattern (OP) placeholders – These are 
used to represent sub-workflows of the overall WF of 
the pattern. OP placeholders can be Sequential, Parallel 
(i.e., AND-OPs) and Choice (OR-OPs) representing ac-
tivities, which are executed sequentially, in parallel or 
alternatively, respectively. 

• Unassigned Activity (UA) placeholders, representing 
activities, which are yet to be bound to an individual 
service or a service orchestration in order to have an 
executable WF. UA placeholders contain the structural 
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(i.e., WSDL) specification of the service or orchestra-
tion that is eligible for instantiating it. 

 

Fig. 3. SCO Pattern specification object types 

A security requirement object expresses a security 
property ASP that is required of a placeholder of the SCO 
pattern (i.e., an ASP property). The required security 
property is expressed by the secProp opposite association 
end (field) of security requirement objects, and the place-
holder that the property refers to is expressed by the sub-
ject field of the same object. A security requirement object 
may also contain: (a) a set of Parameters indicating the in-
puts or outputs of the placeholder that the security prop-
erty refers to, and (b) further requirements (inferredReqs 
field) that may have been deduced as sufficient for the 
security property expressed by the requirement to hold. 
Security property objects contain the security property 
name (propertyName field) and an optional set of attribute-
value fields (attributesMap field) allowing the expression 
of extra conditions over the property. The set of all the 
ASP properties that are inferred for the different services 
of a workflow by an SCO pattern are aggregated into 
SecPlan objects. 

3.3.3 Example of Drools specification of SCO pattern  
Based on the above scheme, the SCO pattern express-

ing the PSP notion of confidentiality that we discussed in 
Section 3.2, can be represented is shown in Table 2. The 
when part of this rule specifies: (i) the two activity place-
holders A and B of the PSP pattern (see object variables 
$A and $B in lines 2-3 and 4-5); (ii) the order in which $A 
and $B should be executed (see variable $WF), (iii) the 
conditions between the outputs of $A, and the inputs of 
$B as required by the PSP pattern (lines 6-8); and (iv) the 
RSP property that can be guaranteed through the applica-
tion of the pattern, i.e., the PSP property in this case (see 
variable $RSP in lines 9-10). (i) and (ii) constitute the spec-
ification of the WF part of the pattern. 

The then part, the rule specifies actions, which generate 
a security plan indicating the security properties ASP that, 
if satisfied by the activity placeholders of the pattern’s 
workflow WF, would make WF to satisfy RSP. According 
to the proof of the pattern, each of the placeholders should 

satisfy the “PSP” property. Hence, “PSP” is set as the ASP 
property that should be satisfied ASP_A and ASP_B (see 
lines 15 and 20, respectively). 

The additional conditions needed by the pattern (i.e., 
the conditions VA   VP  and CA  ∩ VP  = for A, and the con-
ditions VB   VP  and CB  ∩ VP  = for B) are added to ASP_A 
(see lines 16 and 17) and ASP_B (see lines 21 and 22). The 
specification of these additional conditions refers to the 
class Operation (see lines 16-17 and 21-22). This operation 
is provided by the query language (and the discovery en-
gine implementing it), which is used for finding suitable 
matches (see Sect. 5 and Sect. 6). 

4 VERIFICATION PROCESS 
The process for verifying if an SBS workflow SBS-WF sat-
isfy required security properties has two main phases. 

In the first of these phases, all the SCO patterns that 
can guarantee the RSP property required of SBS-WF are 
identified and, if their workflow structure matches the 
structure of SBS-WF, they are used to infer the ASP prop-
erties, which if satisfied by the individual services of SBS-
WF, would guarantee RSP for it. This phase may generate 
alternative combinations of ASP properties for the ser-
vices of SBS-WF, which would guarantee RSP. Each of 
these combinations is what we call a security plan in our 
approach. In the second phase of the verification process, 
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each of the security plans generated in the first phase are 
used to drive a search process. This process checks if the 
individual services of SBS-WF referred to in the security 
plan satisfy the ASP property required of them by the 
plan. In the following, we present the algorithms that real-
ise the two phases of the verification process. 

4.1 Phase 1: Inference of Security Requirements 
 The algorithm for generating different security plans, 

i.e., the possible alternative combinations of security 
properties of activity placeholders of a workflow WF that 
would make it satisfy a workflow level security property 
RSP is listed in Table 3. 

TABLE 3: INFER SECURITY PLANS ALGORITHM 

 

 
The algorithm is invoked having as input a workflow 

(WF) and a security property (RSP) required of it, which is 
encoded with the security requirement Req. Based on the-
se two inputs, the algorithm derives the security require-
ments (i.e., ASP properties) that should be satisfied by 
partner services that may be bound to the different activi-
ty placeholders in WF in order to guarantee RSP. Given 
WF and a security requirement Req requiring the property 
RSP, the algorithm tries to apply all the SCO patterns that 
would be able to guarantee RSP. A pattern P is applied if 
its workflow (P.WF) matches with the input workflow 
WF. In this case, the security plans that can be derived 
from the pattern (through the application of its rules) are 
computed (line 5). These plans replace the initial require-
ment Req (see lines 6-7 in INFERRECURSION). If the updated 
list of security plans contains only ASP security properties 
that are required of individual activities (i.e., not of Or-
chestrationPattern placeholders), the algorithm terminates. 

Otherwise, if the security plans include security proper-
ties required of activity placeholders that are themselves 
(sub) workflows, the algorithm attempts to find SCO pat-
terns that match the workflow structure of the sub work-
flows and could guarantee the security property required 
of these sub workflows, recursively (see lines 9-11 in IN-

FERRECURSION). This process terminates when a list of se-
curity plans includes workflow placeholders matching 
with no available SCO patterns (see lines 1-3 in INFERRE-

CURSION).  
INFERSECURITYPLANS may generate alternative security 

plans, i.e., SecPlans may be a list of alternative security 
plans [(R11,…,R1n),(R21,…,R2m),…,(Rk1,…,Rkl)]. Each of these 
plans includes a set of ASP properties for the individual 
services of the input workflow WF of the algorithm. If all 
the ASPs of a plan are satisfied by the individual services 
that they refer to, the security property RSP that is re-
quired of the original workflow will be also satisfied. This 
is due to the definition of SCO patterns, according to 
which for each security plan SecPlan it holds that SecPlan 
⇒ RSP, and thus: (R11 ∧ … ∧ R1n) ∨ (R21 ∧ … ∧R2m) ∨…∨ (Rk1 

∧… ∧Rkl) ⇒ RSP. INFERSECURITYPLANS realises a breadth-
first inference of all the possible security plans that could 
guarantee RSP for WF and is used to support both the 
processes of workflow verification and the process of 
workflow generation/adaptation. The way in which it is 
used for each of these purposes is described next. 

4.2  Phase 2: Verification of service properties 
The process of checking if a given workflow satisfies a 

required security property is realised by the algorithm 
VERIFYWORKFLOW that is listed in Table 4. 

TABLE 4: WORKFLOW VERIFICATION ALGORITHM 

Given a request to check if a workflow WF satisfies a 
given security property expressed by the security re-
quirement Req, VERIFYWORKFLOW firstly invokes the algo-
rithm INFERSECURITYPLANS to identify the list of the alter-
native possible security plans that would guarantee the 
property expressed by Req. These plans are stored in the 
variable SecPlans. Subsequently, it calls the algorithm VER-

IFYREQUIREMENT to check if the service level security re-
quirements (i.e., Ri1 ,…,Rim) of each specific plan in SecPlans 
is satisfied by the services that they refer to. The algorithm 
terminates as soon as it finds the first satisfied security 
plan (see lines 4-6).  

The algorithm VERIFYREQUIREMENT is listed in Table 5. 
As shown in the table, VERIFYREQUIREMENT is invoked 
with a workflow (WF) and an individual security plan 
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that needs to be verified for it (i.e., (Ri1 ∧ … ∧Rik)) as inputs, 
and tries to find if each security requirement Rij in the plan 
is satisfied. To check this, it tries to find a certificate for the 
service that is bound to the activity placeholder, which 
Rij.subject refers to, certifying the security property re-
quired by Rij (i.e., Rij.secProperty). In cases where Rij.subject 
is a sub workflow, the algorithm reports that the security 
property required of it cannot be verified. This is because 

has already tried to decompose work-
flows to individual services and security properties for 
them that would make a sub workflow satisfy the security 
property required of it. Hence, having a sub workflow in 
a security plan means that there was no SCO pattern 
could be used to decompose it to individual services and 
properties that would make it satisfy the security property 
required of it. Similarly, if the subject of a requirement is 
an unassigned activity placeholder (UA), i.e., a placehold-
er with no concrete individual service bound to it, the se-
curity property required of the placeholder according to 
the plan cannot be verified and the algorithm reports that 
the entire workflow cannot be verified. 

The algorithm VERIFYREQUIREMENT can also be used to 
verify a security plan against workflow fragments, i.e., 
parts of a workflow delimited by a control flow activity. 
In case of BPEL, for example, workflows fragments corre-
spond to scope or control flow activities (i.e., sequence, flow, 
while, forEach, repeatUntil, if-then-else or pick activity) that 
may contain multiple service invocations. 

4.3  Example 
As an example of verifying security requirements con-

sider the case where an SBS designer wishes to check that 
the Checkout process of Fig. 1 preserves the confidentiality 
of information regarding the credit card and address of 
the process user. In this case, confidentiality can be ex-

pressed through requiring that a low-level user (i.e., a 
user who should be able to access only public infor-
mation) should not be able to determine anything about 
the high level (confidential) information of credit card and 
customer address (i.e., the PSP property discussed in Sect. 
3).  Checkout can be seen as a sequential workflow consist-
ing of the atomic activity Payment and a sub-workflow 
that follows it (SubWF), which itself is a sequential work-
flow involving two atomic activities: PlaceOrder and 
WriteReport (see Fig. 4). 

Fig. 4. The inference process on the sub-workflows of 
Checkout SBS process workflow. 

To verify Checkout, the algorithm INFERSECPROPERTIES 
will be called initially. In the first iteration of it, the PSP on 
Cascade SCO pattern will be applied on Checkout, return-
ing two security requirements: (1) a requirement for the 
service Payment requiring confidentiality for credit card, 
address and paySuccess, and (2) a requirement for the sub 
workflow SubWF, requiring confidentiality for address and 
paySuccess. In its second iteration, the algorithm applies 
again the same pattern, but this time on SubWF. In the 
second application of the pattern, INFERSECPROPERTIES 
creates and adds two security requirements to the ongo-
ing security plan: (3) a requirement for PlaceOrder requir-
ing confidentiality for address, paySuccess, name and order-
Success and (4) a requirement for WriteReport, requiring 
confidentiality for name and orderSuccess. After these 
steps, the security plan will consist of only individual ser-
vices and security properties required of them. Subse-
quently, VERIFYWORKFLOW invokes VERIFYREQUIREMENT 
to check whether the services bound to the workflow have 
the required properties. This check is carried out by 
searching for security certificates that can confirm the re-
quired ASP properties for the particular services, i.e., PSP 
for address, paySuccess and orderSuccess of PlaceOrder, and 
for name and orderSuccess of WriteReport. The process of 
searching for such certificates is discussed in Sect. 6. 

5 GENERATION OF SECURE WORKFLOWS 

5.1 Algorithm 
When an existing workflow does not satisfy a required 

RSP security property due to a particular partner service 
(or a fragment of it), it might be possible to replace the 
responsible service (or workflow fragment) in order to 

TABLE 5: REQUIREMENTS VERIFICATION ALGORITHM 

Payment 

items, 
credit card, 
address 

items, 
address, 
paySuccess 

Checkout 

report SubWF 

PlaceOrder 

items, 
address, 
paySuccess 

WriteReport 

SubWF 

items, 
name, 
orderSuccess 

report 
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restore the required RSP. This modification is handled by 
the algorithm listed in Table 6. This algorithm starts by 
trying to find appropriate workflows based on a query 
(Q) expressing structural, behavioural and security re-
quirements for the service or process fragment that should 
be modified. To do this, initially it tries to identify abstract 
(i.e., not instantiated) workflows that can provide the re-
quested functionality by searching for appropriate func-
tional workflows in a repository of reference workflows (see 
lines 1-2). This repository contains abstract workflows 
encoding reference process models providing standardised 
functionalities in different domains. Examples of such 
reference process models exist for several domains includ-
ing, for example, financial services (e.g., SWIFT) [32] and 
electronic data interchange in fields such as manufactur-
ing, logistics and telecommunications (e.g., RosettaNet 
Partner Interface Processes (PIPs) [29] and IBM Industry 
Packs [14]). The abstract workflow matching process is 
based on a structural matching algorithm described in 
[35]. 

For workflows that match a query Q at an abstract lev-
el, GENERATESECUREWORKFLOWS creates a list of security 
plans that could guarantee RSP (see lines 3-4). Each plan 
in this list specifies either service level security properties 

(ASPs) for the individual partner services of the matching 
workflow or for the services of sub workflows that could 
be used to replace them. Following the identification of 
the alternative security plans (if any), GENERATESECURE-

WORKFLOWS tries to discover individual services that can 
be bound to the abstract service in question. This is real-
ised through the call of the algorithm SERVICEDISCOVERY 

(see line 15). If such services can be identified for all the 
abstract partner services of an AW, GENERATESECURE-

WORKFLOWS replaces the abstract services in AW with 
concrete services and/or workflows (see lines 16-25) and 
returns the instantiated workflow as part of the possible 
solutions list (see line 30). 

5.2 Discovery process 
The discovery process is realized by the algorithm SER-

VICEDISCOVERY, listed in Table 7. This algorithm takes as 
input the specification of an activity A in an abstract 
workflow and a security plan SPlan and finds concrete 
services (Servs) that can be matched with A from a struc-
tural and a behavioural point of view, whilst also satisfy-
ing the security properties specified for A in SecPlan. The 
description of A includes the different inputs and outputs 
of the activity in the abstract workflow. For the activity 
Payment in Fig. 3, for example, the inputs are items, 
creditCard and address and the outputs are items, address, 
paySuccess. The activity description in the workflow also 
specifies the types of these inputs and outputs. 

TABLE 7: SERVICE DISCOVERY ALGORITHM 

The first step of the algorithm is to construct a query 
expressed in A-SeRDiQueL, i.e., an XML based query lan-
guage developed in ASSERT4SOA in [20] (see line 2 of the 
algorithm). A query in this language has four parts: 
(1) A parameter part defining generic parameters of the 

query process (e.g., the matching algorithm that will 
be used for structural and behavioural matching, the 
maximum distance threshold for accepting candidate 
services, whether service composition should be trig-
gered in cases where no single candidate service can 
match the query). 

(2) A structural part specifying the interface, i.e., the set of 
operation signatures of A and the data types of the pa-
rameters of these operations.  

(3) A behavioural part specifying behavioural conditions 
regarding A that candidate services should match. 

(4) A constraints part that specifying the security properties 
and any other constraints, which services that can sub-
stitute for A should satisfy. Constraints are specified 
by logical expressions defining atomic or complex 
conditions over the contents of service descriptors in 

TABLE 6: SECURE WORKFLOW GENERATION ALGORITHM 

∅∅

∪
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service registries. In the case of security constraints, 
these conditions refer to service security certificates 
specified according to the ASSERT4SOA security cer-
tificates schema. Every constraint has a weight that de-
termines the effect that its satisfaction will have in 
ranking services in the final answer set of a query, and 
a type that determines whether it is “hard” or “soft”.  
Hard constraints must be satisfied by all services in the 
answer set of a query. Soft constraints may be violated 
by services in this set but they affect the ranking of 
services in this set depending on whether they are sat-
isfied and their weight. 

TABLE 8: QUERY FOR PAYMENT (STRUCTURE, BEHAVIOUR) 

 

  

     

  

 

 Table 8 shows the structural and behavioural parts of a 
query for the Payment activity in the workflow of Fig. 3, 
and Table 9 shows the security constraints of the query. In 
A-SeRDiQueL, the structural part of a query is specified 
as an abstract service interface specification in WSDL[5]. 
The behavioural part of the query is specified through 
constrains regarding the order of execution of the differ-
ent service operations, whether iterative executions must 
occur, and the mode of operation execution (i.e., synchro-
nous or asynchronous).  

 
 Following the constraint checks, the discovery algo-

rithm carries out the structural matching between a ser-
vice and a query. This matching is attempted between the 
operations in the WSDL part of the query and the opera-
tions of candidate services. To carry out this matching the 
algorithm creates graphs representing the query and ser-
vice operations and the data types of their input and out-
put parameters of the operations. It then matches the 
graphs by using a variant of the VF2 algorithm to detect 
morphisms between the service and query graphs [35]. 
The variant allows matches between data type graph edg-
es, whose names have a synonym in WordNet and their 
origin/destination nodes have matching incom-
ing/outgoing edges. The behavioural matching process 
checks if the behavioural conditions of a query are satis-
fied by the behavioural model of a services. This is based 
on model checking. Further, details of the matching pro-
cess for non-security querying criteria are beyond the 
scope of this paper and have been discussed in [35]. 

 

5.3 Example 

TABLE 9: QUERY FOR PAYMENT (SECURITY CONSTRAINTS) 
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In our Checkout process example, let us assume that the 
service bound to the activity Payment does not satisfy the 
confidentiality property for customer information, i.e., the 
customer’s credit card and address information. To re-
store this property there are two options: (1) to find an 
alternative service for Payment for which there is a securi-
ty certificate indicating that the service satisfies the prop-
erty, or (2) to generate a workflow of services that would 
satisfy the property. In (2), Payment could, for example, be 
substituted for by a PayPal like service, which does not 
require credit card details. Assuming, however, that the 
latter service is based on a workflow like the Express 
Checkout Purchase of PayPal (www.developer.paypal.com), 
Payment in Checkout would need to be replaced by a work-
flow of three activities:  SetExpressCheckOut, Express-
CheckOutPayment and PrepareOrder, as shown in Fig. 5. As 
in PayPal, the former of these activities creates a transac-
tion token that is used to take payment from a customer 
without passing on his/her credit card details.  

Fig. 5 Modified Checkout process 
The change in the Checkout workflow shown in Fig. 5 is 

realised as follows. When the algorithm GENER-

ATESECUREWORKFLOWS is called with a query Q for replac-
ing the service Payment in the original Checkout process, it 
retrieves the PayPal like payment services workflow 
shown by the grey activities in Fig. 5. This workflow 
matches structurally and behaviourally with Payment (see 
line 2 of the algorithm). Subsequently, GENERATESECURE-

WORKFLOWS infers the alternative security plans for this 
workflow using the confidentiality property that Payment 
failed to satisfy, and tries to find services that (a) match 
with the abstract PayPal workflow and (b) satisfy the secu-
rity properties in one security plan.  

6 PROTOTYPE

To realise our approach, we have implemented a proto-
type tool, called Assurance aware BPEL Designer (A-BPEL 
Designer). A-BPEL Designer supports the design and adap-
tation of SBS workflows in ways that are guaranteed to 
satisfy given security properties, based on SCO patterns 
and the algorithms described in the previous sections. A-
BPEL Designer is based on the BPEL Designer of Eclipse 
IDE (see http://www.eclipse.org/bpel/), which supports the 
authoring, testing, debugging and deployment of WS-
BPEL 2.0 processes. Our tool extends BPEL Designer by 
implementing the workflow security verification and ad-
aptation capabilities presented in Sect. 4 and 5.  To do this, 
it integrates and makes use of the security certificate 
based service discovery capabilities of the ASSERT4SOA 
service discovery engine [20]. 

Fig. 6 A-BPEL designer

 
A-BPEL Designer supports the specification of security 

properties required of BPEL processes and/or specific 
atomic activities (placeholder) or a group of activities 
within them. A required security property may also be 
specified for an asset of a BPEL process partner service 
(e.g., operation input, operation output). Following this 
specification, designers can request the verification of the 
required property for the BPEL process, and the adapta-
tion of the process if the property is not satisfied. Re-
quired properties are specified as BPEL process elements 
annotations and are transformed automatically into A-
SerDiQueL queries to enable the verification. Fig. 6 shows 
the outcome of the verification for the query for the verifi-
cation of the confidentiality property for the service Pay-
ment of the Checkout process. The SerDiQuel Query tab in 
the figure shows the query generated by A-BPEL Designer 
to verify Confidentiality. The tab Security Property Verifica-
tion Status shows that the Payment service does not satisfy 
confidentiality (see status message “Service does not satis-
fy security requirements”). It also shows alternative ser-
vices/service compositions that could undertake the func-
tional role of Payment in the workflow to satisfy this prop-
erty, namely the workflow Express Checkout Purchase dis-
cussed in Sect. 5. 

7 EVALUATION 
In the following, we present the results of a set of ex-

periments that we conducted to evaluate the performance 
of framework. The evaluation focused on the time re-
quired to verify service workflows, i.e., a key indicator for 
the scalability of our approach. 

7.1 Experimental Setup 
To set up the experiments, we used 100 SCO patterns 

and 100 workflows. The used SCO patterns were generat-
ed randomly from a pattern template with three different 
abstract pattern workflows structures (WF) and five 
RSP/ASP properties (each WF structure RSP/ASP prop-
erty have had an equal probability of selection). The ab-
stract WF of the template were: (a) sequence WFs, (b) flow 
WFs, and (c) if-then-else/pick WFs. From this template, we 
generated 10 different sets of SBS workflows to be veri-
fied. Each of these sets included 10 different workflows of 
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equal size, i.e., they had exactly the same number of activ-
ity placeholders/services. The size of workflows in the 
different sets increased from 10 to 100 services (i.e., set -1 
had 10 workflows with 10 services each, set-2 had 10 
workflows with 20 services each and so on up to set-10 
which had 10 workflows with 100 services each). It should 
be noted that, although the patterns used in the experi-
ments were synthetic and therefore did not express prov-
en relations between the RSP/ASP properties in them, 
from a performance evaluation perspective their use of 
did not compromise the validity of the results. 

The evaluation was based on 100 combinations of 
workflows of 10 different sizes N (N=10, 20, 30, …, 100 
services) and sets of SCO patterns of 10 different sizes M 
(M=10, 20, 30, …, 100 patterns). Each SCO pattern was 
created as a combination of a WF, one RSP property and 
as many ASP properties as the activity placeholders in the 
WF of the pattern. 

The verification time recorded for each workflow instance 
was computed as VTS = TC + TU where (i) TC is the time re-
quired to find a security plan that could verify the RSP prop-
erty required of it; and (ii) TU is the time required to confirm 
that the services bound to the activity placeholders of the 
given workflow satisfied the ASP properties required of 
them by the security plan. VTW was measured up to the 
point where the first security plan satisfying the RSP 
property required for a workflow was found or no securi-
ty plan was found. Also for each individual workflow, 
VTW was calculated as the average of 5 different execu-
tions of algorithm VERIFYWORKFLOW in order to minimise 
the possibility of a bias due to interference of background 
system processes on the machine used for the experiment 
(e.g., scheduled system jobs, Java garbage collection). The 
verification time required for a workflow set and a given 
SCO pattern set (VTS) was calculated as the average of the 
VTW measures across all the 10 different workflows in the 
workflow set. The tests were executed on an iMac with an 
Intel Core i3 CPU (3.06 GHz) and 4 GB RAM (DDR3, 1333 
MHz) running Mac OS X 10.9.5. During the execution of 
the experiments no non-system level processes were ac-
tive on the iMac. 

7.2 Results 
Fig. 7 shows the average verification execution time 

(VTw) for workflow and SCO pattern sets of different sizes 
upper and lower part of the figure, respectively). The VTS 
measures shown in the figure are averages calculated over 
250 executions of the algorithm VERIFYWORKFLOW, i.e., 5 
executions for 5 different RSP security properties, and for 
each of the 10 workflows in each workflow set. As the 
figure indicates even for the most complex case of verify-
ing workflows with 100 services using 100 SCO patterns, 
the time that it took to verify a workflow did not exceed
300 milliseconds (the exact maximum VTw was 287.12 mil-
liseconds with a standard deviation of 56.28 milliseconds). 
Fig. 7 indicates that VTS increased almost linearly with 
respect to the workflow size, and did not exceed 150 milli-
seconds for pattern sets having up to 80 patterns. Howev-
er, it showed a steeper increase for workflow sets with 90 
and 100 services and SCO pattern sets with 90 and 100 

patterns. The same effect is also by the graphs showing 
VTS with respect to SCO pattern sets of different sizes in 
the lower part of the figure. For SCO pattern sets with up 
to 80 patterns, VTS increased almost linearly with respect 
to the workflow size and then showed a steeper increase 
for workflows with more than 50 activities.  

 

 
Fig. 7. Average VTS for different workflow and SCO pattern set 

sizes 
The high variability of VTS that was observed in these 

figures was due to fact that the workflow sets included 
both workflows for which the verification algorithm 
found a security plan that verified the workflow and 
stopped once this happened, as well as in cases where no 
such plan was found and therefore an exhaustive search 
of all patterns was made. 

TABLE 10: SBS WORKFLOWS WITH ONE SECURITY PLAN 

To confirm the presence of such an effect, we also cal-
culated the average VTS only for the workflows in each set 
for which a security plan verifying them was found. Table 
9 shows the number of such workflows for the different 
sizes of workflows and SCO pattern sets. As expected the 
number of workflows with one verified security plan in-



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2690430, IEEE
Transactions on Services Computing

12 IEEE TRANSACTIONS ON SERVICES COMPUTING,  MANUSCRIPT ID 

creased along with the size of the SCO pattern set but was 
not affected by the size of the workflow. 

 

 
Fig. 8. Average VTS for workflows and SCO patterns sets of different 

sizes for workflows with a verified security plan 
 

The average VTS times computed for workflows with 
one verified security plan are shown in Fig. 8. The graphs 
in this figure confirmed the observation regarding the ef-
fect of SCO pattern set size and workflow set size on VTS 
variability. More specifically, the VTS variability for work-
flows with a security plan was lower than for the VTS vari-
ability for workflows. Fig. 8 also shows more consistent 
trends regarding the effect of workflow and the pattern set 
size on VTS than the trends shown in Fig. 7. This variability 
was caused by the fact that exhaustive search had to be 
carried workflows with no security plan.   

To find a predictive model for the average VTS time, we 
fitted alternative trend lines to the data using statistical 
regression. In all these trend lines, we used the size of the 
workflow (WFS) and the size of the SCO pattern sets 
(SCO) as the independent variables and VTS as the de-
pendent variable. 

The regression model with the best fit to the data when 
considering workflows with and without a verified securi-
ty plan was the following exponential model: 

 
This regression model was able to account for 94% of the 
variance of VTS (F(2,97) = 760.98, overall p < 0.01, SCO p 
<0.01, WSF p <0.01, R2 = 0.94), and was validated for the 
homoscedasticity of the residual VTS errors using the 
Breusch-Pagan homoscedasticity test (p=0.391) [10]. The 
model is consistent with the worst-case scenario in which 
INFERSECURITYPLANS algorithm has to search for all possible 

ways in which it may match the structure of the workflow of 
an SCO pattern with the SBS workflow to be verified. Due to 
the prefix-based encoding of pattern and SBS workflows (see 
line 6 in Table 2), at each recursion cycle of the INFERSECURI-

TYPLANS algorithm the it is possible to perform this match in 
N steps where N is the number of complex activities of the 
SBS workflow. However, even if a match is found, there can 
be non-atomic activities (i.e., sub-workflows) in the matched 
structure of the SBS workflow that will need to be matched 
with patterns again and up to the point where no more re-
cursive matching attempts will be possible. 

When only workflows with a verified security plan 
were considered, the best model that was found was the 
following linear regression model: 

 
The above regression model was able to account for 92.3% 
of the variance of VTS (F(2,97) = 585.19, overall p < 0.01, 
SCO p <0.01, WSF p <0.01, R2 = 0.923), and was also valid 
with respect to homoscedasticity based on the Breusch-
Pagan test (p=0.43). It should be noted, however, that the 
linear decrease of VTS along with the size of the SCO pattern 
that is indicated by the model is not plausible. Hence, model 
(2) should not be used as more conclusive evidence than the 
experimental results shown in Fig. 9 and 10. 

Overall, our results are promising although they arise 
from an initial evaluation. More specifically, the maxi-
mum average VTS time predicted for the verification of an 
SBS workflow by model (1) is 293.98 milliseconds. This 
prediction indicates that it is feasible to verify the security 
of complex SBS workflows (i.e., workflows involving as 
many as 100 services) with complex SCO pattern sets (i.e., 
sets involving as many as 100 SCO patterns). We believe 
that our experiments are realistic in testing the efficacy 
boundaries of our approach since, although someone may 
encounter cases with process models involving more than 
100 services, it would be unlikely to use SCO pattern sets 
with significantly more than 100 patterns.  

8 RELATED WORK 
SBS security has been the focus of several strands of re-

search focusing on: (a) the verification of the security of 
SBSs, and (b) the design of secure SBSs.  

Research approaches focusing on the verification of se-
curity properties of during service workflows design, typ-
ically rely on the use of formal analysis (i.e., model check-
ing or theorem proving).  AutoFocus [6], for example, as-
sumes the specification of SBS systems in UML and the 
security properties to be verified in CTL [18]. These speci-
fications are transformed into the input language of the 
SVM model checker, which is used to verify the proper-
ties. The properties supported by [6] are authentication 
and authorisation. Dong et al [8] have used security de-
sign patterns to model inter-process communications as 
UML sequence diagrams. The models resulting from this 
process are converted into the formal language CCS [21], 
and verified for security properties using model checking. 
Brucker et al [3] also use model checking to verify service 
compositions modelled in BPMN [7] against security 
properties specified in LTL [18]. Their approach was im-

y
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plemented as of NetWeaver 
(www.sap.com/uk/community/topic/netweaver.html). 
Nakajima [22] verified BPEL processes annotated with 
with security labels, using model checking. This was 
based on transforming annotated BPEL processes into 
Promela and using SPIN to detect information leakage. 
Most of the above approaches support a limited number 
of properties (e.g., [3], [6], [8]). Also verification based on 
them is likely to be computationally intractable for large 
SBS systems (note that [3], [6], [8] and [22] do not provide 
any experimental performance results). 

Bartoletti et al [2] have developed a typed extension of 
λ-calculus to specify models of service compositions and 
check the security-related activities in them (e.g., opening 
a socket connection). [2] provide a formal basis for model-
ling verifiable service orchestrations but with some limita-
tions (e.g., no support for incremental verification that is 
required at runtime and potential computational intracta-
bility due to formal reasoning). The approach presented in 
[31] validates access control policies for data transmitted 
within service compositions, using information flow con-
trol rules to define security policy access privileges to be 
enforced when passing data from one service to another. 
An experimental validation of this approach has shown 
that the time required for generating compositions in-
creases exponentially with the composition size (e.g., 30 
secs for small sequential compositions of 14 services).  

Lelarge et al [15] have used planning techniques to 
compose workflows that are compliant with lattice-based 
access control models (e.g. multi-level secure systems) 
and analysed the complexity of the process for different 
sets of security constraints (e.g., whilst the composition 
problem is NP-complete, totally ordered constraints lead 
to linear time composition).  

Albanese et al [1] find compositions of modules (ser-
vices) that satisfy required security properties using logic 
programming. In this approach, security properties are 
defined for service interfaces and can weak, i.e., satisfied 
in an approximate manner. This is similar to the weak 
constraints used in workflow generation in our approach. 
This approach has been shown to be NP-hard.  

Salnitri et al [30] also support checks of security poli-
cies against BPMN processes. Verification in this ap-
proach is not formal; it involves checking security policies 
expressed as SecBPMN queries against SecBPMN-ml 
specifications (i.e., security enhanced BPMN models) by 
searching for the existence of paths in processes that satis-
fy the policy. An experimental evaluation showed that the 
verification time increases exponentially with the size of 
processes and linearly to the number of properties [30]. 

Significant work there has also been on the generation 
of secure service workflows. Frankova et al [12], for ex-
ample, model security requirements in a formal goal ori-
ented requirements language, called SI*/Secure Tropos, and 
– following specific verification checks – they produce a 
Secure BPEL workflow through an iterative process of 
refinement. 

BPA-Sec4Cloud [17] transforms BPMN processes anno-
tated with security requirements into cloud platform spe-
cific services and BPEL processes that comply with the 

security requirements at execution time. The Sec-MoSC 
tool [33] supports the addition of required security prop-
erties to BPMN processes [7] and the selection of default 
mechanisms for implementing them. The BPMN process-
es along with the selected mechanisms are transformed to 
BPEL and a security engine is used to realise the security 
mechanisms added to the process. Charfi and Menzini [4] 
use an aspect-oriented approach to integrate security 
specifications in BPEL processes, and use them to identify 
security functionalities of special security services, and 
integrate them into the process to enforce security. 

Overall, our approach might not be as general as ap-
proaches that use full formal analysis to support work-
flow verification and generation. This is because its ability 
to perform these two tasks depends on the availability of 
proven SCO patterns for the security property of interest. 
However, our review of the literature shows that our ap-
proach appears to have significantly better performance 
than those formal analysis approaches for which experi-
mental results have been reported, Furthermore, pur ap-
proach does not require as complex security property 
modelling from SBS designers as formal approaches, since 
the relevant property and workflow models are available 
in SCO patterns. 

9 CONCLUSION 
In this paper, we have described a framework for veri-

fying the security of SBS workflows based on patterns. 
The verification process is realised by inferring security 
properties of the individual services of the workflow 
(ASP) which, when satisfied, would guarantee workflow 
level security properties (RSP), and checking if the indi-
vidual services have such properties. 

The results of an initial evaluation of our approach 
were positive: even for workflows with 100 services and 
large SCO patterns sets (100 patterns) verification was 
performed in less than 0.3 seconds. This efficiency comes 
at the expense of completeness in verification. More spe-
cifically, our approach is not complete since it will only be 
able to verify an RSP property if: (a) there is a SCO pattern 
P that can guarantee RSP; (b) the abstract workflow struc-
ture of P, i.e., matches the workflow of interest; and (c) the 
partner services the workflow of interest that match the 
activity placeholders of the pattern workflow satisfy the 
ASP properties required of them by P. Hence, the identifi-
cation and development of comprehensive sets of SCO 
patterns is a pre-requisite for the effectiveness and ap-
plicability of our approach. Identifying comprehensive 
pattern sets requires further research focusing not only on 
finding new patterns but also on establishing the right 
methodology for doing so and for evaluating the suffi-
ciency of the pattern sets developed using it. 

ACKNOWLEDGMENT 
The work reported in this paper has been partially funded 
by the EU F7 project ASSERT4SOA (grant no. 257351) and 
the H2020 project CYBERSURE (grant no. 734815). 



1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2690430, IEEE
Transactions on Services Computing

14 IEEE TRANSACTIONS ON SERVICES COMPUTING,  MANUSCRIPT ID 

REFERENCES 
[1] Albanese, M., Jajodia, S., and Molinaro, C. (2013). A Logic 

Framework for Flexible and Security-Aware Service Composi-
tion. IEEE 10th Int. Conf. on Autonomic and Trusted Computing, 
pp. 337-346. 

[2] Bartoletti, M., Degano, P., and Ferrari, G. L. (2006). Types and 
effects for secure service orchestration. In 19th IEEE Computer 
Security Foundations Workshop. pp. 57-69.  

[3] Brucker, A. D., Compagna, L., and Guilleminot, P. (2014). Com-
pliance Validation of Secure Service Compositions. In Secure and 
Trustworthy Service Composition, pp. 136-149. Springer Int. Pub.  

[4] Charfi, A., and Mezini, M. (2005). Using aspects for security 
engineering of web service compositions. In IEEE International 
Conference on Web Services, Proceedings. pp. 59-66.  

[5] Chinnici, R., Moreau, J. J., Ryman, A., & Weerawarana, S. (2007). 
Web services description language (wsdl) version 2.0 part 1: 
Core language. W3C recommandation, 26, 19. 

[6] Deubler, M., et al. (2004). Sound development of secure service-
based systems. In Proc. of the 2nd Int. conference on Service oriented 
computing, pp. 115-124.  

[7] Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and 
analysis of business process models in BPMN. Information and 
Software technology, 50(12), 1281-1294. 

[8] Dong, J., Peng, T., and Zhao, Y. (2010). Automated verification 
of security pattern compositions. Information and Software Tech-
nology, 52(3), 274-295. DOI: 10.1016/j.infsof.2009.10.001 

[9] Drools. Available from:  http://www.drools.org/ 
[10] Dufour, J. M., etal. (2004). Simulation-based finite-sample tests 

for heteroscedasticity and ARCH effects. Journal of Econometrics, 
122(2), 317-347. 

[11] Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern 
/ many object pattern match problem. Artificial intelli-
gence, 19(1), 17-37. DOI: 10.1016/0004-3702(82)90020-0 

[12] Frankova, G., Massacci, F., and Seguran, M. (2007). From Early 
Requirements Analysis towards Secure Workflows. In Trust 
Management: Proceedings of IFIP Joint ITrust and PST Conferences 
on Privacy, Trust Management and Security, Springer.  

[13] Gürgens, S., Ochsenschläger, P., & Rudolph, C. (2005). On a 
formal framework for security properties. Computer Standards & 
Interfaces, 27(5), 457-466. 

[14] IBM, IBM Industry Packs. Available from: http://www-
01.ibm.com/software/integration/business-process-
manager/industry-packs/library/documentation/  

[15] Lelarge, M., Liu, Z., and Riabov, A. V. (2006). Automatic com-
position of secure workflows. In Proceedings of the Third inter-
national conference on Autonomic and Trusted Computing, pp. 
322-331. Springer-Verlag. DOI: 10.1007/11839569_31 

[16] Lin, F. (2008). Situation calculus. Foundations of Artificial Intelli-
gence, 3, 649-669. 

[17] Lins, F., et al., (2015). Automation of service-based security-
aware business processes in the Cloud. Computing, pp.1-24. 

[18] Maidi, M. (2000). The common fragment of CTL and LTL. In 
Foundations of Computer Science, 2000. Proceedings. 41st Annual 
Symposium on (pp. 643-652). IEEE. 

[19] Martin, D., et al. (2004). OWL-S: Semantic markup for web ser-
vices. W3C member submission, 22, 2007-04. Available from: 
https://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/  

[20] Mahbub K. et al., Asserts Aware Service Query Language and 
Discovery Engine, Deliv. D.2.1, ASSERT4SOA Project, available 
from: http://www.assert4soa.eu/deliverable/D2.1.pdf 

[21] Milner, R. (1989). Communication and concurrency. Prentice-
Hall, Inc. ISBN:0-13-115007-3 

[22] Nakajima, S. (2004). Model-checking of safety and security as-
pects in web service flows. In International Conference on Web En-
gineering (pp. 488-501). Springer Berlin Heidelberg. 

[23] Pino, L. (2015). Security Aware Service Composition (Doctoral 
dissertation, City University London). Available from: 
http://openaccess.city.ac.uk/13170/ 

[24] Pino, L., and Spanoudakis, G. (2012). Constructing secure ser-
vice compositions with patterns. In IEEE 8th World Congress on 
Services, 2012, pp. 184-191.  

[25] Pino, L., and Spanoudakis, G. (2012). Finding secure composi-
tions of software services: Towards a pattern based approach. In 
5th  IFIP Int. Conf. on New Technologies, Mobility & Security.  

[26] Pino, L., Mahbub, K., and Spanoudakis, G. (2014). Designing 
Secure Service Workflows in BPEL. In Proceedings of the Inter. 
Conference on Service-Oriented Computing, pp. 551-559.  

[27] Pino, L., Spanoudakis, G., Gürgens, S., Fuchs, A., and Mahbub 
K., (2012). ASSERTS aware Service Orchestration Patterns, De-
liverable D2.2. ASSERT4SOA Project. Available from: 
http://www.cspforum.eu/D2.2-revised.pdf 

[28] Pino, L., et al., (2015) Generating Secure Service Compositions. 
In Communications in Computer and Information Sciences, Vol 512, 
(eds) Helfert M., et al., Springer International Pub. 

[29] RossettaNet http://www.edibasics.co.uk/edi-
resources/document-standards/rosettanet/ 

[30] Salnitri, M., et al. (2015). Designing secure business processes 
with secBPMN. Software & Systems Modelling, 1-21. 

[31] She W., et al., (2013). Security-aware service composition with 
fine-grained information flow control. IEEE Transactions on Ser-
vices Computing, 6(3), pp.330-343. 

[32] Society for Worldwide Interbank Financial Telecommunication 
(SWIFT). Available from: http://www.swift.com/  

[33] Souza, A. R., et al. (2009). Incorporating Security Requirements 
into Service Composition: From Modelling to Execution. In Proc. 
of the 7th Inter. Joint Conf. on Service-Oriented Computing, pp. 373-
388.  

[34] Zakinthinos, A., and Lee, E. S. (1997). A general theory of securi-
ty properties. In IEEE Symposium on Security and Privacy, 1997. 
Proceedings. pp. 94-102. IEEE. DOI: 
10.1109/SECPRI.1997.601322 

[35] Zisman, A., et al, (2013). Proactive and reactive runtime service 
discovery: a framework and its evaluation. Software Engineering, 
IEEE Transactions on, 39(7), pp.954-974. 

[36] Workflow Management Coalition. Terminology and Glossary 
(1999), Technical Report Document Number WFMC-TC-1011, 
Issue 3.0, 1999, Available from: 
http://www.workflowpatterns.com/documentation/documen
ts/TC-1011_term_glossary_v3.pdf 

Luca Pino BSc, MSc, PhD. Luca Pino studied for a PhD at City, 

University of London doing research on engineering secure service 

based systems and is currently a software engineer in the industry.  

George Spanoudakis. Bsc, Msc, PhD. George Spanoudakis is Pro-
fessor at City, University of London. His research interests are in 

software systems security and service oriented systems. 

Maria Krotisani. BSc, MSc, PhD. Maria Krotsiani is a postdoctoral 

research fellow at City, University of London. Her research interests 

are in cloud security and continuous security certification. 

Khaled Mahbub. B.Eng, M.Eng, PhD. Khaled Mahbub is a Senior 

Lecturer at Birmingham City University, UK. His research interests 

are in automated software engineering, service based system and 

cloud computing.  


