
1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 1

On the Security of Data Access Control for
Multiauthority Cloud Storage Systems

Xianglong Wu, Rui Jiang, and Bharat Bhargava, Fellow, IEEE

Abstract—Data access control has becoming a challenging issue in cloud storage systems. Some techniques have been

proposed to achieve the secure data access control in a semitrusted cloud storage system. Recently, K.Yang et al. proposed a

basic data access control scheme for multiauthority cloud storage system (DAC-MACS) and an extensive data access control

scheme (EDAC-MACS). They claimed that the DAC-MACS could achieve efficient decryption and immediate revocation and the

EDAC-MACS could also achieve these goals even though nonrevoked users reveal their Key Update Keys to the revoked user.

However, through our cryptanalysis, the revocation security of both schemes cannot be guaranteed. In this paper, we first give

two attacks on the two schemes. By the first attack, the revoked user can eavesdrop to obtain other users’ Key Update Keys to

update its Secret Key, and then it can obtain proper Token to decrypt any secret information as a nonrevoked user. In addition,

by the second attack, the revoked user can intercept Ciphertext Update Key to retrieve its ability to decrypt any secret

information as a nonrevoked user. Secondly, we propose a new extensive DAC-MACS scheme (NEDAC-MACS) to withstand

the above two attacks so as to guarantee more secure attribute revocation. Then, formal cryptanalysis of NEDAC-MACS is

presented to prove the security goals of the scheme. Finally, the performance comparison among NEDAC-MACS and related

schemes is given to demonstrate that the performance of NEDAC-MACS is superior to that of DACC, and relatively same as

that of DAC-MACS.

Index Terms—Access control, attribute revocation, revocation security, CP-ABE, multiauthority cloud

—————————— ——————————

1 INTRODUCTION

LOUD computing extends the existing capabilities of
Information Technology (IT) since cloud adaptively

provides storage and processing services such as SaaS,
IaaS, and PaaS that dynamically increase the capacity and
add capabilities without investing in new infrastructure
or licensing new software [1].

However, the data access control (DAC) issue of cloud
computing systems has been escalated by the surge in
attacks such as collusion, wiretapping and distort, so that
DAC must be designed with sufficient resistance. DAC
issues are mainly related to the security policies provided
to the users accessing the uploaded data, and the tech-
niques of DAC must specify their own defined security
access policies and the further support of policy updates,
based on which each valid user can have access to some
particular sets of data whereas invalid users are unau-
thorized to access the data. One approach to alleviate
attacks is to store the outsourcing data in encrypted form.
However, due to the normally semitrusted cloud and its
arrangement issues of administration rights, cloud-based
access control approaches with traditional encryption are
no longer applicable to cloud storage systems [2].

Sahai and Waters [4] laid a theoretical foundation for
solving above encryption problem by introducing the
new concept of attribute-based encryption (ABE) whose

prototype is the identity-based encryption (IBE). The ABE
notion has been the promising cryptographic approach on
which more intensive research is based. V. Goyal et al.
first proposed the key-policy attribute based encryption
for fine-grained access control (KP-ABE) [5]. In KP-ABE,
the data was encrypted by attribute set, and decryption
was possible only when the user’s policy tree matched the
attribute set in the ciphertext. Shortly after KP-ABE, J.
Bethencourt introduced the mechanism of ciphertext poli-
cy attribute-based encryption (CP-ABE) [6], in which the
user received attributes and secret keys from the attribute
authority and was able to decrypt ciphertext only if it
held sufficient attributes that satisfied the access policy
embedded in the ciphertext.

Furthermore, the constructed CP-ABE scheme is
deemed as one of the most appropriate techniques for
data access control in cloud storage systems, since it can
be configured to some DAC schemes which do not re-
quire the data owners to distribute keys and furnish the
data owners with more efficient and attribute-level con-
trol on defined access policies offline. A myriad of data
access control techniques based on CP-ABE (e.g. [2], [3],
[7]-[19]) are proposed to construct the efficient, secure,
fine-grained and attribute-level-revocable access
schemes in a semi-trusted cloud storage system. How-
ever, based on the Dolev-Yao model [30], security goals
such as active attack resistance, data confidentiality,
anti-collusion, and attribute-revocation security of most
solution designs cannot be all perfectly guaranteed
since the capable Dolev-Yao adversaries can overhear,
intercept, replay, and synthesis arbitrary information in
the open communication channels. For example, in con-
text of attribute revocation in the scenario of K.Yang et

C

————————————————

 Xianglong Wu is with the School of Information Science and Engineering,
Southeast University, Nanjing, China (e-mail: wuxianglong-018@163.com).
 Rui Jiang is with the School of Information Science and Engineering,

Southeast University, Nanjing, China (e-mail: R.Jiang@seu.edu.cn), corre-
sponding author.

 Bharat Bhargava is with the Department of Computer Science, Purdue
University, West Lafayette, IN, USA (e-mail: bbshail@purdue.edu).

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

2

al. proposed DAC-MACS and EDAC-MACS [2], due to
the open and non-secure communication channel, the
revoked users, as the Dolev-Yao adversaries, can still
breach the backward revocation when they eavesdrop to
obtain more than two valid users’ Key Update Keys to
update their own Secret Keys, or when they intercept
the Ciphertext Update Key delivered from attribute au-
thority to cloud. In both scenarios, each revoked user
can retrieve its ability to decrypt any secret information
as a non-revoked user.

1.1 Our Contributions

In this paper, two attacks are first given on the DAC-
MACS’s and EDAC-MACS’s revocation security which
cannot be guaranteed through our cryptanalysis. Subse-
quently, a new extensive DAC-MACS scheme (NEDAC-
MACS) is proposed to withstand above two attacks so as
to support more secure attribute revocation. The main
contributions of this paper are summarized as follows:

1. In this paper, two attacks are firstly constructed on
the vulnerabilities of revocation security in DAC-
MACS and EDAC-MACS. By the first attack, the
revoked user can eavesdrop to obtain other users’
Key Update Keys to update its Secret Keys, and
then it can obtain proper Token to decrypt any se-
cret information as a nonrevoked user as before. In
addition, by the second attack, the revoked user
can intercept the Ciphertext Update Key to re-
trieve its ability to decrypt any secret information
as a nonrevoked user as before.

2. Secondly, we propose a new extensive DAC-
MACS scheme, denoted as the NEDAC-MACS, to
withstand above two attacks and support more se-
cure attribute revocation. We modify some DAC-
MACS’s algorithms, and perform the vital cipher-
text update communication between cloud server
and AAs with some more secure algorithms. Our
NEDAC-MACS scheme mainly includes two im-
provements on the DAC-MACS at Secret Key Gen-
eration phase and Attribute Revocation phase, and it
can run correctly according to the correctness
proof of NEDAC-MACS.

3. Then, formal cryptanalysis of the NEDAC-MACS
is described to prove that the proposed NEDAC-
MACS can guarantee collusion resistance, secure
attribute revocation, data confidentiality, and
provable security against static corruption of au-
thorities based on the random oracle model.

4. Finally, performance analysis of our NEDAC-
MACS are conducted by making an efficiency
comparison among related CP-ABE schemes to
testify that the NEDAC-MACS is security-
enhanced without reducing more efficiency. The
major overhead of decryption is also securely out-
sourced to the cloud servers, and the overall over-
heads of storage, communication and computation
of the NEDAC-MACS are superior to that of
DACC and relatively same as that of DAC-MACS.

1.2 Organizations

We first introduce related work in section 2. The system

model and framework of DAC-MACS and EDAC-MACS
are briefly reviewed in section 3. Then, two detailed at-
tacks on the attribute revocation security of the two
schemes are elaborated in section 4. Subsequently, a new
extensive DAC-MACS scheme with enhanced revocation
security is proposed in section 5. Section 6 and 7 present
the formal cryptanalysis and performance simulation of
our NEDAC-MACS scheme, respectively. Finally, the
conclusion is given in Section 8.

2 RELATED WORK

Data Access Control: A plurality of data access control sys-
tems (e.g. [2], [3], [7]-[19]) based on the promising CP-
ABE technique are proposed to construct the efficient,
secure, fine grained and revocable access schemes. S.Ruj
et al. (2011) proposed a distributed access control scheme
in clouds (DACC) [9] that supported attribute revocation.
In DACC, one or more key distribution centers (KDCs)
distributed keys to data owners and users. Technically, it
requires not only forward security but more indispensa-
ble backward security in context of the attribute revoca-
tion. However, DACC supported attribute revocation
with vulnerable forward security [2].

J.Hur et al. (2011) proposed an attribute-based DAC
scheme [12] with efficient revocation in cloud storage sys-
tems, whereas it was designed only for the cloud systems
with single trusted authority. In addition, the above two
schemes both require data owners to reencrypt the out-
sourced ciphertext after revocation.

Liu et al. (2013) presented a secure multi-owner data
sharing scheme called Mona [20]. It is claimed that the
scheme can achieve fine-grained access control and secure
revocation. However, the scheme will easily suffer from
collusion attack by the revoked user and the cloud [21].

Recently, K.Yang et al. proposed a data access control
scheme for multiauthority cloud storage system (DAC-
MACS) [2] and [3] which both supported more efficient
decryption and secure attribute revocation without reen-
cryption by the data owners. In reference [2], due to a
strong security assumption in DAC-MACS that the non-
revoked users will not reveal their key update keys to the
revoked user, the authors further removed the assump-
tion and proposed the extensive data access control
scheme (EDAC-MACS). In context of secure attribute
revocation, DAC-MACS and EDAC-MACS could both
achieve forward revocation security irrespective of active
attacks. However, the backward revocation security both
in DAC-MACS and EDAC-MACS still cannot be guaran-
teed when the revoked user eavesdrops to obtain more
than two users’ Key Update Keys to update its Secret Key,
or when the revoked user intercepts the Ciphertext Up-
date Key. In both scenarios, the revoked user can retrieve
its ability to decrypt any secret information as a nonre-
voked user just as before.

Efficiency of Outsourcing Decryption: Green et al. [22]
(2011) introduced the notion of outsourcing ABE decryp-
tion, and presented two concrete ABE schemes with out-
sourced decryption, which outsourced the main computa-
tion of the decryption and only incurred a small overhead
of plaintext recovery for the user by using a token-based

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 3

decryption method. When outsourcing the decryption of
ABE ciphertext, data confidentiality against the curious
but honest cloud servers or an adversary can be guaran-
teed; however, most ABE schemes provide no guarantee
on the correctness of the outsourced transformation done
by the cloud servers. Cloud service providers are postu-
lated to be semi-trusted and may have profit motives to
reduce the computation and return incorrect answers
which are unlikely to be detected by valid users. Recently,
Lai [23] (2013) modified the original model of Green’s
ABE schemes [22] to allow for verifiability of the out-
sourced transformations. However, the storage, computa-
tion and communication overheads of the additional re-
dundancy in scheme [23] all scale linearly with the com-
plexity of the transmitted ciphertext and cannot be practi-
cal and flexible in more general scenario.

3 BRIEF REVIEW OF DAC-MAC AND EDAC-MAC

3.1 Notations

Some notations used in the paper and their descriptions
are briefly shown in Table I.

3.2 System Model of DAC-MACS

As shown in Fig. 1, a cloud storage system with multiple
attribute authorities (DAC-MACS) has five types of enti-
ties involved: global certificate authority (CA), users,
cloud servers, data owners, and attribute authority (AA).
Table Ⅱ presents the roles and behaviors of all involved
parties in DAC-MACS.

In DAC-MACS, the global certificate authority (CA)
accepts both users’ and attribute authorities’ registrations
to initialize the system by two steps CAsetup and AAset-
up, and hence assign a global unique identity uid to each
valid user and a global unique 𝑎𝑖𝑑 to each AA.

After registration, each AA𝑘 ∈ 𝑆A runs Secret Key gen-
eration algorithm to compute valid user’s secret keys
 {SK} according to the user’s role or hierarchy in a defined
access policy to some sensitive data.

Then, for each data m, data owners first define an ac-
cess structure [24], [25] 𝔸 = (M, 𝜌), encrypt the data under
this access structure and then outsource the encrypted
data CT to the proxy cloud server.

Thereafter, the user U𝑗 ∈ 𝑆U can upload 𝔸-related se-
cret keys {SK} and its global public key GPK to cloud for
a decryption token TK computed by cloud servers, then
the user can decrypt the data 𝑚 with the TK and its global
secret key. The CA, AAs, and cloud servers cannot de-
crypt the data 𝑚 without user’s global secret key.

For attribute revocation, the corresponding AA, which
supervises the revoked attribute, first assigns a version
key to each attribute and then generates Ciphertext Up-
date Key for cloud to update CT and Key Update Key for
users to update SK. Only those CTs, SKs related to the re-
voked attribute need to be updated to implicitly contain
the latest version key of the revoked attribute. After at-
tribute revocation, all algorithms in system stay unaltered.

3.3 Framework of DAC-MACS

The framework of DAC-MACS mainly consists of five
phases: System initialization, Secret Key generation by AAs,
Data encryption by data owners, Data decryption by users with
the help of cloud, and Attribute revocation.

3.3.1 System Initialization

The whole system can be set up with following steps:

TABLE Ⅱ ENTITIES AND DESCRIPTIONS

Entity Descriptions of roles and behaviors

CA
A trusted entity to register each user and AAk,

and set up the system.

AAk
The k-th attribute authority to issue, revoke and

update user’s attributes and attribute keys.

Server

It stores owners’ data, provides DAC services
and generates decryption token for users, and
conducts CT update for attribute revocation.

User
It submits its attribute keys to the servers for a

decryption token, and decrypts the CT.

Owner
It defines the access policies, encrypts content
keys 𝜅 under the policies and encrypt data by
the key 𝜅. It then outsources CT to servers.

TABLEⅠ NOTATIONS AND DESCRIPTIONS

Notations Descriptions

G1, G2, G3 Multiplicative cyclic groups of prime order 𝑝

H A hash function H: {0,1}∗ → Zq
∗

MSK The system master key 𝛼

SP The public system parameters

(𝑠𝑘CA, 𝑣𝑘CA) The signature and verification key of CA

𝑢𝑖𝑑 An unique global identity of user

𝑎𝑖𝑑 An unique global identity of attribute authority

U𝑗 The user whose identity 𝑢𝑖𝑑 = 𝑗

𝑆A The ID set of attribute authorities in the system

𝑆U The ID set of users in the system

𝑆A𝑘
 The set of attributes superviced by AA𝑘

 𝐼A
The set of authorities who supervise the involved
attributes in the access policy defined in CT

 𝐼A𝑘

The index set of attributes which are assigned by
AA𝑘 and involved in the access policy of CT

𝜅 The content keys to encrypt data

 TK
The decryption token generated by servers to
reduce user’s computation overhead

𝑡𝑝 One pairing computation time

𝑡𝑚 One scalar multiplication time

𝐼𝑢 The set of attributes U𝑢 holds

Fig. 1. System Architecture of DAC-MACS

 GPK𝑗

{SK𝑗,𝑘}

 Servers

CA
𝑎𝑖𝑑

AAk
SK𝑗,𝑘 , KUK𝑥,𝑗

𝑢𝑖𝑑

Userj

 TK

CT

PK𝑥

PK𝑘

Owners

CUK𝑥,𝑘

 CT

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

4

1. CA setup: The certificate authority initializes the
system with the CAsetup algorithm:

CASetup(1𝜆) ⟶ (MSK, SP, (𝑠𝑘CA, 𝑣𝑘CA)).

It takes a security parameter 𝜆 as inputs and it out-
puts the system’s master key MSK and the public pa-
rameters SP and a pair of signature and verification
key (𝑠𝑘CA, 𝑣𝑘CA).
2. User Registration: The users send their identity in-
formation to CA, then CA conducts UserReg algorithm:

UserReg(SP, 𝑠𝑘CA, info𝑢) → (𝑢𝑖𝑑, GPK𝑢𝑖𝑑 , GSK𝑢𝑖𝑑 , cert(𝑢𝑖𝑑))

to compute and return each user’s unique identity 𝑢𝑖𝑑,
global public key GPK𝑢𝑖𝑑 = 𝑔𝑢𝑖𝑑 , a global secret key
GSK𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑 and a user certification cert(𝑢𝑖𝑑) =
𝑆𝑖𝑔𝑛𝑠𝑘CA

(𝑢𝑖𝑑, 𝑢𝑢𝑖𝑑 , 𝑔1/𝑧𝑢𝑖𝑑).
3. AA Registration: Similar to the user registration,
each AA sends their identity information to CA for its
unique identity 𝑎𝑖𝑑.
4. AA Setup: Each AA𝑎𝑖𝑑 , 𝑎𝑖𝑑 ∈ 𝑆A initializes itself
with the AASetup algorithm:

AASetup(SP, 𝑎𝑖𝑑) → (SK𝑎𝑖𝑑 , PK𝑎𝑖𝑑 , {VK𝑥𝑎𝑖𝑑
, PK𝑥𝑎𝑖𝑑

}).

The outputs SK𝑘 = (𝛼𝑘 , 𝛽𝑘 , 𝛾𝑘), PK𝑘 = (𝑒(𝑔, 𝑔)𝛼𝑘 ,
𝑔1 𝛽𝑘⁄ , 𝑔𝛾𝑘 𝛽𝑘⁄) are the secret and public authority key
of AA𝑘 , and {VK𝑥𝑎𝑖𝑑

= 𝑣𝑥𝑘
, PK𝑥𝑎𝑖𝑑

= (𝑔𝑣𝑥𝑘H(𝑥𝑘))
𝛾𝑘} are

the secret version keys and public key of each attribute
𝑥𝑘 supervised by AA𝑘.

3.3.2 Secret Key Generation by AAs

Each attribute authority AA𝑘 (𝑘 ∈ 𝑆A) assigns each valid
user U𝑗 (𝑗 ∈ 𝑆U) a set of attributes 𝑆𝑗,𝑘, then performs the
SKeyGen algorithm:

SKeyGen(SK𝑎𝑖𝑑 , SP, {PK𝑥𝑎𝑖𝑑
}, 𝑆𝑢𝑖𝑑,𝑎𝑖𝑑 , cert(𝑢𝑖𝑑)) → SK𝑢𝑖𝑑,𝑎𝑖𝑑

to generate the user’s secret attribute key SK𝑗,𝑘:

For ∀𝑗 ∈ 𝑆U and ∀𝑘 ∈ 𝑆A:

 SK𝑗,𝑘 = (K𝑗,𝑘 , L𝑗,𝑘 , 𝑅𝑗,𝑘∀𝑥𝑘 ∈ 𝑆𝑗,𝑘: K𝑗,𝑥𝑘
)

= [
K𝑗,𝑘 = 𝑔

𝛼𝑘
𝑧𝑗 𝑔𝑎𝑢𝑗𝑔

𝑎
𝛽𝑘

𝑡𝑗,𝑘 , L𝑗,𝑘 = 𝑔

𝑡𝑗,𝑘𝛽𝑘

𝑧𝑗 , R𝑗,𝑘 = 𝑔𝑎𝑡𝑗,𝑘 ,

 ∀𝑥𝑘 ∈ 𝑆𝑗,𝑘: K𝑗,𝑥𝑘
= 𝑔

𝑡𝑗,𝑘𝛽𝑘𝛾𝑘

𝑧𝑗 ∙ (PK𝑥𝑘
)
𝛽𝑘𝑢𝑗

],

where the value 𝑡𝑗,𝑘 is randomly chosen in 𝑍𝑝.

3.3.3 Data Encryption by Owners

For each data 𝑚, according to the data’s logic attribute
granularserities, data owners define a monotone access
structure 𝔸 which can be efficiently realized by a linear
secret sharing schemes (LSSS [24]), then an efficient mon-
otone span program (MSP) (M, 𝜌) can be constructed due
to the proved equivalence between LSSS and MSP [24],
[25]. Under 𝔸, data owners perform the Encrypt algorithm:

Encrypt (SP, {PK𝑘}𝑘∈𝐼A , {PK𝑥𝑘
}
𝑥𝑘∈𝑆A𝑘

𝑘∈𝐼A
, 𝑚, 𝔸) → CT

to compute CT for the data 𝑚:

 CT = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖 , D1,𝑖 , D2,𝑖)

= [
𝐸𝑛𝜅(𝑚), C = 𝜅 ∙ (∏ 𝑒(𝑔, 𝑔)𝛼𝑘

𝑘∈𝐼A)𝑠, C′ = 𝑔𝑠, C′′ = 𝑔
𝑠

𝛽𝑘 ,

∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖 = 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝜌(𝑖))
−𝑟𝑖 , D1,𝑖 = 𝑔

𝑟𝑖
𝛽𝑘 , D2,𝑖 = 𝑔

−𝑟𝑖𝛾𝑘
𝛽𝑘

]

where values 𝑘 ∈ 𝐼A, 𝑟𝑖, 𝑠, and vector 𝑣 = (𝑠, 𝑦2, … , 𝑦𝑛) are
randomly chosen, s is the secret value in LSSS, 𝜆𝑖 =
(M ∙ 𝑣)𝑖 is a share of secret 𝑠 and belongs to 𝜌(𝑖), M is a 𝑙 ×

𝑛 matrix in monotone span program, and 𝜌 is a function
from {1,2, … , 𝑙} to {𝑥𝑘 ∈ 𝑆A𝑘

, 𝑘 ∈ 𝐼A}.

3.3.4 Data Decryption by Users with the Help of
Cloud Servers

1. Token Generation by Cloud
The user U𝑗 (𝑗 ∈ 𝑆U) from the user set 𝑆U queries for a
decryption Token TK and CT by sending its secret keys
{SK𝑗,𝑘}𝑘∈𝐼A and GPK𝑗 . Then TK is computed by TKGen
algorithm:

TKGen (CT, GPK𝑢𝑖𝑑 , {SK𝑢𝑖𝑑,𝑘}𝑘∈𝐼A
) → TK,

and the output is

TK = ∏
𝑒(C′, K𝑗,𝑘) ∙ 𝑒(R𝑗,𝑘 , C")−1

∏ [𝑒(C𝑖 , GPK𝑗) ∙ 𝑒(D1,𝑖 , K𝑗,𝜌(𝑖)) ∙ 𝑒(D2,𝑖 , L𝑗,𝑘)]
𝑤𝑖𝑁A

𝑖𝜖𝐼A𝑘𝑘𝜖𝐼A

where 𝑁A = |𝐼A|, 𝐼A𝑘
= {𝑖: 𝜌(𝑖) ∈ 𝑆A𝑘

}, 𝐼 = {𝐼A𝑘
}𝑘∈𝐼A , and

{𝑤𝑖}𝑖∈𝐼 are the chosen constants which can reconstruct
the secret 𝑠 if {𝜆𝑖}𝑖∈𝐼 are valid shares of 𝑠.

2. Data Decryption by Users
After receiving TK and CT, the user U𝑗 can decrypt
the ciphertext with its GSK𝑗 by the Decrypt algorithm:

Decrypt(CT, TK, GSK𝑢𝑖𝑑) → 𝑚.

The user U𝑗 first compute the content key:

 𝜅 = C TK𝑧𝑗⁄ , where GSK𝑗 = 𝑧𝑗,

then it can decrypt the ciphertext:

𝑚 = 𝐷𝑒𝜅(𝐸𝑛𝜅(𝑚)).

3.3.5 Attribute Revocation

Suppose �̃�𝑘 of user U𝜇 is revoked from AA𝑘.

1. Update Key Generation by AAs
The �̃�𝑘 -corresponding authority AA𝑘 first generates a
new attribute version key VK𝑥𝑘

′ , and then performs the
UKeyGen algorithm:

 UKeyGen(SK𝑎𝑖𝑑, {𝑢𝑢𝑖𝑑}, VK�̃�𝑎𝑖𝑑
) → KUK𝑢𝑖𝑑,�̃�𝑎𝑖𝑑

, CUK�̃�𝑎𝑖𝑑
, VK�̃�𝑎𝑖𝑑

′

to calculate the Attribute Update Key AUK𝑥𝑘
, the Key

Update Key KUK𝑗,𝑥𝑘
 and the Ciphertext Update Key

CUK𝑥𝑘
:

 AUK𝑥𝑘
= 𝛾𝑘(VK𝑥𝑘

′ − VK𝑥𝑘),

KUK𝑗,𝑥𝑘
= 𝑔𝑢𝑗𝛽𝑘AUK�̃�𝑘 , CUK𝑥𝑘

= 𝛽𝑘AUK𝑥𝑘
/𝛾𝑘.

Then, AA𝑘 sends KUK𝑗,𝑥𝑘
, CUK𝑥𝑘

 to nonrevoked user U𝑗
(𝑗 ≠ 𝜇) and cloud server respectively. Meanwhile, the
public key of the revoked attribute �̃�𝑘 is changed to the
latest version:

PK𝑥𝑘

′ = PK𝑥𝑘
∙ 𝑔AUK�̃�𝑘 .

2. Secret Key Update by Nonrevoked Users:
Upon receiving KUK𝑗,𝑥𝑘

, user U𝑗(𝑗 ≠ 𝜇) can run the
SKUpdate algorithm:

SKUpdate(SK𝑢𝑖𝑑,𝑎𝑖𝑑 , KUK𝑢𝑖𝑑,𝑥𝑎𝑖𝑑
) → SK𝑢𝑖𝑑,𝑎𝑖𝑑

′

so as to update its SK𝑗,𝑘 to the latest version:

SK𝑗,𝑘
′ = (K𝑗,𝑘

′ = K𝑗,𝑘 , L𝑗,𝑘
′ = L𝑗,𝑘 , R𝑗,𝑘

′ = R𝑗,𝑘 ,

 K𝑗,𝑥𝑘

′ = K𝑗,𝑥𝑘
∙ KUK𝑗,𝑥𝑘

, ∀𝑥𝑘 ∈ 𝑆𝑗,𝑘 , 𝑥𝑘 ≠ �̃�𝑘: K𝑗,𝑥𝑘

′ = K𝑗,𝑥𝑘
)

3. Ciphertext Update by Cloud
Receiving CUK𝑥𝑘

 from AA𝑘, cloud servers can run the
CTUpdate algorithm:

CTUpdate(CT, CUK𝑥𝑎𝑖𝑑
) → CT′

to update its current ciphertext

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 5

CT = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖 , D1,𝑖 , D2,𝑖)

into the latest version:

 CT′ = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖
′, D1,𝑖 , D2,𝑖),

therein ∀𝑖 = 1 𝑡𝑜 𝑙 : if 𝜌(𝑖) = �̃�𝑘: C𝑖
′ = C𝑖 ∙ D

2,𝑖

CUK�̃�𝑘 = 𝑔𝑎𝜆𝑖 ∙

(PK𝑥𝑘

′
)
−𝑟𝑖, else C𝑖

′ = C𝑖.

For the previous ciphertext CT′ which is updated af-
ter Attribute Revocation phase, it is called updated previ-
ous ciphertext in this paper. Meanwhile, the newly out-
sourced data can also be denoted by CT′ since they are
both corresponding to the current version PK𝑥𝑘

′ .

3.4 EDAC-MACS Description

In DAC-MACS [2], K.Yang et al. first gave DAC-MACS a
strong security assumption that all the nonrevoked users
will not send their received Key Update Keys to the re-
voked user, since they found the revoked user can techni-
cally update its secret key to the latest vision via using
other user’s Key Update Key.

Then they removed this assumption and propose the
extensive data access control scheme (EDAC-MACS).
Compared to DAC-MACS, three algorithms’ outputs are
modified: SKeyGen, TKGen and UKeyGen. With these frac-
tion modifications, they claimed that the revoked user has
no chance to update its Secret Key even if it can corrupt
some AAs and collude with some nonrevoked users.
However, this conclusion cannot be guaranteed according
to the following section 4.

4 VULNERABILITY ANALYSIS OF DAC-MACS AND

EDAC-MACS

In this section, attack model and two attacks on the at-
tribute revocation security of DAC-MACS and EDAC-
MACS are described in detail. In 4.1, we present the
adopted attack model. Then, the first attack is elaborated
in section 4.2 on the EDAC-MACS’s vulnerability that the
revoked user (attacker) can update its Secret Key with
other users’ Key Update Keys, and hence decrypt any
secret information as a nonrevoked user. Then in section
4.3, the second attack on the vulnerability of both DAC-
MACS and EDAC-MACS is presented that revoked user
can intercept the Ciphertext Update Key to retrieve its
ability to decrypt any secret information as a nonrevoked
user as before.

4.1 Attack Model

In this paper, we make the cryptanalysis and propose our
new extensive scheme based on the Dolev-Yao model [30],
in which the adversary can overhear, intercept, insert ar-
bitrary information into, synthesis, and replay any mes-
sage delivered in the communication channels. Under the
Delov-Yao model, the only way to protect the transmitted
information from passive or active attacks by eavesdrop-
pers or malicious adversaries is to design the effective
security protocols. This means there is no “secure com-
munication channels” assumption between all the in-
volved communication entities. Therefore, it is reasonable
that Delov-Yao model can be more appropriate and prac-
tical to describe the attackers and demonstrate the com-
munication protocols in reality.

4.2 Attack Ⅰ

The attack 1 includes two phases: attack preparation and
attack implementation. At the preparation phase, the re-
voked user (attacker) eavesdrops to obtain any two non-
revoked users’ Key Update Keys at Attribute Revocation
phase of EDAC-MACS. Then at the implementation
phase, the revoked user can update its own Secret Key SK
and then successfully decrypt corresponding CT′ as a
nonrevoked user.

4.2.1 Attack Preparation Phase

At the Attribute Revocation phase of EDAC-MACS, when
�̃�𝑘 of user U𝜇 is revoked from AA𝑘 , AA𝑘 sends comput-
ed Key Update Keys to each nonrevoked user by imple-
menting UKeyGen algorithm. In principle, the revoked
user U𝜇 cannot decrypt any �̃�𝑘-corresponding ciphertext.
However, as an attacker in EDAC-MACS, the revoked U𝜇
can eavesdrop to obtain any two nonrevoked users’ Key
Update Keys: KUK𝑝,𝑥𝑘

 of U𝑝 and KUK𝑞,𝑥𝑘
 of U𝑞 (𝑝, 𝑞 ≠ 𝜇):

KUK𝑝,𝑥𝑘
= 𝑔(𝑢𝑝𝛽𝑘+𝛾𝑘)AUK�̃�𝑘 , KUK𝑞,𝑥𝑘

= 𝑔(𝑢𝑞𝛽𝑘+𝛾𝑘)AUK�̃�𝑘 ,

where AUK𝑥𝑘
= 𝛾𝑘(𝑣𝑥𝑘

′ − 𝑣𝑥𝑘).

The revoked user (attacker U𝜇) can also obtain the 𝑢𝑝, 𝑢𝑞
of two users from the cert(𝑢𝑖𝑑) with the CA’s verification
key 𝑣𝑘CA.

cert(𝑢𝑖𝑑) = 𝑆𝑖𝑔𝑛𝑠𝑘CA
(𝑢𝑖𝑑, 𝑢𝑢𝑖𝑑 , 𝑔1 𝑧𝑢𝑖𝑑⁄), 𝑢𝑖𝑑 = 𝑝, 𝑞.

Then U𝜇 can compute its Key Update Key KUK𝜇,𝑥𝑘
 and

successfully decrypts CT′ at the following phase.

4.2.2 Attack Implementation Phase

Having obtained 𝑢𝑝, 𝑢𝑞, KUK𝑝,𝑥𝑘
 and KUK𝑞,𝑥𝑘

, the attacker
U𝜇 starts generating its own KUK𝜇,𝑥𝑘

 as follows.
Attacker U𝜇 first computes an interim parameter:

∆= KUK𝑝,𝑥𝑘
/KUK𝑞,𝑥𝑘

= 𝑔
(𝑢𝑝−𝑢𝑞)𝛽𝑘𝛾𝑘(𝑣�̃�𝑘

′ −𝑣�̃�𝑘
)
.

Afterwards, it can compute its own Key Update Key:

KUK𝜇,𝑥𝑘
= ∆

𝑢𝜇

(𝑢𝑝−𝑢𝑞) ∙ [
KUK𝑝,�̃�𝑘

∆

𝑢𝑝

(𝑢𝑝−𝑢𝑞)
].

Then, attacker U𝜇 can update its current SK𝜇,𝑘 =
(K𝜇,𝑘 , L𝜇,𝑘 , R𝜇,𝑘 , ∀𝑥𝑘 ∈ 𝑆𝜇,𝑘: K𝜇,𝑥𝑘

) to the latest version with
following algorithm:

SKUpdate(SK𝜇,𝑘 , KUK𝜇,𝑥𝑎𝑖𝑑
) → SK𝜇,𝑘

′ .

It outputs:

SK𝜇,𝑘
′ = [

K𝜇,𝑘
′ = K𝜇,𝑘 , L𝜇,𝑘

′ = L𝜇,𝑘 , R𝜇,𝑘
′ = R𝜇,𝑘 ,

K𝜇,𝑥𝑘

′ = K𝜇,𝑥𝑘
∙ KUK𝜇,𝑥𝑘

,

∀𝑥𝑘 ∈ 𝑆𝜇,𝑘 , 𝑥𝑘 ≠ �̃�𝑘: K𝜇,𝑥𝑘
′ = K𝜇,𝑥𝑘

].

Then U𝜇 can upload the latest version SK𝜇,𝑘
′ to freely

query the cloud for proper Token TK and the objective CT′:

 TK = ∏
𝑒(C′, K𝜇,𝑘

′) ∙ 𝑒(R𝜇,𝑘
′ , C")−1

∏ [𝑒(C𝑖
′, GPK𝜇) ∙ 𝑒(D1,𝑖 , K𝜇,𝜌(𝑖)

′) ∙ 𝑒(D2,𝑖 , L𝜇,𝑘
′)]

𝑤𝑖𝑁A

𝑖𝜖𝐼A𝑘𝑘𝜖𝐼A

 =
𝑒(𝑔, 𝑔)𝑠𝑎𝑢𝜇𝑁A ∏ 𝑒𝑘𝜖𝐼A (𝑔, 𝑔)

𝑠
𝛼𝑘
𝑧𝜇

𝑒(𝑔, 𝑔)𝑎𝑢𝜇𝑁A ∑ 𝜆𝑖𝑤𝑖𝑖∈𝐼
= ∏ 𝑒

𝑘𝜖𝐼A

(𝑔, 𝑔)
𝑠
𝛼𝑘
𝑧𝜇 .

Afterwards, the attacker U𝜇 can successfully calculate
the symmetric encryption key 𝜅:

𝜅 = C TK𝑧𝜇⁄ , where GSK𝜇 = 𝑧𝜇.

Finally U𝜇 can successfully finish the attack for decrypt-

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

6

ing the CT′, whether the CT′ is updated previous one or
newly outsourced one, as follow:

𝑚 = 𝐷𝑒𝜅(𝐸𝑛𝜅(𝑚)).

4.3 Attack Ⅱ

The attack 2 also includes two phases: attack Preparation
and attack Implementation. At the preparation phase, the
revoked user (attacker U𝜇) intercepts the previous CUK𝑥𝑘

at the Attribute Revocation phase in DAC-MACS or EDAC-
MACS. Then at the implementation phase, the revoked
user can use the previous CUK𝑥𝑘

 to decrypt any secret
information as a nonrevoked user. Furthermore the re-
voked user U𝜇 can properly complete all related opera-
tions on its own since it can learn the algorithms
CTUpdate, TKGen and all the corresponding inputs.

4.3.1 Attack Preparation Phase

At Attribute Revocation phase of DAC-MACS or EDAC-
MACS, when the AA𝑘 sends Ciphertext Update Key
CUK𝑥𝑘

 to cloud server after implementing the UKeyGen
algorithm, the revoked user U𝜇 , as an attacker, can eaves-
drop to obtain the transmitted CUK𝑥𝑘

= 𝛽𝑘AUK𝑥𝑘
/𝛾𝑘.

Then it can successfully decrypt CT′ at the following
implementation phase.

4.3.2 Attack Implementation Phase

Having obtained CUK𝑥𝑘
, the revoked user (attacker U𝜇)

can freely obtain the objective CT′ anywhere and anytime
from cloud servers, whether the CT′ is updated previous
one or newly outsourced one:

 CT′ = [

𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: D1,𝑖 , D2,𝑖 ,

𝑖𝑓 𝜌(𝑖) = �̃�𝑘: C𝑖
′ = C𝑖 ∙ D

2,𝑖

CUK�̃�𝑘 = 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝑘

′
)
−𝑟𝑖 ,

𝑒𝑙𝑠𝑒: C𝑖
′ = C𝑖 .

].

Then, U𝜇 starts invoking CTUpdate algorithm to reverse
the received CT′ back to previous nonrevoked state for U𝜇 :

CTUpdate(CT′, −CUK𝑥𝑘
) → CT.

It outputs

CT = [
𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: D1,𝑖 , D2,𝑖 ,

𝑖𝑓 𝜌(𝑖) = �̃�𝑘: 𝐶𝑖 = 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝜌(𝑖))
−𝑟𝑖, 𝑒𝑙𝑠𝑒 C𝑖

′ = C𝑖
].

Correctness.

 If 𝜌(𝑖) = �̃�𝑘: C𝑖
′ ∙ D

2,𝑖

−CUK�̃�𝑘 = C𝑖 ∙ D
2,𝑖

CUK�̃�𝑘 ∙ D
2,𝑖

−CUK�̃�𝑘 = C𝑖 .

Afterwards, the attacker U𝜇 can successfully calculate
TK by itself:

TK = ∏
𝑒(C′, K𝜇,𝑘

′) ∙ 𝑒(R𝜇,𝑘
′ , C")−1

∏ [𝑒(C𝑖
′ , GPK𝜇) ∙ 𝑒(D1,𝑖, K𝜇,𝜌(𝑖)

′) ∙ 𝑒(D2,𝑖, L𝜇,𝑘
′)]

𝑤𝑖𝑁A

𝑖𝜖𝐼𝐴𝑘
𝑘𝜖𝐼A

 = ∏𝑒

𝑘𝜖𝐼A

(𝑔, 𝑔)
𝑠
𝛼𝑘
𝑧𝜇 .

Hence the symmetric encryption key 𝜅 can be calculat-
ed with the TK:

𝜅 = C TK𝑧𝜇⁄ , where GSK𝜇 = 𝑧𝜇.

Finally, U𝜇 can decrypt the CT′ as:

𝑚 = 𝐷𝑒𝜅(𝐸𝑛𝜅(𝑚)).

5 OUR NEW EXTENSIVE DAC-MACS SCHEME

In order to withstand above two attacks and to support

more secure attribute revocation, a more robust extensive
DAC-MACS scheme, denoted as the NEDAC-MACS, is
proposed. We modify the vulnerable algorithms of DAC-
MACS so that the vital ciphertext update communications
between cloud and AA s are performed with security-
enhanced algorithms. Our NEDAC-MACS scheme main-
ly includes two improvements on EDAC-MACS schemes
at the Secret Key Generation phase and the Attribute Revoca-
tion phase.

5.1 Preliminaries

5.1.1 Bilinear Pairing

Definition 1. Let G1, G2 and G3 be three multiplicative cy-
clic groups of the same prime order 𝑝. Let 𝑒: G1 × G2 →
G3 denote a bilinear map defined with the following
three properties:
 Bilinear: ∀𝑃 ∈ G1, ∀𝑄 ∈ G2, 𝑎, 𝑏 ∈ 𝑍𝑝 , we have

𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏.
 Nondegenerate: ∃𝑃 ∈ G1, ∃𝑄 ∈ G2 such that

𝑒(𝑃, 𝑄) ≠ 𝐼, where 𝐼 is the identity element of G3.
 Computable: There exits an efficient algorithm to

compute 𝑒(𝑃, 𝑄), for ∀𝑃 ∈ G1, ∀𝑄 ∈ G2.
In this paper, we adopt the symmetric bilinear pairings

on elliptic curves groups (let G1 = G2 denoted as G).

5.1.2 Decisional q-Parallel Bilinear Diffie-Hellman Ex-
ponent Problem

Definition 2 (𝑞-parallel BDHE [9]). Let 𝑔 be a generator of
group G with prime order 𝑝 and 𝑎, 𝑠 ∈ 𝑍𝑝 be randomly
chosen. Given a vector �⃗�:

(𝑔, 𝑔𝑠 , 𝑔
1

𝑧⁄ , 𝑔
𝑎

𝑧⁄ , … , 𝑔(𝑎
𝑞

𝑧⁄), 𝑔𝑎 , 𝑔𝑎2
, … , 𝑔𝑎𝑞

, , 𝑔𝑎𝑞+2
, … , 𝑔𝑎2𝑞

,

∀1 ≤ 𝑗 ≤ 𝑞, 𝑔𝑠∙𝑏𝑗 , 𝑔
𝑎

𝑏𝑗
⁄

, … , 𝑔
𝑎𝑞

𝑏𝑗
⁄

, , 𝑔
𝑎𝑞+2

𝑏𝑗
⁄

, … , 𝑔
𝑎2𝑞

𝑏𝑗
⁄

,

 ∀1 ≤ 𝑗, 𝑘 ≤ 𝑞, 𝑘 ≠ 𝑗, 𝑔
𝑎∙𝑠∙𝑏𝑘

𝑏𝑗
⁄

, … , 𝑔
𝑎𝑞∙𝑠∙𝑏𝑘

𝑏𝑗
⁄

).

It must be hard to distinguish a valid tuple
𝑒(𝑔, 𝑔)𝑎𝑞+1∙𝑠 ∈ G𝑇 from a random element 𝑅 ∈ G𝑇 .

Definition 3. An algorithm 𝒜 that outputs 𝑧 ∈ {0,1} has
advantage 𝜀 in solving decisional q-parallel BDHE
problem in group G if

 |𝑃𝑟[𝒜(�⃗�, 𝑇 = 𝑒(𝑔, 𝑔)𝑎𝑞+2∙𝑠) = 0] − 𝑃𝑟[𝒜(�⃗�, 𝑇 = 𝑅) = 0]| ≥ 𝜀 .

5.1.3 Linear Secret Sharing Scheme (LSSS) [24]

A secret sharing scheme over a set of parties P is called
linear over 𝑍𝑝 if:

 The shares for each party form a vector over 𝑍𝑝.
 There exists a share-generating matrix M with 𝑙

rows and 𝑛 columns, for all 𝑖 = 1,… , 𝑙, we define
the function 𝜌(𝑖) labeled with the 𝑖-th row of 𝑀.
Let 𝑠 ∈ 𝑍𝑝 be the secret to be share, and randomly
choose 𝑟2, … , 𝑟𝑛 ∈ 𝑍𝑝 to contruct the column vector
𝑣 = (𝑠, 𝑟2, … , 𝑟𝑛) , the party 𝜌(𝑖) gets the share 𝜆𝑖 =
(M𝑣)𝑖 of the secret 𝒔 from M𝑣.

5.2 Security Model of NEDAC-MACS

Similar to DAC-MACS, the authorities can only be cor-
rupted statically, whereas the adversary can query adap-
tively secret keys under condition that queried secret keys
cannot be used in decrypting the challenge ciphertext.
The security model of the NEDAC-MACS is presented by

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 7

defining a game between a challenger and an adversary
as following steps.

Init: After performing the CAsetup algorithm, a set of
corrupted attribute authorities 𝑆A

′ are selected by the ad-
versary in the set of all authorities 𝑆A . The challenger
generates the public keys and secret keys, then sends all
public keys and secret keys to the querying adversary in
authority set 𝑆A

′ , whereas sends only public keys in 𝑆A-𝑆A
′ .

Phase 1: The adversary selectively refers (𝑢𝑖𝑑, 𝑆𝑢𝑖𝑑) in
𝑆A -𝑆A

′ to the challenger for obtaining corresponding secret
keys {SK𝑢𝑖𝑑,𝑘} and update keys.

Challenge: The adversary refers two messages 𝑚0 and
𝑚1 of equal length, and additionally gives a challenge
access structure (M∗, 𝜌∗) under following requirement: the
target vector (1,0, … ,0) is not in the span of 𝑉⋃𝑉𝑢𝑖𝑑 , where
V denotes the set of all rows of M∗ labeled by attributes
from 𝑆A

′ , and 𝑉𝑢𝑖𝑑 denotes the set of all rows of M∗ la-
beled by all queried attributes. I.e., the adversary cannot
properly decrypt the challenge ciphertext with queried
keys and any other keys from 𝑆A

′ . Then, the challenger
randomly chooses a bit in {0,1} , encrypts 𝑚𝑏 under
(M∗, 𝜌∗), and finally sends the ciphertext CT∗ to adversary.

Phase 2: Similar to Phase 1, more secret keys and up-
date keys can be queried as long as they do not breach the
defined constraints condition on (M∗, 𝜌∗) and the follow-
ing additional constraint condition: the adversary is not
able to query those update keys which can update the
queried secret keys to latest version so that the updated
keys can decrypt the challenge ciphertext finally.

Guess: When the adversary ends Phase 2, it gives a
guess 𝑏′ of 𝑏.

Definition 4. The advantage of an adversary 𝒜 in above
game is defined as 𝐴𝑑𝑣𝒜 = 𝑃𝑟[𝑏′ = 𝑏] − 1/2.

Definition 5. When each one of the collusive user group
𝑆Û cannot decrypt the data CT with its own attributes
alone, NEDAC-MACS scheme is secure against collu-
sion resistance if no polynomial time adversary can de-
crypt the CT by the combining attributes of users in 𝑆Û.

Definition 6. When the decisional q-parallel BDHE as-
sumption holds, NEDAC-MACS scheme is secure
against static corruption among authorities if all poly-
nomial time adversaries with a challenge matrix of
size 𝑙∗ × 𝑛∗ , where 𝑛∗ < 𝑞 , have at most a negligible
advantage in the security game.

5.3 NEDAC-MACS

Due to the open and non-secure communication channel
in context of attribute revocation, the revoked user, as a
Dolev-Yao attacker, can still breach the backward revoca-
tion security both in DAC-MACS and EDAC-MACS
when it eavesdrops to obtain more than two users’ Key
Update Keys to update its Secret Key, or when it inter-
cepts the Ciphertext Update Key.

Therefore, we modify the vulnerable algorithms on the
EDAC-MACS schemes at Secret Key Generation phase
and Attribute Revocation phase, so that the vital cipher-
text update communications between cloud servers and
 AAs are performed with security-enhanced algorithms in
our NEDAC-MACS scheme, which can ensure the real
security goals on the open and non-secure communica-

tion channels. The two main improvements are inspired
by the Green et al. [22] introduced notion of outsourcing
ABE decryption. Specifically, all valid attribute authori-
ties in NEDAC-MACS apply some components of ran-
domness, such as ℎ𝑗,𝑘 on the exponent of bilinear pairing,
to each user’s secret attribute keys. Thus, when the dis-
crete logarithm assumption holds, the malicious adver-
sary or collusive users are blinded by the randomness,
and it is hard for them to launch passive or active attacks
such as adaptive chosen message attack or our attack 1
and 2 in section 4.

5.3.1 NEDAC-MACS Architecture

Similar to DAC-MACS, the NEDAC-MACS, new exten-
sive data access control for multiple authorities cloud
storage system, also has five types of entities involved:
global certificate authority (CA), users, cloud servers, da-
ta owners, and attribute authorities (AAs).

The security assumptions of each entity are the same as
EDAC-MACS.

The framework of the NEDAC-MACS model also con-
sists of five phases: System Initialization, Secret Key Genera-
tion by AAs, Data Encryption by Owners, Data Decryption by
Users with the help of cloud, and Attribute Revocation.

At System Initialization phase of NEDAC-MACS, all
corresponding algorithms remain the same as in DAC-
MACS.

Then at the Secret Key Generation phase, compared to
DAC-MACS, the output of the Secret Key generation al-
gorithm are modified in NEDAC-MACS by adding a ran-
domly chosen number ℎ𝑢𝑖𝑑,𝑎𝑖𝑑 piece for AA to compute
valid user U𝑢𝑖𝑑’s secret keys SK. Meanwhile, the compo-
nent L𝑢𝑖𝑑,𝑎𝑖𝑑 in SK is correspondingly changed to L𝑢𝑖𝑑,𝑥𝑎𝑖𝑑

linked with attribute.

Then at the Data Encryption and Decryption phase, the
encryption algorithm by data owner and the decryption
algorithm by users is the same as in DAC-MACS.

Finally at the Attribute Revocation phase, when attribute
�̃�𝑎𝑖𝑑 of AA𝑎𝑖𝑑 is revoked from user U𝑢𝑖𝑑, the corresponding
update key generation algorithm takes as four inputs us-
ers’ SK𝑎𝑖𝑑, {𝑢𝑢𝑖𝑑}, current VK�̃�𝑎𝑖𝑑

, plus the CT’s components
D2,𝑖 (𝜌(𝑖) = �̃�𝑎𝑖𝑑) transmitted from cloud servers, and it
outputs a new version key for �̃�𝑎𝑖𝑑, the ciphertext update
keys for cloud to update CT, and the key update keys for
users to update SK. Only those CTs, SKs related to the
revoked attribute �̃�𝑎𝑖𝑑 need to be updated to implicitly
contain the latest version key of �̃�𝑎𝑖𝑑. The update key gen-
eration and secret key update algorithms’ outputs are
correspondingly changed to contain the randomly chosen
number ℎ𝑢𝑖𝑑,𝑎𝑖𝑑 piece, and the ciphertext update algo-
rithm is converted into taking as inputs the ciphertext CT,
CUK𝑥𝑎𝑖𝑑

, �̃�𝑎𝑖𝑑, PK𝑎𝑖𝑑, and a new randomly picked value �̅�𝑖.
After attribute revocation, all the cryptography algo-

rithms in the NEDAC-MACS also stay unaltered except
the public key of the involved revoked attribute. Those
modified or added fragments of DAC-MACS’s algorithms
are detailed as the two improvements below.

5.3.2 Improvement at Secret Key Generation Phase

At the Secret Key Generation by AAs phase, we add a ran-
domly chosen number ℎ𝑗,𝑘 stored by the AA𝑘 for future

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

8

attribute revocation from the user U𝑗 .
Each AA𝑘 (𝑘 ∈ 𝑆A) assigns each valid user U𝑗 (𝑗 ∈ 𝑆U) a

set of attributes 𝑆𝑗,𝑘 after verifying user’s cert(𝑗) by us-
ing verification key 𝑣𝑘CA, then AA𝑘 performs the SKeyGen
algorithm:

SKeyGen(
SK𝑎𝑖𝑑 , {PK𝑥𝑎𝑖𝑑

}, 𝑆𝑢𝑖𝑑,𝑎𝑖𝑑 ,

SP, cert(𝑢𝑖𝑑), ℎ𝑢𝑖𝑑,𝑎𝑖𝑑

) → SK𝑢𝑖𝑑,𝑎𝑖𝑑

to generate user’s secret key SK𝑗,𝑘, for ∀𝑗 ∈ 𝑆𝑈 , ∀𝑘 ∈ 𝑆𝐴:

 SK𝑗,𝑘 = (K𝑗,𝑘 , R𝑗,𝑘 , ∀𝑥𝑘 ∈ 𝑆𝑗,𝑘: K𝑗,𝑥𝑘
, L𝑗,𝑥𝑘)

=

[

K𝑗,𝑘 = 𝑔𝛼𝑘/𝑧𝑗 ∙ 𝑔𝑎𝑢𝑗 ∙ 𝑔𝑎∙𝑡𝑗,𝑘/𝛽𝑘 , R𝑗,𝑘 = 𝑔𝑎𝑡𝑗,𝑘 ,

∀𝑥𝑘 ∈ 𝑆𝑗,𝑘: L𝑗,𝑥𝑘
= 𝑔𝛽𝑘𝑡𝑗,𝑘/𝑧𝑗 ∙ 𝑔𝑣𝑥𝑘

𝛽𝑘𝑢𝑗(ℎ𝑗,𝑘−1),

K𝑗,𝑥𝑘
= 𝑔𝛽𝑘𝛾𝑘𝑡𝑗,𝑘 𝑧𝑗⁄ ∙ (𝑔𝑣𝑥𝑘

(ℎ𝑗,𝑘−1)𝑔𝑣𝑥𝑘H(𝑥𝑘))
𝛾𝑘𝛽𝑘𝑢𝑗

]

where 𝑆U denotes the set of all users, 𝑡𝑗,𝑘 and ℎ𝑗,𝑘 are
randomly chosen numbers in 𝑍𝑝. Note that ℎ𝑗,𝑘 should
be securely stored by AA𝑘 for future revocation.

5.3.3 Improvement at Attribute Revocation Phase

Suppose the �̃�𝑘 of user U𝜇 is revoked from AA𝑘.

1. Update Key Generation by AAs
The �̃�𝑘 -corresponding authority AA𝑘 first queries the
cloud servers for D2,𝑖 (𝜌(𝑖) = �̃�𝑘), and then performs
the UKeyGen algorithm:

UKeyGen(SK𝑎𝑖𝑑 , {𝑢𝑗}, VK𝑥𝑎𝑖𝑑
, D2,𝑖)

→ KUK𝑗,𝑥𝑎𝑖𝑑
, CUK𝑥𝑎𝑖𝑑

, VK𝑥𝑎𝑖𝑑

′ , LUK𝑗,𝑥𝑎𝑖𝑑

to generate a new attribute version key VK𝑥𝑘

′ = 𝑣𝑥𝑘

′
for �̃�𝑘, an Attribute Update Key

AUK𝑥𝑘
= 𝛾𝑘(VK𝑥𝑘

′ − VK𝑥𝑘
),

a Key Update Keys for nonrevoked users U𝑗(𝑗 ≠ 𝜇) to
update their Secret Keys {SK}:

 KUK𝑗,𝑥𝑘
= 𝑔ℎ𝑗,𝑘𝑢𝑗𝛽𝑘AUK�̃�𝑘 , LUK𝑗,𝑥𝑘

= 𝑔𝛽𝑘𝑢𝑗(ℎ𝑗,𝑘−1)AUK�̃�𝑘
/𝛾𝑘,

and a Ciphertext Update Key for the cloud servers to
update corresponding CT:

CUK𝑥𝑘
= D

2,𝑖

𝛽𝑘AUK�̃�𝑘
/𝛾𝑘

.

Then AA𝑘 sends (KUK𝑗,𝑥𝑘
, LUK𝑗,𝑥𝑘

) , CUK𝑥𝑘
 to each

norevoked users U𝑗 (𝑗 ≠ 𝜇) and the cloud servers re-

spectively. Meanwhile, the public key of the revoked
attribute �̃�𝑘 has been updated to the latest version:

PK𝑥𝑘

′ = PK𝑥𝑘
∙ 𝑔AUK�̃�𝑘 = [𝑔

𝑣�̃�𝑘
′

H(�̃�𝑘)]
𝛾𝑘

.

2. Secret Key Update by Nonrevoked Users
Upon receiving update key pair (KUK𝑗,𝑥𝑘

, LUK𝑗,𝑥𝑘
), the

nonrevoked user U𝑗 (𝑗 ≠ 𝜇) can run the SKUpdate algo-
rithm:

SKUpdate(SK𝑢𝑖𝑑,𝑎𝑖𝑑 , KUK𝑢𝑖𝑑,𝑥𝑎𝑖𝑑
, LUK𝑢𝑖𝑑,𝑥𝑎𝑖𝑑

) → SK𝑢𝑖𝑑,𝑎𝑖𝑑
′

to update its SK𝑗,𝑘 to the latest version:

SK𝑗,𝑘
′ = [

K𝑗,𝑘
′ = K𝑗,𝑘 , R𝑗,𝑘

′ = R𝑗,𝑘 ,

K𝑗,𝑥𝑘

′ = K𝑗,𝑥𝑘
∙ KUK𝑗,𝑥𝑘

, L𝑗,𝑥𝑘

′ = L𝑗,𝑥𝑘
∙ LUK𝑗,𝑥𝑘

,

∀𝑥𝑘 ∈ 𝑆𝑗,𝑘 , 𝑥𝑘 ≠ �̃�𝑘: K𝑗,𝑥𝑘

′ = K𝑗,𝑥𝑘
, L𝑗,𝑥𝑘

′ = L𝑗,𝑥𝑘

].

3. Ciphertext Update by Cloud
Receiving CUK𝑥𝑘

, the cloud servers first randomly
choose a value �̅�𝑖 in 𝑍𝑝, and then they can perform the
CTUpdate algorithm:

CTUpdate(CT, CUK𝑥𝑎𝑖𝑑
, PK𝑥𝑎𝑖𝑑

′ , PK𝑎𝑖𝑑 , �̅�𝑖) → CT′

to update current �̃�𝑘-corresponding ciphertext CT:

CT = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖 , D1,𝑖 , D2,𝑖)

into the latest version:

 CT′ = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖
′, D1,𝑖

′ , D2,𝑖
′),

therein ∀𝑖 = 1 𝑡𝑜 𝑙:

If 𝜌(𝑖) = �̃�𝑘: C𝑖
′ = C𝑖 ∙ (PK𝑥𝜌(𝑖)

′
)
−𝑟̅𝑖 ∙ CUK𝑥𝑘

,

 D1,𝑖
′ = D1,𝑖 ∙ 𝑔

−�̅�𝑖
𝛽𝑘 , D2,𝑖

′ = D2,𝑖 ∙ 𝑔
−�̅�𝑖𝛾𝑘

𝛽𝑘 ,

Else: C𝑖
′ = C𝑖 , D1,𝑖

′ = D1,𝑖 , D2,𝑖
′ = D2,𝑖.

We note that �̅�𝑖 can be discarded by cloud servers af-
ter the ciphertext update.

In a NEDAC-MACS scheme, ciphertexts correspond to
access structures 𝔸, and private keys are associated with
a set of attributes W. Decryption is possible when the at-
tribute set W is authorized in the access structure 𝔸, i.e.,
W ∈ 𝔸.

Definition 7. NEDAC-MACS scheme is correct if for any
valid user Uu𝑖𝑑 in the system, any outputs of algo-
rithm CASetup(1𝜆) ⟶ (MSK, SP, (𝑠𝑘CA, 𝑣𝑘CA)), any
Uu𝑖𝑑’s attribute sets W ∈ {𝑆A𝑘

}𝑘∈𝑆A authorized in an ac-
cess structure 𝔸, any message 𝑚 ∈ {0,1}∗ to be encrypt-
ed into CT under 𝔸 , and any AA𝑎𝑖𝑑 ’s outputs of
SKeyGen(SK𝑎𝑖𝑑 , SP, {PK𝑥𝑎𝑖𝑑

}, W, cert(𝑢𝑖𝑑), ℎ𝑢𝑖𝑑,𝑎𝑖𝑑) →
SK𝑢𝑖𝑑,𝑎𝑖𝑑 , we have TKGen(CT, GPK𝑢𝑖𝑑 , {SK𝑢𝑖𝑑,𝑘}

𝑘∈𝐼A) →
TK and Decrypt(CT, TK, GSK𝑢𝑖𝑑) → 𝑚 with probability
1 over the randomness of all the algorithms.

Theorem 1. NEDAC-MACS scheme is correct.

Proof. If a valid user U𝑗 holds sufficient attribute set W
which satisfies the access policy 𝔸 of the ciphertext CT,
it can upload its Secret Keys {SK𝑗,𝑘: 𝑘 ∈ 𝐼A} , which are
generated by corresponding AA𝑘 with the algorithm
 SKeyGen , and its global public key GPK𝑗 to cloud
server for the decryption token TK computed by the
cloud with algorithm TKGen as follow:

TK = ∏
𝑒(K𝑗,𝑘 , C′) ∙ 𝑒(R𝑗,𝑘 , C")−1

∏ [𝑒(C𝑖 , GPK𝑗) ∙ 𝑒(D1,𝑖 , K𝑗,𝜌(𝑖)) ∙ 𝑒(D2,𝑖 , L𝑗,𝑥𝑘
)]

𝑤𝑖𝑁A

𝑖𝜖𝐼A𝑘𝑘𝜖𝐼A

 1. ∏𝑒(K𝑗,𝑘 , C
′) ∙ 𝑒(R𝑗,𝑘 , C")−1

𝑘𝜖𝐼A

 = ∏ 𝑒 (𝑔

𝛼𝑘
𝑧𝑗 𝑔𝑎𝑢𝑗𝑔

𝑎

𝛽𝑘
𝑡𝑗,𝑘 , 𝑔𝑠) ∙𝑘𝜖𝐼A 𝑒(𝑔𝑎𝑡𝑗,𝑘 , 𝑔

𝑠

𝛽𝑘)−1

 = 𝑒(𝑔, 𝑔)𝑠𝑎𝑢𝑗𝑁A ∏ 𝑒𝑘𝜖𝐼A (𝑔, 𝑔)
𝑠
𝛼𝑘
𝑧𝑗 .

 2. ∏ ∏[𝑒(C𝑖 , GPK𝑗) ∙ 𝑒(D1,𝑖 , K𝑗,𝜌(𝑖)) ∙ 𝑒(D2,𝑖 , L𝑗,𝑥𝑘
)]

𝑤𝑖𝑁A

𝑖𝜖𝐼A𝑘
𝑘𝜖𝐼A

 = ∏ ∏

[

 𝑒(𝑔𝑎𝜆𝑖−𝑣𝜌(𝑖)𝛾𝑘𝑟𝑖 , 𝑔𝑢𝑗) ∙ 𝑒(H(𝜌(𝑖))−𝛾𝑘𝑟𝑖 , 𝑔𝑢𝑗) ∙

𝑒 (𝑔
𝑟𝑖
𝛽𝑘 , 𝑔

𝛽𝑘𝛾𝑘
𝑧𝑗

𝑡𝑗,𝑘+𝑣𝜌(𝑖)𝛾𝑘𝛽𝑘𝑢𝑗+𝑣𝜌(𝑖)(ℎ𝑗,𝑘−1)𝛾𝑘𝛽𝑘𝑢𝑗) ∙

𝑒 (𝑔
𝑟𝑖
𝛽𝑘 , H(𝜌(𝑖))𝛾𝑘𝛽𝑘𝑢𝑗) ∙ 𝑒(𝑔

−
𝛾𝑘
𝛽𝑘

𝑟𝑖 , 𝑔
𝛽𝑘
𝑧𝑗

𝑡𝑗,𝑘
) ∙

𝑒(𝑔
−

𝛾𝑘
𝛽𝑘

𝑟𝑖 , 𝑔𝑣𝑥𝑘
𝛽𝑘𝑢𝑗(ℎ𝑗,𝑘−1))]

𝑤𝑖𝑁A

𝑖∈𝐼A𝑘
𝑘𝜖𝐼A

 = ∏ ∏[𝑒(𝑔, 𝑔)𝑎𝜆𝑖𝑢𝑗]
𝑤𝑖𝑁A

𝑖∈𝐼A𝑘
𝑘𝜖𝐼A

 = 𝑒(𝑔, 𝑔)𝑎𝑢𝑗𝑁A ∑ 𝜆𝑖𝑤𝑖𝑖∈𝐼

 = 𝑒(𝑔, 𝑔)𝑠𝑎𝑢𝑗𝑁A .

TK =
𝑒(𝑔, 𝑔)𝑠𝑎𝑢𝑗𝑁A ∏ 𝑒(𝑔, 𝑔)𝑠𝛼𝑘 𝑧𝑗⁄

𝑘𝜖𝐼A

𝑒(𝑔, 𝑔)𝑎𝑢𝑗𝑁A ∑ 𝜆𝑖𝑤𝑖𝑖∈𝐼
= ∏ 𝑒(𝑔, 𝑔)

𝑠
𝛼𝑘
𝑧𝑗

𝑘𝜖𝐼A

.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 9

Then the user U𝑗 can perform the decryption algo-
rithm Decrypt to obtain plaintext m:

 𝜅 = C TK𝑧𝑗⁄ , 𝑚 = 𝐷𝑒𝜅(𝐸𝑛𝜅(𝑚)), where GSK𝑗 = 𝑧𝑗 .

Therefore, U𝑗 can successfully decrypt arbitrary out-
sourced ciphertext corresponding to its attribute set.

6 SECURITY ANALYSIS OF NEDAC-MACS

In this section, the formal security analysis of NEDAC-
MACS is given to prove that our NEDAC-MACS can
guarantee collusion resistance, revocation security, data
confidentiality and provable security against static cor-
ruption of authorities under security model 5.2.

6.1 Collusion Resistance

Theorem 2 proves that our NEDAC-MACS can with-
stand the collusion attack between the legitimate users.
For example, given that a valid user 𝐔𝟏 with attribute set
𝐒𝟏 and another user 𝐔𝟐 with 𝐒𝟐 , according to Theorem 2,
it is infeasible for 𝐔𝟏 and 𝐔𝟐 to collude together for de-
crypting the ciphertext 𝐂𝐓 encrypted with 𝐖 = 𝐒𝟏 ∪ 𝐒𝟐.

Theorem 2. NEDAC-MACS scheme is secure with users col-
lusion resistance.

Proof. In NEDAC-MACS, Secret Keys issued by different
AA𝑘 to each user is associated with the user’s unique
identity 𝑢𝑗 , and meanwhile two random elements 𝑡𝑗,𝑘,
ℎ𝑗,𝑘 chosen by AA𝑘. Those collusive users are blinded
by the random numbers 𝑡𝑗,𝑘 , ℎ𝑗,𝑘 , and it is hard for
them to calculate one user’s secret key with other us-
er’s secret keys. Therefore, those collusive users cannot
decrypt those ciphertext which each individual of
them cannot decrypt alone, even though the whole at-
tribute set of them satisfies the access policy. Moreover,
those collusive users also cannot selectively replace the
components of Secret Key issued by AA𝑘 with the
components of secret key issued by AA𝑙 (𝑘 ≠ 𝑙).

6.2 Revocation Security

In this section, formal cryptanalysis on the security of
attribute revocation in NEDAC-MACS is given. Theo-
rem 3 proves that our NEDAC-MACS can ensure the
revocation security, which means in context of attribute
revocation in NEDAC-MACS, the revoked users, as
Dolev-Yao attackers, cannot launch attack 1 in section 4
and update their Secret Keys to breach revocation secu-
rity and retrieve the ability to decrypt any secret infor-
mation as non-revoked users as before, even though
they intercept any valid users’ Key Update Keys.

Theorem 3. In the NEDAC-MACS, the revoked user has no
chance to update its Secret Key even if it can corrupt some
AAs (not the AA corresponding to the revoked attribute)
and collude with some nonrevoked users.

Proof. In NEDAC-MACS, when �̃�𝑘 of user U𝜇 is revoked
from AA𝑘, each key update key KUK𝑗,𝑥𝑘

= 𝑔ℎ𝑗,𝑘𝑢𝑗𝛽𝑘AUK�̃�𝑘 ,
𝑗 ≠ 𝜇 is associated with both the user’s unique identity
𝑢𝑗 and an item ℎ𝑗,𝑘𝛽𝑘 defined by corresponding AA𝑘 .
The item ℎ𝑗,𝑘𝛽𝑘 in the secret key prevents users from
updating their secret keys with the other users’ update
keys, since it is only known by the noncorrupted AA𝑘
and kept different and secret to all the users.

We describe the formal definitions of the backward
and forward revocation security as following definition
8 and 9 respectively, which are the basis of proofs in
theorem 4 and 5.

Definition 8. NEDAC-MACS scheme supports backward
security in context of attribute revocation if the �̃�𝑘 -
revoked user has no chance to passively retrieve its
ability to decrypt any �̃�𝑘-corresponding ciphertext CT
as a nonrevoked user, whether the CT is updated pre-
vious ciphertext or the newly outsourced ciphertext.

Definition 9. NEDAC-MACS scheme supports forward
security in context of attribute revocation if the newly
recruited user 𝐔𝒏 who has been assigned the attribute
�̃�𝑘 (soppose 𝒙𝑘 is revoked from other user 𝐔𝝁, 𝝁 ≠ 𝒏),
is able to decrypt any authorized �̃�𝑘-corresponding ci-
phertext CT , whether the CT is updated previous ci-
phertext or newly outsourced ciphertext.

Theorem 4 gives the proof that our NEDAC-MACS
can ensure the backward revocation security, which
means in context of attribute revocation in NEDAC-
MACS, the revoked users cannot launch attack 1 and 2
in section 4 and breach the backward revocation securi-
ty even though they eavesdrop to intercept any Cipher-
text Update Keys delivered from AAs to cloud servers
on open and non-secure communication channel. For
example, suppose that the 𝐀𝐀𝒌-mornitoring attribute 𝒙𝒌
is revoked from user Alice 𝐔𝝁, the NEDAC-MACS is
able to guarrentee that Alice cannot decrypt any 𝒙𝒌 -
related ciphertext CT whether or not the CT is author-
ized to Alice before the 𝒙𝒌 revocation.

Theorem 4. NEDAC-MACS characterizes backward security
in context of attribute revocation.

Proof. When �̃�𝑘 of user U𝜇 is revoked from AA𝑘:
1. For the previous ciphertext CT′ which is updated

after the Attribute Revocation phase:

 CT′ = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖
′, D1,𝑖

′ , D2,𝑖
′),

if 𝜌(𝑖) = 𝑥𝑘:

C𝑖
′ = C𝑖(PK𝑥𝑘

′)
−𝑟̅𝑖CUK𝑥𝑘

, D1,𝑖
′ = 𝑔

−(𝑟𝑖+�̅�𝑖)

𝛽𝑘 , D2,𝑖
′ = 𝑔

−(𝑟𝑖+�̅�𝑖)

𝛽𝑘 .

We note that the transmitted CUK𝑥𝑘
=D

2,𝑖

𝛽𝑘AUK�̃�𝑘
/𝛾𝑘

,

𝜌(𝑖) = �̃�𝑘, and assume that the revoked user has not
stored the previous CT. Then it is hard for the revoked
users to calculate the exponent 𝛽𝑘AUK𝑥𝑘

/𝛾𝑘 . Mean-
while, due to those revoked users’ blindness by the
random number �̅�𝑖 chosen by cloud servers, the com-
ponent [PK�̃�𝑘

′]−�̅�𝑖 cannot be canceled out by the re-
voked user itself.

Therefore, even though the revoked user can obtain
all involved communication information like D2,𝑖 ,
CUK𝑥𝑘

 in NEDAC-MACS, it still cannot stretch the up-
dated previous CT′ back to the previous version CT
the revoked user can properly decrypt.
2. For the newly outsourced ciphertext CT′:

 CT′ = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖
′, D1,𝑖 , D2,𝑖),

 ∀𝑖 = 1 𝑡𝑜 𝑙:

 If 𝜌(𝑖) = 𝑥𝑘 ∶ C𝑖 = 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝜌(𝑖)
′

)
−𝑟𝑖 , D1,𝑖 = 𝑔𝑟𝑖 𝛽𝑘⁄ ,

 D2,𝑖 = 𝑔−𝑟𝑖𝛾𝑘/𝛽𝑘 , else: C𝑖 = 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝜌(𝑖))
−𝑟𝑖 , D1,𝑖 =

 𝑔𝑟𝑖/𝛽𝑘 , D2,𝑖 = 𝑔−𝑟𝑖𝛾𝑘/𝛽𝑘 .

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

10

The revoked user cannot construct (D2,𝑖)
𝛽𝑘AUK�̃�𝑘

/𝛾𝑘 ,
since only the uncorrupted attribute authority AA𝑘
who supervises �̃�𝑘 can calculate exponent 𝛽𝑘AUK𝑥𝑘

/𝛾𝑘.
Therefore, the revoked user cannot transform the C𝑖 =
𝑔𝑎𝜆𝑖(PK𝑥𝑘

′)−𝑟𝑖 into C𝑖 = 𝑔𝑎𝜆𝑖(PK𝑥𝑘)
−𝑟𝑖.

Overall, the revoked user cannot reverse any previ-
ous published ciphertext CT′ and the newly out-
sourced ciphertext CT′ back to nonrevoked state when
 U𝜇 can properly decrypt the ciphertext.

Theorem 5 proves that our NEDAC-MACS can en-
sure the forward revocation security, which means
when the attribute revocation period ended in NEDAC-
MACS, each newly recruited user U𝑛 who has been as-
signed the attribute 𝒙𝒌 (soppose 𝒙𝒌 is revoked from user
U𝜇 , 𝜇 ≠ 𝑛), is able to decrypt any authorized 𝒙𝒌 -
corresponding ciphertext CT. The proof of theorem 5
can be be derived on the basis of the Lemma 1 which
describes the correctness of our modification at the “At-
tribute Revocation” phase.

Lemma 1. In NEDAC-MACS, the attribute revocation phase
is correct, and still retain the proper running of whole
NEDAC-MACS.

Proof. At the step Secret Key Update by Nonrevoked Users of
the attribute revocation in NEDAC-MACS, the secret
attribute keys of the nonrevoked user U𝑗 who was as-
signed the revoked attribute �̃�𝑘, are updated to

SK𝑗,𝑘
′ = (K𝑗,𝑘 , R𝑗,𝑘 , ∀ 𝑥𝑘 ∈ 𝑆𝑗,𝑘: K𝑗,𝑥𝑘

′ , L𝑗,𝑥𝑘

′),

if 𝑥𝑘 = �̃�𝑘: K𝑗,𝑥𝑘

′ = 𝑔
𝛽𝑘𝛾𝑘𝑡𝑗,𝑘

𝑧𝑗
⁄

 ∙ (𝑔
𝑣�̃�𝑘

′ (ℎ𝑗,𝑘−1)
𝑔

𝑣�̃�𝑘
′

H(�̃�𝑘))
𝛾𝑘𝛽𝑘𝑢𝑗

,

 L𝑗,𝑥𝑘

′ = 𝑔
𝛽𝑘𝑡𝑗,𝑘

𝑧𝑗
⁄

∙ 𝑔
𝑣�̃�𝑘

′ 𝛽𝑘𝑢𝑗(ℎ𝑗,𝑘−1)

Then, at the step Ciphertext Update by Cloud, the �̃�𝑘-
corresponding CT is updated to

 CT′ = (𝐸𝑛𝜅(𝑚), C, C′, C′′, ∀𝑖 = 1 𝑡𝑜 𝑙: C𝑖
′, D1,𝑖

′ , D2,𝑖
′),

If 𝜌(𝑖) = �̃�𝑘, we have:

C𝑖
′ = C𝑖 ∙ (PK𝑥𝜌(𝑖)

′
)
−𝑟̅𝑖 ∙ CUK𝑥𝑘

= 𝑔𝑎𝜆𝑖 ∙ (PK𝑥𝜌(𝑖)
′

)
−(𝑟𝑖+𝑟̅𝑖),

 D1,𝑖
′ = D1,𝑖 ∙ 𝑔

−�̅�𝑖
𝛽𝑘 = 𝑔

−(𝑟𝑖+�̅�𝑖)

𝛽𝑘 ,

 D2,𝑖
′ = D2,𝑖 ∙ 𝑔

−�̅�𝑖𝛾𝑘
𝛽𝑘 = 𝑔

−(𝑟𝑖+�̅�𝑖)𝛾𝑘
𝛽𝑘 .

All above operations are equivalent to assigning a
new random number 𝑟𝑖

′ = 𝑟𝑖 + �̅�𝑖 in 𝑍𝑝 to the ciphertext,
since �̅�𝑖 is randomly chosen in 𝑍𝑝.

Then, if nonrevoked user has the attribute subset
authorized in the above CT′, the result of token TK is

 TK =
𝑒(𝑔, 𝑔)𝑠𝑎𝑢𝑗𝑁A ∏ 𝑒𝑘𝜖𝐼A (𝑔, 𝑔)𝑠𝛼𝑘 𝑧𝑗⁄

𝑒(𝑔, 𝑔)𝑎𝑢𝑗𝑁A ∑ 𝜆𝑖𝑤𝑖𝑖∈𝐼
= ∏𝑒

𝑘𝜖𝐼A

(𝑔, 𝑔)
𝑠
𝛼𝑘
𝑧𝑗 .

Then the user U𝑗 can obtain the plaintext 𝑚:

 𝜅 = C TK𝑧𝑗⁄ ,𝑚 = 𝐷𝑒𝜅(𝐸𝑛𝜅(𝑚)) , where GSK𝑗 = 𝑧𝑗.

Therefore, these update operations of revocation
still maintain the formal consistency of all parameters
and algorithms in NEDAC-MACS.

Theorem 5. NEDAC-MACS characterizes forward security in
context of attribute revocation.

Proof. The proof of NEDAC-MACS’s forward security is
similar to Lemma 1, since, after the Attribute Revocation
phase, the newly joined user’s secret keys and any ci-

phertexts on cloud servers are all corresponding to the
latest version public key of the revoked attribute, just
as nonrevoked U𝑗 with revoked �̃�𝑘 does in lemma 1.

6.3 Data Confidentiality

In NEDAC-MACS, even though the cloud servers learn
user’s secret keys SK and perform the operation of out-
sourced decryption computation, the cloud servers can-
not properly decrypt any ciphertext uploaded by data
owners since the full decryption algorithm involves user’s
global secret key GSK𝑢𝑖𝑑 . Furthermore, at the ciphertext
update step of Attribute Revocation phase, cloud servers
update any corresponding ciphertext CT without the abil-
ity to decrypt them. Therefore, data confidentiality
against the curious but honest cloud servers is guaranteed.

Invalid users who hold insufficient attributes to satisfy
access policy, cannot receive proper Token TK from cloud
servers for decryption. Due to the users’ blindness of the
random numbers 𝑡𝑗,𝑘, ℎ𝑗,𝑘 according to theorem 2 and 3,
the invalid user cannot fabricate and upload proper set of
Secret Keys for decrypting objective ciphertext. Therefore,
data confidentiality against invalid users is guaranteed.

6.4 Provable Security against Static Corruption of
Authorities

Under the security model defined in 5.2, the NEDAC-
MACS can enjoy the same provable security against static
corruption of authorities as DAC-MACS, which is re-
duced to the hardness of the decisional 𝑞-parallel BDHE
assumption [28], [29], [30].

Theorem 6. When the decisional q-parallel BDHE assumption
holds, no polynomial time adversary can selectively break
the NEDAC-MACS with a challenge matrix of size 𝑙∗ × 𝑛∗,
where 𝑛∗ < 𝑞.

Proof. We adopt proof by contradiction like DAC-MACS.
Suppose there is an adversary algorithm 𝒜 chooses a
challenge matrix M∗ with at most 𝑞 − 1 columns and
can selectively break the NEDAC-MACS with non-
negligible advantage 𝐴𝑑𝑣𝒜 in the selective security
game. Then, based on random oracle model, we can
construct a simulator algorithm ℬ that plays the deci-
sional q-parallel BDHE with a nonnegligible advantage
as follows.

Init: ℬ takes as inputs �⃗� and T of the decisional q-
parallel BDHE problem. The adversary sends the chal-
lenge access structure (M∗, 𝜌∗) to the ℬ, where M∗ has
 𝑛∗ < 𝑞 columns.

Setup: The simulator runs the initialization algo-
rithms CASetup and AASetup. The adversary specifies
the corrupted authority set 𝑆A

′ ⊂ 𝑆A, and reveals 𝑆A
′ to

the simulator. For each AA𝑘 ∈ 𝑆A − 𝑆A
′ , the simulator

randomly assigns the corresponding 𝛼𝑘
′ , 𝛽𝑘 , 𝛾𝑘 to each

 AA𝑘 ∈ 𝑆A − 𝑆A
′ by letting 𝛼𝑘 = 𝛼𝑘

′ + 𝑎𝑞+1 and 𝑒(𝑔, 𝑔)𝛼𝑘=
𝑒(𝑔𝑎 , 𝑔𝑎𝑞

) ∙ 𝑒(𝑔, 𝑔)𝛼𝑘
′
.

Let 𝑋 = {𝑖 |𝜌∗(𝑖) = 𝑥}. The random oracle H is de-
fined by simulator as

H(𝑥) = 𝑔𝑑𝑥 ∏ 𝑔

𝑎2𝑀𝑖,1
∗

𝑏𝑖 ∙ 𝑔

𝑎3𝑀𝑖,2
∗

𝑏𝑖 ∙∙∙ 𝑔

𝑎𝑛∗+1∙𝑀
𝑖,𝑛∗
∗

𝑏𝑖
𝑖∈𝑋 .

We note that the outputs of the random oracle are
randomly distributed due to a randomly chosen value

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 11

 𝑔𝑑𝑥 and also note H(𝑥) = 𝑔𝑑𝑥 for 𝑋 = ∅
For each AA𝑘 ∈ 𝑆A − 𝑆A

′ , the simulator randomly se-
lects a version number 𝑣𝑥𝑘

∈ 𝑍𝑝 then simulates the pub-
lic key PK𝑘 and the public attribute keys PK𝑥𝑘

 as

 PK𝑘 = (𝑒(𝑔, 𝑔)𝛼𝑘
′
, 𝑔

1

𝛽𝑘 , 𝑔
𝛾𝑘
𝛽𝑘),

 PK𝑥𝑘
= (𝑔𝑣𝑥𝑘

+𝑑𝑥𝑘 ∏ 𝑔

𝑎2𝑀𝑖,1
∗

𝑏𝑖 ∙ 𝑔

𝑎3𝑀𝑖,2
∗

𝑏𝑖 ∙∙∙ 𝑔

𝑎𝑛+1∙𝑀𝑖,𝑛
∗

𝑏𝑖𝑖∈𝑋
)

𝛾𝑘

.

After assigning a user identity 𝑢𝑖𝑑 to the adversary
𝒜 , the simulator ℬ randomly selects 𝑢𝑢𝑖𝑑

′ , 𝑧𝑢𝑖𝑑 ∈ 𝑍𝑝
then lets

 GSK𝑢𝑖𝑑 = 𝑧𝑢𝑖𝑑, 𝑢𝑢𝑖𝑑 = 𝑢𝑢𝑖𝑑
′ − 𝑎𝑞/𝑧𝑢𝑖𝑑,

 GPK𝑢𝑖𝑑 = 𝑔𝑢𝑢𝑖𝑑
′

∙ (𝑔𝑎𝑞
)
−1/𝑧𝑢𝑖𝑑

.

The simulator ℬ then sends the (GPK𝑢𝑖𝑑 , GSK𝑢𝑖𝑑) to
the adversary 𝒜.

Phase 1: The adversary 𝒜 refers (𝑢𝑖𝑑, 𝑆𝑘) to the
simulator for obtaining secret keys and update keys.
Thereinto 𝑆𝑘 denotes attributes set from AA𝑘 ∈ 𝑆A − 𝑆A

′
and 𝑆𝑘 does not satisfy M∗ in combination with any
keys of AA𝑘 ∈ 𝑆A

′ .
Since 𝑆𝑘 does not satisfy M∗, a vector �⃗⃗⃗� =

(𝜔1, 𝜔2, … , 𝜔𝑛∗) ∈ 𝑍𝑝
𝑛∗

 can be found by the simulator ℬ
where ω1 = −1 , and for each 𝑖, 𝜌∗(𝑖) ∈ 𝑆𝑘: ω⃗⃗⃗ ∙ 𝑀𝑖

∗ = 0.
The simulator ℬ then randomly selects a number

𝑟 ∈ 𝑍𝑝 and sets 𝑡 as

 𝑡𝑢𝑖𝑑,𝑘 = 𝑟 + 𝜔1𝑎
𝑞−1 + 𝜔2𝑎

𝑞−2 + ⋯+ 𝜔𝑛∗𝑎𝑞−𝑛∗
.

Then component R𝑢𝑖𝑑,𝑘 , K𝑢𝑖𝑑,𝑘 can be calculated as

 R𝑢𝑖𝑑,𝑘 = 𝑔𝑎𝑟 ∙ ∏ (𝑔𝑎𝑞+1−𝑖
)

𝜔𝑖

𝑖=1,2,…𝑛∗ ,

 K𝑢𝑖𝑑,𝑘 = 𝑔
𝛼𝑘

′

𝑧𝑢𝑖𝑑 ∙ 𝑔𝑎𝑢𝑢𝑖𝑑
′

∙ 𝑔
𝑎𝑟

𝛽𝑘 ∙ ∏ (𝑔𝑎𝑞+1−𝑖
)

𝜔𝑖
𝛽𝑘

𝑖=1,2,…𝑛∗ .

In the NEDAC-MACS, the component K𝑢𝑖𝑑,𝑥𝑘
 and

L𝑢𝑖𝑑,𝑥𝑘
 in the secret key are modified by adding some

fractions. For those 𝑥𝑘 ∈ 𝑆𝑘 used in the access structure
(∃𝑖, such that 𝜌∗(𝑖) = 𝑥𝑘), L𝑢𝑖𝑑,𝑥𝑘

 and K𝑥𝑘,𝑢𝑖𝑑 can be con-
structed by the simulator as follows.

 ∀𝑥𝑘 ∈ 𝑆𝑘 ∶

 L𝑢𝑖𝑑,𝑥𝑘
= 𝑔𝑣𝑥𝑘

𝛽𝑘𝑢𝑢𝑖𝑑
′ (ℎ𝑗,𝑘−1) ∙ (𝑔

𝛽𝑘
𝑧𝑢𝑖𝑑)

𝑟

∙ ∏ (𝑔𝑎𝑞−𝑖
)
𝜔𝑖

𝛽𝑘
𝑧𝑢𝑖𝑑

𝑖=1,2,…𝑛∗

,

K𝑢𝑖𝑑,𝑥𝑘
= (L𝑢𝑖𝑑,𝑘)

𝛾𝑘
 ∙ ((𝑔𝑣𝑥𝑘

𝛾𝑘(ℎ𝑗,𝑘−1) ∙ PK𝑥𝑘
)

𝛽𝑘𝑢𝑢𝑖𝑑
′

∙

 (𝑔𝑎𝑞
)

−𝛽𝑘𝛾𝑘(𝑣𝑥𝑘
+𝑑𝑥𝑘

)

𝑧𝑢𝑖𝑑 ∙ ∏ ∏ (𝑔
𝑎𝑞+1+𝑗

𝑏𝑖)

−𝛽𝑘𝛾𝑘𝑀𝑖,𝑗
∗

𝑗=1,2,…𝑛∗𝑖∈𝑋

.

For those attributes 𝑥 ∈ 𝑆𝑎𝑖𝑑 not used in the access
structure, L𝑢𝑖𝑑,𝑥𝑘

 and K𝑥𝑘,𝑢𝑖𝑑 can be constructed as

K𝑢𝑖𝑑,𝑥𝑘
= (L𝑢𝑖𝑑,𝑘)

𝛾𝑘
∙ (GPK𝑢𝑖𝑑)𝛽𝑘γ𝑘(𝑣𝑥𝑘

+𝑑𝑥𝑘) ∙ 𝑔𝛾𝑘
2
(𝑣𝑥𝑘

+𝑑𝑥𝑘).

The adversary can submit some pairs {(𝑢𝑖𝑑, 𝑥𝑘)} to
query update keys. When 𝑢𝑖𝑑 is a nonrevoked user
and 𝑥𝑘 is assigned a new version key 𝑣𝑥𝑘

′ , the simulator
then responds corresponding keys KUK𝑢𝑖𝑑,𝑥𝑘

, LUK𝑢𝑖𝑑,𝑥𝑘

to adversary:

KUK𝑢𝑖𝑑,𝑥𝑘
= 𝑔𝑢𝑗𝛽𝑘𝛾𝑘(𝑣𝑥𝑘

′ −𝑣𝑥𝑘
), LUK𝑢𝑖𝑑,𝑥𝑘

= 𝑔𝛽𝑘𝑢𝑢𝑖𝑑AUK𝑥𝑘
𝛾𝑘⁄ .

Otherwise, it sends “⊥” back.
Challenge: After receiving two equal length mes-

sages 𝑚0, 𝑚1 and a challenging access structure from
the adversary, simulator ℬ randomly chooses a bit 𝑏

in {0,1}. It first generates

C = 𝑚𝑏𝑇 ∏ 𝑒(𝑔𝑠 , 𝑔𝛼𝑘
′
)𝑘∈𝐼𝐴 , C′ = 𝑔𝑠 , C′′ = 𝑔𝑠/𝛽𝑘.

Randomly choosing 𝑦2
′ , … , 𝑦𝑛∗

′ ∈ 𝑍𝑝 , the simulator
shares secret 𝑠 by a vector 𝑣 = (𝑠, 𝑠𝑎 + 𝑦2

′ , 𝑠 ∙ 𝑎2 + 𝑦3
′ ,

… , 𝑠 ∙ 𝑎𝑛∗−1 + 𝑦𝑛∗
′) ∈ 𝑍𝑝

𝑛∗
, then ℬ can simulate each

share 𝜆𝑖 , 𝑖 = 1,2,… 𝑛∗ of the secret 𝑠 as
𝜆𝑖 = 𝑠 ∙ M𝑖,1 + ∑ (𝑠𝑎𝑗−1 + 𝑦𝑗

′)M𝑖,𝑗
∗

j=2,…𝑛∗ .

For each 𝑖 = 1,2,… 𝑛∗, let 𝑅𝑖 = {𝑡 ≠ 𝑖 | 𝜌∗(𝑖) = 𝜌∗(𝑡)}.
ℬ randomly chooses 𝑟1

′, … , 𝑟𝑙
′ , and simulates the 𝐶𝑖 as

 C𝑖 = (𝑔𝑣𝜌∗(𝑖)H(𝜌∗(𝑖)))
𝛾𝑘𝑟𝑖

′

∙ (∏ 𝑔𝑎M𝑖,𝑗𝑦𝑗
𝑗=1,2,…𝑛∗) ∙

(𝑔𝑠𝑏𝑖)−𝛾𝑘(𝑣𝜌∗(𝑖)+𝑑𝜌∗(𝑖)) ∙ ∏ ∏ (𝑔
𝑎𝑗𝑠𝑏𝑖

𝑏𝑘)
𝛾𝑘𝑀𝑘,𝑗

∗

𝑗=1,2,…𝑛∗𝑘∈𝑅𝑖
.

The rest components of the challenge ciphertext CT∗
can be simulated as

D1,𝑖 = (𝑔𝑟𝑖
′
𝑔𝑠𝑏𝑖)

1

𝛽𝑘 , D2,𝑖 = (𝑔𝑟𝑖
′
𝑔𝑠𝑏𝑖)

−𝛾𝑘
𝛽𝑘 .

Phase 2: Same as Phase 1.
Guess: The adversary 𝒜 finally ends Phase 2 and

gives a guess 𝑏′ of 𝑏 . If 𝑏′ = 𝑏 , and the simulator
 ℬ outputs 0 to predicate that 𝑇 = 𝑒(𝑔, 𝑔)𝑎𝑞+1∙𝑠 ∈ 𝐺𝑇 ;
otherwise, it outputs 1 to indicate that it believes T is a
random element in 𝐺𝑇.

When 𝑇 results in a tuple, the simulator ℬ gives a
perfect simulation and we have that

𝑃𝑟[ℬ(�⃗�, 𝑇 = 𝑒(𝑔, 𝑔)𝑎𝑞+1∙𝑠) = 0] = 1/2 + 𝐴𝑑𝑣𝒜.

When 𝑇 results in a random group element in G𝑇,
the message 𝑚𝑏 is completely hidden from the adver-
sary 𝒜 and 𝑃𝑟[ℬ(�⃗�, 𝑇 = 𝑒(𝑔, 𝑔)𝑎𝑞+1∙𝑠) = 0] = 1/2.

Therefore, the simulator ℬ can play the decisional q-
parallel BDHE game with nonnegligible advantage.

6.5 Security Comparison

Table Ⅲ details the comprehensive security comparison
among schemes of S.Ruj et al.’s DACC [9], K.Yang et al.’s
DAC-MACS [2] and our NEDAC-MACS in terms of col-
lusion resistance, revocation security, data confidentiality
and provable security against static corruption of authori-
ties. Therein, " √ " represents the scheme‘s capability to
achieve the corresponding index, whereas " × " means
the opposite.

7 PERFORMANCE ANALYSIS

To validate the efficiency of our NEDAC-MACS, perfor-
mance comparisons are carried out in terms of storage
overhead, computation overhead and communication
overhead among CP-ABE schemes of DACC [9], DAC-
MACS [2] and our NEDAC-MACS.

7.1 Storage Overhead

Table Ⅳ details the storage comparison among the three

TABLE Ⅲ

SECURITY COMPARISON OF CP-ABE SCHEMES

Scheme
Co
Res

Revocation Confidentiality Pr
Sec B F Ag Cloud Ag User

DACC √ √ × √ √ √

DAC-MACS × × √ √ × √

NEDAC-MACS √ √ √ √ √ √

Co Res = Collusion Resistance, B = Backward, F = Forward,
Ag = Against, Pr Sec = Provable Security.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

12

schemes, where |p| is the size of element in the groups G,
G𝑇, 𝑍𝑝 with prime order 𝑝, 𝑡𝑐 denotes the total number of
attributes associated with a ciphertext, 𝑛𝑐 denotes the to-
tal number of ciphertext on cloud, 𝑡𝑢 denotes the total-
number of attributes of a user, 𝑥 is the revoked attribute,
𝑛𝑛𝑜𝑛,𝑥 denotes the total number of nonrevoked users who
have the revoked 𝑥, 𝑛𝑐,𝑥 is the number of ciphertext asso-
ciated with the revoked attribute 𝑥, 𝑛𝑎,𝑘,𝑢𝑖𝑑 is the number
of attributes assigned from AA𝑘 to user U𝑢𝑖𝑑 , 𝑛𝑎,𝑘 is the
number of attributes managed by AA𝑘, 𝑁A is the number
of AA involved in system.

Table Ⅳ shows that the overall storage overhead of
NEDAC-MACS is relatively same as that of DAC-MACS
and has advantage over DACC when 𝑛𝑐 the number of
ciphertext or 𝑛𝑐,𝑥 the number of ciphertext associated
with the revoked 𝑥 is large in the system.

It is illustrated in Table Ⅳ that, on the authority side,
DAC-MACS and NEDAC-MACS incur less storage over-
head than DACC since both schemes requires each attrib-
ute authority to store the version key of each held attrib-
ute and the secret authority key, whereas DACC needs to
store the secret keys for all attributes. Moreover, the com-
ponents need be stored in NEDAC-MACS are similar to
DAC-MACS except those added ℎ𝑗,𝑘 need to be securely
stored in users’ secret keys by the corresponding AA𝑘 for
each user. However, adding ℎ𝑗,𝑘 results in a 𝑛𝑢|𝑝| reduc-
ing of storage overhead on authority side comparing to
that of DAC-MACS.

On the data owners side, DAC-MACS and NEDAC-
MACS incur the same storage overhead better than that
of DACC when 𝑛𝑐 is large in the system. The reason is
that DACC requires the data owners to hold the encryp-
tion secret for each ciphertext, whereas in DAC-MACS
and NEDAC-MACS, public keys of attribute and AA𝑘 are
mainly needed to be stored.

On each user side, the storage overheads of DAC-
MACS and NEDAC-MACS also stay identical and both
require less overhead than that of DACC when 𝑛𝑐,𝑥 is
large in the system. This is due to the reason that the stor-
age overhead in DAC-MACS and NEDAC-MACS mainly
comes from the global secret keys and the secret keys of
users, whereas DACC requires each user to store both the
secret keys issued by all the AAs and the ciphertext com-
ponents which are associated with the revoked attribute.

The three schemes require almost the same storage
overhead on the cloud server side since the storage main-
ly comes from the ciphertext, where we do not consider
the plaintext size encrypted by symmetric keys.

7.2 Computation Overhead

Table V details the computation overhead comparison

among the schemes and it indicates that NEDAC-MACS
incurs less computation overhead than DACC and is
comparable to DAC-MACS. DACC needs one pairing
computation to encrypt each plaintext and requires more
for decryption so that it incurs the largest amount of
computation overhead both in encryption on data owners
and decryption on user side. Moreover, since the compu-
tationally intensive and storage demanding jobs of de-
cryption process (TKGen) in DAC-MACS and NEDAC-
MACS scheme are partitioned and offloaded on tradi-
tional cloud resources, it can greatly reduce the workload
level on user side. However, DACC requires the data
owners to change all stored ciphertext containing 𝑥 ∈ 𝐼𝑢,
thus incurs a heavy computation overhead for attribute
operations off cloud due to the huge amount of involved
ciphertext.

The computation overhead comparison is also con-
ducted by simulating the whole architectures of DACC,
DAC-MACS, and NEDAC-MACS with PBC library ver-
sion 0.5.12 [27], on an Ubuntu system 14.04 with a 2.5
GHz processor and 2G RAM. We adopt the ordinary
symmetric elliptic curve (type D internals) with elliptic
curve group size 159-bit and embedding degree 6. Each
value in Figures 2, 3, 4 is the mean of 10 simulation trials.

As shown in Fig.2, Fig.3, and Fig.4, the consuming
time comparison of both encryption and decryption are
conducted according to two parameters: the number of
authorities and the number of attributes per authority.
The revocation computation is based on the number of
revoked attributes.

In Fig.2, suppose each user holds the same number of
assigned attributes from each attribute. In Fig.2, we set 10
as the involved number of attributes from each attribute
authority, and also the involved number of authority.
Fig.2 illustrates that the three schemes nearly have the
same efficiency in encryption time for data owners, since
they are all based on CP-ABE.

In Fig.3 a), we set 10 as the number of involved attrib-
utes of user from each AA, and the number of involved
authorities linked to the ciphertext is also set to be 10 in
Fig.3 b). Fig.3 shows that NEDAC-MACS incurs less
computation overhead than DACC and is relatively same
as DAC-MACS in efficiency of decryption time for users.
The reason is the most computation-consuming job of
decryption is offloaded on cloud server in DAC-MACS
and NEDAC-MACS scheme, which greatly reduces the
workload level on user side. Moreover, the secret keys of
users in in NEDAC-MACS and DAC-MACS systems can
all be available in public for the cloud servers, which en-
hances the computation efficiency at the Data Decryption
phase when comparing with the DACC.

TABLE Ⅳ

STORAGE OVERHEAD COMPARISON OF CP-ABE SCHEMES

Scheme Authority (AA𝑘/KDC𝑘) Data Owners User Cloud

DACC 2𝑛𝑎,𝑘|𝑝| (𝑛𝑐 + 2∑ 𝑛𝑎,𝑘
𝑁𝐴
𝑘=1)|𝑝| (𝑛𝑐,𝑥 + ∑ 𝑛𝑎,𝑘,𝑢𝑖𝑑

𝑁𝐴
𝑘=1)|𝑝| (3𝑡𝑐 + 1)|𝑝|

DAC-MACS (𝑛𝑎,𝑘 + 3)|𝑝| (3𝑁𝐴 + 1 + ∑ 𝑛𝑎,𝑘
𝑁𝐴
𝑘=1)|𝑝| (3𝑁𝐴 + 1 + ∑ 𝑛𝑎,𝑘,𝑢𝑖𝑑

𝑁𝐴
𝑘=1)|𝑝| (3𝑡𝑐 + 3)|𝑝|

NEDAC-MACS (𝑛𝑎,𝑘 + 3 + 𝑛𝑢)|𝑝| (3𝑁𝐴 + 1 + ∑ 𝑛𝑎,𝑘
𝑁𝐴
𝑘=1)|𝑝| (2𝑁𝐴 + 1 + 2∑ 𝑛𝑎,𝑘,𝑢𝑖𝑑

𝑁𝐴
𝑘=1)|𝑝| (3𝑡𝑐 + 3)|𝑝|

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

 13

Fig.4 gives the comparison of revocation computation
time off cloud (include secret key update by nonrevoked
users and update key generation by authority) according
to the number of revoked attributes appeared in the ci-
phertext. It indicates that NEDAC-MACS performs better
than DACC and incurs a slight efficiency reducing than
DAC-MACS on the revocation computation off cloud.

7.3 Communication Overhead

The communication overhead comparison is conducted
among the three schemes regardless of the common fields
(M, 𝜌) overhead in the ciphertext. Table VI details the
communication overhead comparison.

It is easy to find that the three schemes incur almost
the same communication overhead at both Encryption and
Decryption phase since they all need to send the ciphertext
in the two phases. At Attribute Revocation phase, when the
ciphertext is reencrypted in DACC, some of its compo-
nents related to the revoked attributes should be sent to
each nonrevoked user who holds the revoked attributes,
which increases the overhead of communication com-
pared with DAC-MACS and NEDAC-MACS. We note
that in NEDAC-MACS, L𝑢𝑖𝑑,𝑥𝑎𝑖𝑑

 of secret keys of U𝑢𝑖𝑑 are
linked with attribute 𝑥𝑎𝑖𝑑, thus it requires the transmitted
update message LUK for updating when 𝑥𝑎𝑖𝑑 of U𝑢𝑖𝑑 is
revoked from AA𝑎𝑖𝑑 , which results in corresponding re-

ducing of communication efficiency compared with DAC-
MACS. However, the overall communication overhead of
NEDAC-MACS is relatively the same as that of DAC-
MACS and has advantage over DACC.

8 CONCLUSION

In this paper, we first give two attacks on DAC-MACS
and EDAC-MACS for their backward revocation security.
Then, a new effective data access control scheme for mul-
tiauthority cloud storage systems (NEDAC-MACS) is
proposed to withstand the two vulnerabilities in section 3
and thus to enhance the revocation security. NEDAC-
MACS can withstand the two vulnerabilities even though
the nonrevoked users reveal their received key update
keys to the revoked user. In NEDAC-MACS, the revoked
user has no chance to decrypt any objective ciphertext
even if it actively eavesdrop to obtain an arbitrary num-
ber of nonrevoked users’ Key Update Keys KUK or col-
lude with some nonrevoked users or obtain any transmit-
ted information such as Ciphertext Update Keys CUK .
Then, formal cryptanalysis of NEDAC-MACS is present-
ed to prove its improved security. Finally, the perfor-
mance simulation shows the overall storage, computation,
and communication overheads of the NEDAC-MACS are
superior to that of DACC and relatively same as that of
DAC-MACS.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (NO.61202448), and the Key Labora-
tory Program of Information Network Security of Minis-
try of Public Security (No.C14610).

REFERENCES

[1] S. Subashini and V. Kavitha, “A survey on security issues in service

delivery models of cloud computing,” J. Network and Computer Applica-

Fig. 4. Comparison of Decryption Time Off-Cloud.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Revoked Attributes

T
im

e
 C

o
s
t(

s
)

DACC

DAC-MACS

NEDAC-MACS

 a) Comparison 1 b) Comparison 2

Fig. 2. Comparison of Encryption Time on Data Owners.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of AAs

Fig.1.1 Encryption Time Comparison 1

E
nc

ry
pt

io
n

T
im

e
C

os
t(

s)

DACC

DAC-MACS

NEDAC-MACS

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Attributes from Each AA

Fig.1.2 Encryption Time Comparison 2

E
nc

ry
pt

io
n

T
im

e
C

os
t(

s)

DACC

DAC-MACS

NEDAC-MACS

 a) Comparison 1 b) Comparison 2

Fig. 3. Comparison of Decryption Time on Users.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of AAs
D

ec
ry

pt
io

n
T

im
e

C
os

t(
s)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Attributes from Each AA

D
ec

ry
pt

io
n

T
im

e
C

os
t(

s)

DACC

DAC-MACS

NEDAC-MACS

DACC

DAC-MACS

NEDAC-MACS

TABLE Ⅴ

COMPUTATION OVERHEAD COMPARISON OF CP-ABE SCHEMES

Scheme
Crypt-Computation Revocation Computa-

tion off Cloud Encryption Decryption

DACC 𝑡𝑝 + (4𝑡𝑐 + 1)𝑡𝑚 2𝑡𝑐𝑡𝑝 + 𝑡𝑐𝑡𝑚 ∑ 3𝑛𝑛𝑜𝑛,𝑥𝑥∈𝐼𝑢
𝑡𝑚

DAC-

MACS
(𝑡𝑐 + |𝐼𝐴| + 1)𝑡𝑚 𝑡𝑚 (𝑛𝑛𝑜𝑛,𝑥 + 𝑛𝑐,𝑥 + 1) 𝑡𝑚

NEDAC-

MACS
(𝑡𝑐 + |𝐼𝐴| + 1)𝑡𝑚 𝑡𝑚 (2𝑛𝑛𝑜𝑛,𝑥 + 𝑛𝑐,𝑥 + 1) 𝑡𝑚

TABLE Ⅵ

COMMUNICATION OVERHEAD COMPARISON OF CP-ABE SCHEMES

Scheme
Attribute Revocation

Encryption Decryption
Key Update CT Update

DACC N/A (𝑛𝑐,𝑥𝑛𝑛𝑜𝑛,𝑥 + 1)|𝑝| (3𝑡𝑐 + 1)|𝑝| (3𝑡𝑐 + 1)|𝑝|

DAC-

MACS
𝑛𝑛𝑜𝑛,𝑥|𝑝| |𝑝| (3𝑡𝑐 + 3)|𝑝| (3𝑡𝑐 + 4)|𝑝|

NEDAC-

MACS
2𝑛𝑛𝑜𝑛,𝑥|𝑝| 3|𝑝| (3𝑡𝑐 + 3)|𝑝| (3𝑡𝑐 + 4)|𝑝|

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSC.2015.2441698, IEEE Transactions on Services Computing

14

tions, vol. 34, no. 1, pp. 1-11, Jul. 2010

[2] K. Yang, X. Jia, and K. Ren, “DAC-MACS: Effective data access control

for multiauthority cloud storage systems,” IEEE Trans. Information Fo-

rensics and Security, vol. 8, no. 11, pp. 1790-1801, Nov. 2013

[3] Kan Yang and Xiaohua Jia, "Expressive, Efficient, and Revocable Data

Access Control for Multi-Authority Cloud Storage," IEEE Trans. Parallel

and Distributed Systems, vol.25, no.7, pp.1735-1744, July 2014

[4] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Proc. EU-

ROCRYPT’ 05, pp. 457-473, 2005

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based Encryp-

tion for Fine-Grained Access Control of Encrypted Data,” Proc. ACM

Conf. Computer and Comm. Security, pp. 89-98, 2006

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-

Based Encryption,” Proc.IEEE Symp.Security & Privacy, pp. 321-334, 2007

[7] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-Based Encryption

with Non-Monotonic Access Structures,” Proc. ACM Conf. Computer and

Comm. Security, pp. 195-203, 2007

[8] L. Cheung and C. C. Newport, “Provably secure ciphertext policy ABE,”

Proc. ACM Conf. Computer & Communications Security, pp. 456-465, 2007

[9] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: distributed access control

in clouds,” Proc. TrustCom’11, pp. 91-98, IEEE, 2011

[10] Zhiguo Wan, Jun'e Liu, and Deng, R.H., "HASBE: A Hierarchical At-

tribute-Based Solution for Flexible and Scalable Access Control in

Cloud Computing," IEEE Trans. Information Forensics and Security, vol.7,

no.2, pp. 743-754, April 2012

[11] Junzuo Lai, Deng, R.H., Chaowen Guan, and Jian Weng, "Attribute-

Based Encryption With Verifiable Outsourced Decryption," IEEE Trans.

Information Forensics and Security, vol.8, no.8, pp. 1343-1354, Aug. 2013

[12] J. Hur and D. K. Noh, “Attribute-based access control with efficient

revocation in data outsourcing systems,” IEEE Trans. Parallel and Dis-

tributed Systems, vol. 22, no. 7, pp.1214-1221, Jul. 2011

[13] J. Hur, “Improving security and efficiency in attribute-based data shar-

ing,” IEEE Trans. Knowledge and Data Engineering, vol. 25, no. 10, pp.

2271-2282, Oct. 2013

[14] M. Chase and S. S. M. Chow, “Improving privacy and security in mul-

tiauthority attribute-based encryption,” Proc. CCS’09, pp.121-130, 2009

[15] M. Chase, “Multiauthority attribute-based encryption,” Proc.TCC’07, pp.

515-534, Springer, 2007

[16] S. Müller, S. Katzenbeisser, and C. Eckert, “Distributed attribute-based

encryption,” Proc. 11th Int. Conf. Information Security and Cryptology, pp.

20-36, Springer, 2008

[17] A. B. Lewko and B. Waters, “Decentralizing Attribute-based Encryp-

tion,” Proc. EUROCRYPT’11, pp. 568-588, Springer, 2011

[18] H. Lin, Z. Cao, X. Liang, and J. Shao, “Secure threshold multiauthority

attribute based encryption without a central authority,” Inf. Sci., vol.180,

no. 13, pp. 2618-2632, 2010

[19] J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie, “Multi-

authority ciphertext policy attribute-based encryption with accountabil-

ity,” Proc. ASIACCS’11, pp. 386-390, ACM, 2011

[20] Xuefeng Liu, Yuqing Zhang, Boyang Wang, and Jingbo Yang, “Mona:

Secure Multi-Owner Data Sharing for Dynamic Groups in the Cloud,”

IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 6, pp. 1182-1191,

June 2013

[21] Zhongma Zhu, Zemin Jiang, Rui Jiang, “The Attack on Mona: Secure

Multi-Owner Data Sharing for Dynamic Groups in the Cloud,” Proc.

ISCC 2013, Guangzhou, Dec.7, 2013, pp. 185-189

[22] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption

of ABE ciphertexts,” in Proc. USENIX Security Symp., San Francisco, CA,

USA, 2011

[23] J. Z. Lai, R. H. Deng, C. W. Guan, and J. Weng, "Attribute-Based En-

cryption With Verifiable Outsourced Decryption," IEEE Transactions on

Information Forensics and Security, vol. 8, pp. 1343-1354, Aug 2013

[24] A. Beimel, “Secure schemes for secret sharing and key distribution,”

Ph.D. dissertation, Dept. Inst. of Tech., Technion Univ., Haifa, 1996

[25] J. Benaloh and J. Leichter, “Generalized secret sharing and monotone

functions,” Advances in Cryptology-CRYPTO, vol. 403, pp. 27-36, 1988

[26] L. Xu, X. Wu, and X. Zhang, “CL-PRE: a Certificateless Proxy Re-

Encryption Scheme for Secure Data Sharing with Public Cloud,”in the

Proceedings of ACM ASIACCS 2012, 2012

[27] Pairing Based Cryptography (PBC) Library. [Online]. Available:

http://crypto.stanford.edu/pbc/

[28] W. Mao, “Modern Cryptography: Theory and Practice,” New Jersey:

Prentice Hall PTR, 2003
[29] M. Bellare, P. Rogaway, “Random oracles are practical: A paradigm for

designing efficient protocols,” Pro. CCS. ACM Press, Springer, 1993

[30] Dolev, D., Yao A. C., "On the security of public key protocols", IEEE

Trans. Information Theory, vol. IT-29, no. 2, pp. 198–208, 1983

Xianglong Wu is a student in the De-
partment of Information Science and
Engineering, Southeast University,
China. He majors in information security,
and mainly engages in cloud storage
security protocols research.

Rui Jiang is now an associate Profes-
sor at Southeast University, China. He
received his Ph D degree at Shanghai
Jiaotong University, Shanghai, China in
2005. His current research interests
include secure analysis and design of
communication protocols, secure mo-
bile cloud computing, secure network
and systems communications, mobile
voice end-to-end secure communica-
tions, and applied cryptography.

Bharat Bhargava is a Professor of
Computer Science at Purdue Universi-
ty. He is conducting research in securi-
ty and privacy issues in distributed
systems and sensor networks. This
involves identity management, secure
routing and dealing with malicious
hosts, adaptability to attacks, and ex-
perimental studies. His recent work
involves attack graphs for collaborative
attacks. Prof. Bhargava has won five
best paper awards in addition to the
technical achievement award and
golden core award from IEEE, and is a
fellow of IEEE. He received Outstand-

ing Instructor Awards from the Purdue chapter of the ACM in 1996
and 1998. He has graduated the largest number of Ph.D students in
CS department and is active in supporting/mentoring minority stu-
dents. In 2003, he was inducted in the Purdue's Book of Great
Teachers. He has graduated the largest number of women Ph.D
students and the first African American student Ph.D in CS depart-
ment. He is editor-in-chief of three journals and serves on over ten
editorial boards of international journals. Professor Bhargava is the
founder of the IEEE Symposium on Reliable and Distributed Sys-
tems, IEEE conference on Digital Library, and the ACM Conference
on Information and Knowledge Management. Bhargava has worked
extensively at research laboratories of Air Force and Naval. He has
successfully completed several Darpa and Navy STTR proposals.
He is working with General Motor Corporation in analyzing use of
sensors in cars and other vehicle. He has organized an NSF work-
shop on V2V wireless network.

