

 Efficient Information Retrieval Using Ranked Query

 (EIRQ)
ABSTRACT:

 Cloud computing as an emerging technology trend is expected to reshape the advances in information technology. In a costefficient cloud environment, a user can tolerate a certain degree of delay while retrieving information from the cloud to reduce costs. In this paper, we address two fundamental issues in such an environment: privacy and efficiency. We first review a private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an untrusted server without leaking any information. The main drawback is that it will cause a heavy querying overhead incurred on the cloud, and thus goes against the original intention of cost efficiency. In this paper, we present a scheme, termed efficient information retrieval for ranked query (EIRQ), based on an aggregation and distribution layer (ADL), to reduce querying overhead incurred on the cloud. In EIRQ, queries are classified into multiple ranks, where a higher ranked query can retrieve a higher percentage of matched files. A user can retrieve files on demand by choosing queries of different ranks. This feature is useful when there are a large number of matched files, but the user only needs a small subset of them. Under different parameter settings, extensive evaluations have been conducted

on both analytical models and on a real cloud environment, in order to examine the effectiveness of our schemes.
Architecture:

[image: image1.emf]
EXISTING SYSTEM
Existing system private keyword-based file retrieval scheme that was originally proposed by Ostrovsky. Their scheme allows a user to retrieve files of interest from an untrusted server without leaking any information. The main drawback is that it will cause a heavy querying overhead incurred on the cloud, and thus goes against the original intention of cost efficiency.
 Private searching was proposed by Ostrovsky et al.which allows a user to retrieve files of interest from an untrusted server without leaking any information. However, the Ostrovsky scheme has a high computational cost, since it requires the cloud to process the query on every file in a collection. Otherwise, the cloud will learn that certain files, without processing, are of no interest to the user. It will quickly become a performance bottleneck when the cloud needs to process thousands of queries over a collection of hundreds of thousands of files.
Disadvantages
1. Ostrovsky scheme has a high computational cost.

2. It requires the cloud to process the query on every file in a collection.
PROPOSED SYSTEM
 We propose a scheme, termed Efficient Information retrieval for Ranked Query (EIRQ), in which each user can choose the rank of his query to determine the percentage of matched files to be returned. The basic idea of EIRQ is to construct a privacypreserving mask matrix that allows the cloud to filter out a certain percentage of matched files before returning to the ADL. This is not a trivial work, since the cloud needs to correctly filter out files according to the rank of queries without knowing anything about user privacy. Focusing on different design goals, we provide two extensions: the first extension emphasizes simplicity by requiring the least amount of modifications from the Ostrovsky scheme, and the second extension emphasizes privacy by leaking the least amount of information to the cloud.
Advantages:
1. The users can retrieve matched files on demand to further reduce the communication costs incurred on the cloud.
2. The cloud cannot know anything about the user’s search privacy, access privacy, and at least the basic level of rank privacy.
The EIRQ-Efficient scheme

MatrixConstruct (run by the ADL with public key pk)

for i = 1 to d do

set l to be the highest rank of queries choosing Dic[i]

for j = 1 to r do

if j ≤ r − l then

M[i, j] = Epk(1)

else

M[i, j] = Epk(0)

adjust γ and β so that file survival rate is 1

FileFilter (run by the cloud)

for each file Fj stored in the cloud do

for i = 1 to d do

k = j mod r; cj = _Dic[i]∈Fj M[i, k]; ej = c|Fj |j

map (cj, ej) γ times to a buffer of size β
Implementation

 Implementation is the stage of the project when the theoretical design is turned out into a working system. Thus it can be considered to be the most critical stage in achieving a successful new system and in giving the user, confidence that the new system will work and be effective.

 The implementation stage involves careful planning, investigation of the existing system and it’s constraints on implementation, designing of methods to achieve changeover and evaluation of changeover methods.
Problem Statement:
 As a typical cloud application, an organization subscribes the cloud services and authorizes its staff to share files in the cloud. Each

file is described by a set of keywords, and the staff, as authorized users, can retrieve files of their interests by querying the cloud with certain keywords. In such an environment, how to protect user privacy from the cloud, which is a third party outside the security boundary of the organization, becomes a key problem.
Scope:
 We propose three EIRQ schemes based on the ADL to provide a cost-efficient solution for private searching in cloud computing. The EIRQ schemes can protect user privacy while providing a differential query service that allows each user to retrieve matched files on demand.
MODULE DESCRIPTION:
Differential Query Services:

 We introduce a novel concept, differential query services, to COPS, where the users are allowed to personally decide how many matched files will be returned. This is motivated by the fact that under certain cases, there are a lot of files matching a user’s query, but the user is interested in only a certain percentage of matched files. To illustrate, let us assume that Alice wants to retrieve 2% of the files that contain keywords “A, B”, and Bob wants to retrieve 20% of the files that contain keywords “A, C”. The cloud holds 1,000 files, where {F1, . . . , F500} and {F501, . . . , F1000} are described by keywords “A, B” and “A, C”, respectively. In the Ostrovsky scheme, the cloud will have to return 2, 000 files. In the COPS scheme, the cloud will have to return 1, 000 files. In our scheme, the cloud only needs to return 200 files. Therefore, by allowing the users to retrieve matched files on demand, the bandwidth consumed in the cloud can be largely reduced.
Efficient Information Retrieval For Ranked Query:
 We propose a scheme, termed Efficient Information retrieval for Ranked Query (EIRQ), in which each user can choose the rank of his query to determine the percentage of matched files to be returned. The basic idea of EIRQ is to construct a privacypreserving mask matrix that allows the cloud to filter out a certain percentage of matched files before returning to the ADL. This is not a trivial work, since the cloud needs to correctly filter out files according to the rank of queries without knowing anything about user privacy. Focusing on different design goals, we provide two extensions: the first extension emphasizes simplicity by requiring the least amount of modifications from the Ostrovsky scheme, and the second extension emphasizes privacy by leaking the least amount of information to the cloud.
Aggregation And Distribution Layer :
 An ADL is deployed in an organization that authorizes its staff to share data in the cloud. The staff members, as the authorized users, send their queries to the ADL, which will aggregate user queries and send a combined query to the cloud. Then, the cloud processes the combined query on the file collection and returns a buffer that contains all of matched files to the ADL, which will distribute the search results to each user. To aggregate sufficient queries, the organization may require the ADL to wait for a period of time before running our schemes, which may incur a certain querying delay. In the supplementary file, we will discuss the computation and communication costs

as well as the querying delay incurred on the ADL.
Ranked Queries:

 To further reduce the communication cost, a differential query service is provided by allowing each user to retrieve matched files on demand. Specifically, a user selects a particular rank for his query to determine the percentage of matched files to be returned. This feature is useful when there are a lot of files that match a user’s query, but the user only needs a small subset of them.
System Configuration:-

H/W System Configuration:-

 Processor - Pentium –III

Speed - 1.1 Ghz

RAM - 256 MB(min)

Hard Disk - 20 GB

Floppy Drive - 1.44 MB

Key Board - Standard Windows Keyboard

Mouse - Two or Three Button Mouse

Monitor - SVGA

 S/W System Configuration:-

Operating System :Windows XP

Application Server : Tomcat5.0/6.X

Front End : HTML, Java, Jsp

 Scripts : JavaScript.

Server side Script : Java Server Pages.

Database : Mysql

Database Connectivity : JDBC.

